Articles of (and about)

Erdős, Paul; Hajnal, András; Milner, E.C.

Set mappings and polarized partition relations (In English)

Combinat. Theory Appl., Colloquia Math. Soc. Janos Bolyai 4, 327-363 (1970).

[For the entire collection see Zbl 205.00201.]

A set mapping on a set S is a function f from S into the set of subsets of S such that $x \notin f(x)$ $(x \in S)$; $A \subset S$ is called a free set (for the set mapping) if $y \notin f(x)$ for all $x, y \in A$, i.e. $A \cap f(A) = \emptyset$.

In this paper we shall consider set mappings on a well-ordered set S in the case when the order type of S is not necessarily an initial ordinal. In particular, we examine the truth status of the following statement $SM(\alpha, \lambda)$. If f is any set mapping of order α on a set type λ , then there is a free subset having the same order type λ . The Erdős-Specker generalization of the Ruziewicz conjecture asserts that $SM(\alpha,\lambda)$ holds if λ is an infinite initial ordinal and $\alpha < \lambda$. We only examine the problem for the case when $|\lambda| = \aleph_1$ although some of our results hold more generally. We will prove that $SM(\alpha, \lambda)$ holds in the following cases:

- (i) $\alpha < \omega_1$ and $\lambda = \omega_1^{\sigma_1+1} + \ldots + \omega_1^{\sigma_k+1} < \omega_1^{\omega+2}$ (k finite); (ii) $\alpha = \omega_0$ and $\lambda = \omega_1 \gamma < \omega_1^{\omega+2}$;
- (iii) $\alpha < \omega_0$; $\lambda = \omega \Theta$, where Θ is arbitrary.

Note that the form given for λ in (i) is the most general for which $SM(\alpha, \lambda)$ is true with any $\alpha < \omega_1$.

Classification:

04A20 Combinatorial set theory