## Zbl 132.34902

Erdős, Pál; Shapiro, H.S.; Shields, A.L.

Large and small subspaces of Hilbert space (In English)

Mich. Math. J. 12, 169-178 (1965). [0026-2285]

This paper is concerned with the properties of closed subspaces V of the sequential Hilbert space  $l_2$  and of  $L_2(0,1)$ . We shall suffice by quoting the following interesting results of this paper which speak for themselves.

Theorem 1. Let V be a closed linear subspace of  $l_2$ , and let  $\{\varrho_n\}$  be given with  $\varrho_n \geq 0$  and  $\sum \varrho_n^2 < \infty$ . If  $|x(n)| = O(\varrho_n)$  for all  $x \in V$ , then V is finite-dimensional.

Theorem 3. If V is a closed subspace of  $l_2$  and  $V \subset I_p$  for some  $1 \leq p < 2$ , then V is finite-dimensional.

Theorem 4. If  $\varrho_n \geq 0$  and  $\sum \varrho_n^2 = \infty$ , then there exists an infinite-dimensional subspace V of  $I_2$  such that  $\sum |x(n)|\varrho(n) = \infty$  for all  $x \neq 0$  in V. In the case of  $L_2(0,1)$  the situation is different.

The authors quote the well-known result from the theory of Fourier series that there exists an infinite-dimensional closed subspace V of  $L_2(0,1)$  such that  $V \subset L_q$  for all  $1 \leq q < \infty$  and in fact satisfies the condition that  $\int \exp\{c|f(x)|^2\}dx < \infty$  for all c > 0 and all  $f \in V$ . Then it is shown that if  $\varphi$  is convex, continuous and strictly increasing on  $[0,\infty)$  with  $\varphi(0) = 0$  and  $\varphi(x)e^{-cx^2} \to \infty$  as  $x \to \infty$  for all c > 0, then  $\int \varphi(|f|) < \infty$  for all  $f \in V$  implies that V is finite dimensional. Let V be a closed linear subspace of  $I_2$ . Then there exist elements  $\lambda_n$  (n = 1, 2, ...) in V such that  $(x, \lambda_n) = x(n)$  for all  $x \in V$  and dim  $V = \sum ||\lambda_n||^2$ . This result is used to prove the following theorem. Theorem 9. Let  $\varphi(z) = \sum a_n z^n$  be an inner function. Then  $\sum n|a_n|^2 = \dim(\varphi H_2)\bot$ . Thus the Dirichlet integral of  $\varphi$  is finite (and is then an integral multiple of  $\pi$ ) if and only if  $\varphi$  is a finite Blaschke product. The paper finishes with the following question: Does  $H_2$  contain an infinite dimensional closed subspace. V with  $|f(z)| = O(1/(1-|z|)^{1/4})$  (|z| < 1).

W.A.J.Luxemburg

## Classification:

46C05 Geometry and topology of inner product spaces