Zbl 228.10028

Erdős, Paul; Selfridge, J.L.

Articles of (and about)

Some problems on the prime factors of consecutive integers. II. (In English) Proc. Washington State Univ. Conf. Number Theory 1971, 13-21 (1971).

[For the entire collection see Zbl 225.00004.]

[Part I, Ill. J. Math. 11, 428-430 (1967; Zbl 149.28901).]

The authors develop a number of interesting results centering round the following interesting conjecture of C. A. Grimm: Let $n+1,\ldots,n+k$ be consecutive composite numbers. Then for each $i,1\leq i\leq k$ there is a $p_i,\,p_i\mid n+i,\,p_{i_1}\neq p_{i_2}$ for $i_1\neq i_2$. Grimm also stated the following weaker conjecture: The product of k consecutive composite numbers need to have at least k prime factors. The interest in Grimm's conjectures is that even the weaker conjecture is enough to imply $p_{i+1}-p_i\ll (p_i/\log p_i)^{1/2}$. Actually in view of a result of the reviewer the weaker conjecture implies that $p_{i+1}-p_i\ll p_i^{1/2-c_1}$ where c_1 is a certain positive constant. This is known to the authors. These results show that there is not much hope to prove Grimm's conjectures in the "near future".

The authors prove a number of interesting results independent of any hypothesis. Let $\nu(n,k)$ be the number of distinct prime factors of $(n+1)\dots(n+k)$; $f_1(k)$ be the smallest integer k so that for every $1 \leq l \leq k$, $\nu(n,1) \geq 1$ but $\nu(n,k+1)=k$; $f_0(n)$ be the largest integer k for which $\nu(n,k)\geq k$. Let $f_2(n)$ be the largest integer k so that for each $1 \leq i \leq k$ there is a $p_i \mid n+i$, $p_{i_1} \neq p_{i_2}$ if $i_1 \neq i_2$. Let p(m) be the greatest prime factor of m; $f_3(n)$ the largest integer so that all the primes p(n+i), $1 \leq i \leq k$, are distinct; $f_4(n)$ be the largest integer k so that $p(n+i) \geq i$, $1 \leq i \leq k$ and $f_5(n)$ be the largest integer k so that $p(n+i) \geq k$ for every $1 \leq i \leq k$. The main object of the paper is the study of the functions $f_i(n)$, $0 \leq i \leq 5$. We content by stating two theorems on $f_2(n)$.

Theorem 3: $f_2(n) > (1+0(1)) \log n$ (this theorem has been improved by the reviewer to $f_2(n) \gg \log n(\log_2 n/\log_3 n)^{1/2}$. Recently the reviewer received a letter from Tijdeman who says that he can improve this further to $f_2(n) \gg (\log n)^2 (\log_2 n)^{-8}$; $\log_r n$ denotes the r-th iterated logarithm). Theorem (stated without proof): $f_2(n) < \exp(c \log n \log_3 n/\log_2 n)$ for infinitely many n.

K.Ramachandra

Classification:

11N99 Multiplicative number theory

11N56 Rate of growth of arithmetic functions