Zbl 204.00905

Erdős, Paul; Rado, R.

Partition relations and transitivity domains of binary relations (In English) J. Lond. Math. Soc. 42, 624-633 (1967).

The main theorem is Theorem 2: For all positive integers m and n, for some positive integer l(m,n), for each ordinal number α , $\omega_{\alpha}l(m,n) \to (m,\omega_{\alpha}n)^2$; if $l_{\alpha}(m,n)$ is the least such l(m,n) for a given α , then $\gamma \mapsto (m,\omega_{\alpha}n)^2$ for each $\gamma > \omega_{\alpha}l_{\alpha}(m,n)$, and

$$l_{\alpha}(m,n) \le (2n-3)^{-1}[2^{m-1}(n-1)^m + n - 2];$$

if m > 1, then $l_0(m, n) \leq l_{\alpha}(m, n)$.

This generalizes some of Theorem 1, which handles the case $\alpha=0$ and was proved by the same authors [Bull. Am. Math. Soc. 62, 427-489 (1956; Zbl 071.05105), Theorem 25]; Theorem 1 includes also a characterization of $l_0(m,n)$. Among other results, Theorem 4 is an extension (the statement of which is not the obvious one) to infinite a of a result attributed to R. Stearns: If a is a finite cardinal, if \prec is a relation trichotomous on a set S, then \prec is transitive on some subset of S having cardinal a provided that $|S| \geq 2^{n-1}$. {Reviewer's remarks:

- (1) It is easily seen that $l_0(m, 2)$ as characterized by Theorem 1 is the least integer l such that for each set S with cardinal $\geq l$, for each relation \prec trichotomous on S, \prec is transitive on some subset of S having cardinal a. Specializing the estimate for $l_{\alpha}(m, n)$ in Theorem 2 to n = 2 yields the Stearns result.
- (2) Theorem 1 is slightly misstated. If m=1, " $\gamma \mapsto (m,\omega_0 n)^2$ " should be changed by replacing γ by $\omega_0(l_0(m,n)-1)$.
- (3) In the footnote on p. 625 " $(n-1)^{\mu}$ " should be replaced by " $(2(n-1))^{\mu}$ ".
- (4) On p. 627, (i) is not quite adequate but becomes so on replacing "for $x \in A'_{\beta}$ ", by "for each $x \in A'_{\beta}$ and $|U_0(x)A_{\gamma}| = \aleph_{\alpha}$ for some $x \in A_{\beta}$ ", and (ii) is not quite adequate but becomes so on inserting "and $|U_0(x)A_{\gamma}| < \aleph_{\alpha}$ for some $x \in A_{\beta}$ " after " $|U_0(\bar{x})A_{\gamma}| = \aleph_{\alpha}$ ". [The iteration of the operators O_{λ} then becomes adequate for the task at hand.] The last sentence of the third paragraph of (ii) appears to be an inaccurate oversimplication. [It is clear from the rather involved proof of Theorem 2, to which these points attach, that these inaccuracies were not in the original thinking things through. There are only a few others, which are more easily spotted.]
- (5) In line with (1) above and the discussion of $l_0(m, n)$ on p. 624, the condition under (i) in Theorem 4 is best possible not only for $1 \le a \le 3$ but also for $1 \le a \le 4$.

A.H.Kruse

Classification:

05D10 Ramsey theory

03E05 Combinatorial set theory (logic)

04A20 Combinatorial set theory

©European Mathematical Society & FIZ Karlruhe & Springer-Verlag