Zbl 133.29905

Erdős, Pál

On the distribution of divisors of integers in the residue classes (mod d) (In English)

Bull. Soc. Math. Grece, N. Ser. 6, No.1, 27-36 (1965).

Let k and l denote integers satisfying 0 < l < k, (l, k) = 1. Denote by f(x; k, l)the number of positive integers less than x which have a divisor congrent to $l \pmod{k}$, by F(x;k) the number of positive integers less than x which have a divisor congruent to $l \pmod{k}$ for every l, by Q(x) the number of positive integers less than x which have no divisor of the form p(kp+1), by d(n; k, l)the number of divisors of n which are congruent to $l \pmod{k}$. The author proves or outlines the proof of the following theorems: 1. Let $\varepsilon > 0$ be fixed but arbitrary, $k < 2^{(1-\varepsilon)\log\log x}$. Then uniformly in kF(x;k) = x + o(x). 2. Let $\varepsilon > 0$ be fixed but arbitrary, $k > 2^{(1+\varepsilon)\log\log x}$. Then uniformly in k and l f(x; k, l) = x/l + o(x). 3. $Q(x) = (1 + o(1))e^{-c}x/\log 2\log \log x$ where c is Euler's constant. 4. Let $\varepsilon > 0$ be fixed but arbitrary $k < 2^{[(1-\varepsilon)\log\log x]/2}$. Then for every $\eta > 0$ we have for every l_1 and l_2 , for all but o(x) integers less than x

$$1 - \eta < d(n; k, l_1) / d(n; k, l_2) < 1 + \eta.$$

The proofs of Theorems 1 and 4 are based on recent group theoretic results of the author and A. Rényi [J. Analyse math. 14, 127-138(1965)], the theorem of Siegel and Walfisz on the distribution of primes in an arithmetic progression, and a theory of Hardy, Ramanujan, and Turan on the number of prime factors of n. The proofs of Theorems 2 and 3 are outlined only.

R.C.Entringer

Classification:

11N69 Distribution of integers in special residue classes