Zbl 146.05304

Erdős, Pál

On the multiplicative representation of integers (In English)

Isr. J. Math. 2, 251-261 (1964). [0021-2172]

Let $b_1 < b_2 < \cdots$ be an infinite sequence of integers and g(n) the number of solutions of $n = b_i b_j$. It is shown that if g(n) > 0 for all $n > n_0$ then $\limsup_{n \to \infty} g(n) = \infty$. A proof of the following result is outlined. Denote by $u_l(n)$ the smallest integer so that if $b_1 < \cdots < b_t \le n$, $t \le u_l(n)$ is any sequence of integers then forsome $m, g(m) \ge l$. If $2^{k-1} < l \le 2^k$ then

$$u_l(n) = (1 + o(1))n(\log \log n)^{k-1}/(k-1)! \log n.$$

{There are numerous minor misprints including the denominator in (6) which should be read as $N_r^{1/2^{r-1}}$.}

R.C.Entringer

Classification:

11A67 Representation systems for integers and rationals

11B75 Combinatorial number theory