Zbl 186.37902

Erdős, Pál

On the boundedness and unboundedness of polynomials (In English)

J. Anal. Math. 19, 135-148 (1967). [0021-7670]

Let $x_i^{(j)}$, $1 \le i \le j$ be numbers in the closed intervall [-1,1] strictly increasing with i for each fixed j. For each n let P_n denote a polynomial of degree n in x. The author proves a necessary and sufficient condition on the triangular matrix $(x_i^{(j)})$ that the following implication hold. If for each m, n(1+c) < m, and for each $i, 1 \le i \le m$, we have $|P_n(x_i^{(n)})| \le 1$, then there exists a function A(c) depending only on c such that $\max(|P_n(x)|: -1 \le x \le 1)$ is less than A(c).

The proof is difficult, and is related with earlier work of the same author [cf. the author, Ann. of Math., II. Ser. 44, 330-337 (1943; Zbl 063.01266)]. The result proved extends results of Zygmund and Berstein concerning the Tchebycheff and Legendre polynomials respectively.

H.J. Biesterfeldt

Classification:

26C05 Polynomials: analytic properties (real variables) 33C25 Orthogonal polynomials and functions