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Let k and [ denote integers satisfying 0 < [ < k, (I, k) = 1. Denote by f(x;k,1)
the number of positive integers less than x which have a divisor congrent to
[ (mod k), by F(z;k) the number of positive integers less than x which have
a divisor congruent to [ (mod k) for every [, by Q(x) the number of positive
integers less than x which have no divisor of the form p(kp + 1), by d(n;k,1)
the number of divisors of n which are congruent to [ (mod k). The author
proves or outlines the proof of the following theorems: 1. Let ¢ > 0 be fixed
but arbitrary, k < 2(1=2)1eglog® = Then uniformly in kF(z;k) = = + o(z). 2.
Let £ > 0 be fixed but arbitrary, k > 2(1Te)leglogz  Then yniformly in k& and
[ f(x;k,]) = x/l 4+ o(x). 3. Q(z) = (1 + o(l))e “x/log2loglogz where c is
Euler’s constant. 4. Let ¢ > 0 be fixed but arbitrary k < 2[(1=2)loglog=]/2,
Then for every n > 0 we have for every [; and [y, for all but o(x) integers less
than z

1—n<dn;k,ly)/d(n;k,lo) <1+mn.

The proofs of Theorems 1 and 4 are based on recent group theoretic results of
the author and A. Rényi [J. Analyse math. 14, 127-138(1965)], the theorem of
Siegel and Walfisz on the distribution of primes in an arithmetic progression,
and a theory of Hardy, Ramanujan, and Turan on the number of prime factors
of n. The proofs of Theorems 2 and 3 are outlined only.
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