Zbl 273.26001

Articles of (and about)

Ash, J.Marshall; Erdős, Paul; Rubel, L.A.

Very slowly varying functions. (In English)

Aequationes Math. 10, 1-9 (1974). [0001-9054]

Let φ be a positive non-decreasing real valued function defined on $[0,\infty)$, and let f be any real valued function defined on $[0, \infty)$. We say that f is φ -slowly varying if $\varphi(x)[f(x+\alpha)-f(x)]\to 0$ as $x\to\infty$ for each α . We say that f is uniformly φ -slowly varying if $\sup \{ \varphi(x) | f(x+\alpha) - f(x) | : \alpha \in I \} \to 0$ as $x \to \infty$ for every bounded interval I. We state here five theorems that will be proved later in a longer communication. We also pose one question that seems to be difficult. Theorem 1. If f is φ -slowly varying and if $\sum i/\varphi(n) < \infty$, then f tends to a finite or infinite limit at ∞ . Theorem 2. If f is φ - slowly varying and measurable, then f is uniformly φ -slowly vayring. Theorem 3. Let f be φ slowly varying and let $\beta(x) = \sum_{j=0}^{\infty} 1/\varphi(x+j)$. If $\varphi(x)\beta(x)$ is bounded, then f must be uniformly φ -slowly varying. Theorem 4. Suppose that $\sum 1/\varphi(n) < \infty$ and that $\varphi(x+1)/\varphi(x) \to 1$ as $x \to \infty$. Then there exists a function f that is φ -slowly varying but not uniformly φ -slowly varying. Theorem 5. Let $\beta(x)$ be the function of Theorem 4, and suppose that $\varphi(x)\beta(x)$ is unbounded, but that $\varphi(x)\beta(x) = o(x)$ as $x \to \infty$. Then there exists a function f that is φ slowly varying but not uniformly φ - slowly varying. Question. Does there exist a function f such that $x[f(x+\alpha)-f(x)]\to 0$ as $x\to\infty$ for each α but $\sup\{|f(x+\alpha)-f(x)|:\alpha\in[0,1]\}\to 0 \text{ as } x\to\infty?$

Classification:

26A12 Rate of growth of functions of one real variable