Zbl 328.10004

Erdős, Paul

Bemerkungen zu einer Aufgabe in den Elementen. Remarks on a problem in the elements. (In German)

Arch. der Math. 27, 159-163 (1976).

Let p denote an odd prime and $\ell(p)$ the order of 2 mod p. Write E(r) for the number of odd primes p with $\ell(p) = r$ and $A(x, \delta)$ for the number of odd primes p with $p \leq x$ and $\ell(p) > p^{\delta}$, $0 < \delta < 1$. Jaeschke and Bundschuh (Aufgabe 618 in "Elemente der Mathematik", 1971, hence the uniformative title of the present paper) proved that

$$\text{(i)} \quad E(r) \leq \frac{r \log 2}{\log r}, \quad \text{(ii)} \quad A(x,\delta) = (1+o(1))\frac{x}{\log x}, \quad 0 < \delta < \frac{1}{2},$$

(iii)
$$A(x, \frac{1}{2}) \ge (1 - \log 2 + o(1)) \frac{x}{\log x}$$
.

In a few lines, using the Chinese remainder theorem and a weak form of Stirling's formula, (i) is sharpened to

$$E(r) \le (\frac{1}{2} + o(1)) \frac{r \log 2}{\log r}.$$

The main result of the paper is that (ii) also holds for $\delta = \frac{1}{2}$. The proof of this is rather complicated and uses among other things an estimate from the sieve method of Brun. There are some conjectures on E(r) and $A(x, \delta)$ which seem very difficult to prove. To mention one of them: $E(r) = o(r^{\epsilon}), \ \epsilon > 0$.

H.Jager

Classification:

11A05 Multiplicative structure of the integers

11N37 Asymptotic results on arithmetic functions