Zbl 211.27003

Articles of (and about)

Erdős, Paul

On some extremal problems on r-graphs (In English)

Discrete Math. 1, 1-6 (1971). [0012-365X]

Denote by $G^{(r)}(n;k)$ an r-graph of n vertices and k r- tuples. Turán's classical problem states: Determine the smallest integer f(n;r,l) so that every $G^{(r)}(n; f(n; r, l))$ contains a $K^{(r)}(l)$. Turán determined f(n; r, l) for r = 2, but nothing is known for r > 2. Put $\lim_{n\to\infty} f(n;r,l)/\binom{n}{r} = c_{r,l}$. The values of $c_{r,l}$ are not known for r>2. I prove that to every $\epsilon>0$ and integer t there is an $n_0 = n_0(t, \epsilon)$ so that every $G^{(r)}(n; [(c_{r,l} + \epsilon)(\binom{n}{r})])$ has lt vertices $x_i^{(j)}$, $1 \le i \le t$, $1 \le j \le l$, so that all the r-tuples $\left\{X_{i_1}^{(j_1)}, \dots, X_{i_r}^{(j_r)}\right\}$, $1 \le i_s \le t$, $1 \le j_1 < \ldots < j_r \le l$, occur in our $G^{(r)}$. Several unsolved problems are posed. Classification:

05C35 Extremal problems (graph theory)