Zbl 151.03502

Articles of (and about)

Erdős, Pál; Sarközy, A.; Szemeredi, E.

On the solvability of the equations $[a_i, a_j] = a_r$ and $(a'_i, a'_j) = a'_r$ in sequences of positive density (In English)

J. Math. Anal. Appl. 15, 60-64 (1966). [0022-247X]

The authors obtain the following results.

1) Let $a_1 < a_2 < \cdots$ be an infinite sequence of integers for which there are infinitely many integers $n_1 < n_2 < \cdots$ satisfying

$$\sum_{a_i < n_k} \frac{1}{a_i} > c_1 \frac{\log n_k}{(\log \log n_k)^{1/2}}.$$

Then the equations $(a'_i, a'_j) = a'_r, [a_i, a_j] = a_r$ have infinitely many solutions. The symbol (a_i, a_j) denotes the greatest common divisor and $[a_i, a_j]$ denotes the least common multiple of a_i and a_j .

2) Let $a_1 < a_2 < \cdots$ be an infinite sequence of integers for which there are infinitely many integers $n_1 < n_2 < \cdots$ satisfying

$$\sum_{a_i < n_k} \frac{1}{a_i} > c_2 \frac{\log n_k}{(\log \log n_k)^{1/4}}.$$

Then there are infinitely many quadruplets of distincts integers a_i, a_j, a_r, a_s satisfying $(a_i, a_j) = a_r$, $[a_i, a_j] = a_s$, c_1 and c_2 denote suitable positive constants.

Cs.Pogany

Classification:

11B83 Special sequences of integers and polynomials