Zbl 325.05114

Bollobás, Béla; Erdős, Paul

Articles of (and about)

Alternating Hamiltonian cycles. (In English)

Israel J. Math. 23, 126-131 (1976).

For natural numbers n and d, let $K_n(\Delta_c \leq d)$ denote a complete graph of order n whose edges are colored so that no vertex belongs to more than d edges of the same color, and where Δ_c is the maximal degree in the subgraph formed by the edges of color c. D. E. Daykin proved that if d=2 and $n\geq 6$, then every such graph contains an alternating hamiltonian cycle (i.e. a spanning cycle whose adjacent edges have different colors). The authors have extended this as follows. Theorem: If 69d < n, then every $G = K_n(\Delta_c \le d)$ contains an alternating hamiltonian cycle. In fact, it is stated that if 69d < n, then every $G = K_n(\Delta_c \leq d)$ contains alternating cycles of length ℓ for every ℓ , $3 \leq \ell \leq n$. An analogous result is obtained as follows. Let χ_v denote the number of colors appearing among the edges containing the vertex v, and let $K_n(\chi_v \geq \lambda)$ denote a complete graph of order n whose edges are colored so that each vertex is on at least λ edges of different color. Theorem: Every $K_n(\chi_v \geq (7/8)n)$ contains an alternating hamiltonian cycle. Several related results and conjectures are also presented.

S.F.Kapoor

Classification:

05C35 Extremal problems (graph theory)

05C15 Chromatic theory of graphs and maps