Zbl 194.25401

Elliott, P.D.; Erdős, Pál

Some matching theorems (In English)

J. Indian Math. Soc., n. Ser. 32, 215-219 (1968).

The authors give the following improvements of an earlier result of the first author [Mathematika, London 13, 23-25 (1966; Zbl 144.00504)].

Theorem 1. Let G be an even (i.e. bipartite) graph of type (n,n) and suppose that G has at least $(1/2+c)n^2$ edges, and has at least one matching. Then G has at least (1) $2^{\mu}\mu!$ distinct matchings, where (2) $\mu = [1/2m], m \geq \alpha n$, $\alpha = 1 - (1-2c)^{1/2}$, and m is an integer. In particular, if c is fixed and n large, the number of distinct matchings exceeds $(n!)^{c_1}$ where $c_1 > 0$ depends only upon c.

Theorem 2. Let G satisfy the hypotheses of Theorem 1 with $2c > \sqrt{3} - 1$. Then G has at least m! distinct matchings where m is an integer satisfying $m+1 \ge n(2c-(2-4c)^{1/2})$.

R.L.Hemminger

Classification:

05C70 Factorization, etc.