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According to the author’s summary, this paper contains several disconnected
remarks on number theory. The main results are:

Theorem 1. Let f(k) be a real-valued arithmetical function, with

”lim n~? i f(k) = a(# £0).
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Assume that for every n > 0, there is a g(n) so that for [ > g(n) and n > 0,
It Zi_:lo f(n+ k) < o+ n; then to every € > 0, 6 > 0, there is an h(e, ) so
that for all but ex integers n < x, we have for every [ > h(e, §) that
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< 6.

This generalizes (a strengthened form of) a result of R.Bellman and
H.N.Shapiro (Zbl 057.28602).
Theorem 2. To every ¢y, there is a ca(c1), so that if a1 < as < -+ <ap <n
are integers, k > cin, A = ajas...a,, then de d=! > cylogn. The proof uses
Brun’s method.
Also the following result (not stated as a formal theorem) is proved: Let a; <
az < -+ < ap < x be k integers such that no two of them are relatively
prime, but every three are. If, for given x, one sets max k = f(x), then f(x) =
(1 + o(1))(log ),/ (log log ).
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