Zbl 146.27102

Erdős, Pál; Sarközy, A.; Szemeredi, E.

On the divisibility properties of sequences of integers. I (In English)

Acta Arith. 11, 411-418 (1966). [0065-1036]

Let $A = \{a_n\}$ be a sequence of integers; set $f(x) = \sum_{a_i \mid a_j, a_j \leq x} 1$. The main result of this paper is Theorem 1. If A has positive upper logarithmic density c_1 , then there exists c_2 , depending on c_1 only, so that for infinitely many x, $f(x) > x \exp\{c_2(\log_2 x)^{1/2} \log_3 x\}$. On the other hand, there exists a sequence A of positive upper logarithmic density c_1 , so that for all $x, f(x) < x \exp\{c_3(\log_2 x)^{1/2} \log_3 x\}$. (All c_i stand for positive constants and $\log_k x$ for the iterated logarithm.) The first inequality is proved using a purely combinatorial Theorem: Let S be a set of n elements and let $B_1, ..., B_2, z > c_4 2^n$ ($0 < c_4 < 1$) be subsets of S. Then, if $n > n_0(c_4)$, one of B's contains at least $\exp(c_5 n^{1/2} \log n)$ of the B's, where c_5 depends only on c_4 . The second inequality is proved using a result of probabilistic number theory.

E.Grosswald

Classification:

11B83 Special sequences of integers and polynomials

11B05 Topology etc. of sets of numbers