Zbl 294.33006

Erdős, Paul; Freud, G.

On orthogonal polynomials with regularly distributed zeros. (In English)

Proc. Lond. Math. Soc., III. Ser. 29, 521-537 (1974). [0024-6115]

Let $p_n(d\alpha;x) = \gamma_n(d\alpha)x^n + \dots (n = 0,1,\dots)$ be the sequence of orthonormal polynomials with respect to the nonnegative measure $d\alpha$, $x_{kn}(d\alpha)$ $(k = 1,2,\dots,n)$ be the zeros of $p_n(d\alpha;x)$ in decreasing order. Let $N_n(d\alpha;t)$ be the number of the $x_{kn}(d\alpha)$ satisfying $x_{kn}(d\alpha) - x_{nn}(d\alpha) \ge t[x_{1n}(d\alpha) - x_{nn}(d\alpha)]$. We say that $d\alpha$ is arc-sine iff

$$\lim_{n \to \infty} n^{-1} N_n(d\alpha; t) = \frac{1}{2} - \frac{1}{\pi} \arcsin(2t - 1).$$

[J. L. Ullman, Proc. London math. soc., III. Ser. 24, 119-148 (1972; Zbl 232.33007)]. By well-known properties of the zeros of the classical orthogonal polynomials, $(1-x)^{\beta}(1+x)^{\gamma}dx(-1 < x < 1)$ is arc- sine for $\beta, \gamma > -1$ but neither $e^{-x^2}dx(-\infty < x < \infty)$ is arc-sine nor is $x^{\rho}e^{-x}dx(0 < x < \infty)$ arc-sine for any $\rho > -1$.

A class of absolutely continuous arc-sine measures with non-compact support was discovered by $P.~Erd\Hos$ [Proc. Conf. construct. Theory Functions (Approximation Theory) 1969, 145-150 (1972; Zbl 234.33014)]. The authors prove that we have for arbitrary $d\alpha$

$$\lim_{n \to \infty} \sqrt[n-1]{\gamma_{n-1}(d\alpha)} [x_{1n}(d\alpha) - x_{nn}(d\alpha)] \ge 4$$

and that the relation

(*)
$$\lim_{n \to \infty} \sqrt[n-1]{\gamma_{n-1}(d\alpha)} [x_{1n}(d\alpha) - x_{nn}(d\alpha)] = 4$$

implies that $d\alpha$ is arc-sine. (*) is not only sufficient but also necessary if $d\alpha = wdx$ is absolutely continuous and either it has compact support or $w(x) = \exp\{-2Q(|x|)\}$ $(-\infty < x < \infty)$ where Q(x) $(x \ge 0)$ is a positive increasing differentiable function for which $x^{\rho}Q'(x)$ is increasing for some $\rho < 1$. An example is constructed of an absolutely continuous arc-sine measure $d\alpha$ for which (*) does not hold.

Following J.L. Ullman, loc. cit. we say that $A \subset [-1,1]$ is a determining set if every absolutely continuous $d\alpha = w(x)dx$ which satisfies $A \subseteq \{x : w(x) > 0\} \subseteq [-1,1]$ is arc-sine on [-1,1]. We give a proof of the conjecture of P.Erdős that a measurable set A is a determining set if and only if it has minimal logarithmic capacity $\frac{1}{2}$.

Classification:

33A65 33A65

42C05 General theory of orthogonal functions and polynomials

©European Mathematical Society & FIZ Karlruhe & Springer-Verlag