Zbl 257.04004

Erdős, Paul; Hajnal, András

Articles of (and about)

Ordinary partition relations for ordinal numbers. (In English)

Period. Math. Hung. 1, 171-185 (1971). [0031-5303]

In this paper a number of positive and negative partition relations of the form $\alpha \to (\beta, \gamma)^2$ are established [see *P. Erdős* and *R. Rado*, Bull. Am. Math. Soc. 62, 427-489 (1956; Zbl 071.05105)]. E. Specker [Commentarii Math. Helvet. 31, 302-314 (1957; Zbl 080.03703)] proved that $\omega^2 \to (\omega^2, m)^2$ for $m < \omega$ and A. Hajnal [Proc. Natl. Acad. Sci. USA 68, 142-144 (1971; Zbl 215.05201)], proved that the corresponding result for higher cardinals fails, by showing that, if \aleph_{ζ} is regular and GCH is assumed, then $\omega_{\zeta+1}^2 \nrightarrow (\omega_{\zeta+1}^2, 3)^2$.

This negative result is extended here and some complementary positive theorems are proved. Thus, if \aleph_{ζ} is regular, GCH is assumed, $k,t < \omega$, m = (t+1)(k+1) and $\mu < \beta = \omega_{\zeta+1}^{k+2}$, then $\omega_{\zeta+1}^m \to (\beta,t+2)^2$, $\omega_{\zeta+1}^m \to (\mu,t+2)^2$, $\omega_{\zeta+1}^{m+1} \to (\beta+1,t+2)^2$ and $\omega_{\zeta+1}^{m+1} \to (\beta,t+2)^2$. This leaves some questions open.

For example, the authors ask if $\omega_1^2 \to (\omega_1 \tau, 4)^2$ for all $\tau < \omega_1$. C. C. Chang [J. Comb. Theory, Ser. A 12, 396-452 (1972; Zbl 266.04003)], proved that $\omega^{\omega} \to (\omega^{\omega}, 3)^2$ (and it is known that $\omega^{\omega} \to (\omega^{\omega}, m)^2$ for all $m < \omega$). In contrast to this, it is shown here (assuming GCH) that $\sigma \rightarrow (\omega_1^{\omega}, 3)^2$ for all $\sigma < \omega_2$. It is not known if the analogous result $\sigma \nrightarrow (\omega_2^{\omega_1}, 3)^2$ holds for all $\sigma < \omega_3$.

E.C.Milner

Classification:

04A20 Combinatorial set theory

05A17 Partitions of integres (combinatorics)