Zbl 122.29903

Erdős, Pál; Kestelman, H.; Rogers, C.A.

An intersection property of sets with positive measure (In English)

Colloq. Math. 11, 75-80 (1963). [0010-1354]

The main theorem of this paper runs as follows: "Let X be a compact set. Suppose the topology in X has a countable base. Let μ be a Carathéodory outer measure on X with the properties: (a) $\mu(X) = 1$, (b) $\mu(\{x\}) = 0$ for each x in X, (c) Borel sets in X are μ - measurable, (d) if E is μ -measurable and $\varepsilon > 0$, then there is an open set G with $E \subset G$ and $\mu(G) < \mu(E) + \varepsilon$. Suppose $\eta > 0$ and $A_r, r \in N$, are μ -measurable subsets of X with $\limsup \mu(A_r) \geq \eta$. Then there is a Borel set S in X with $\mu(S) \geq \eta$, and a sequence $q_1 < q_2 < ...$, such that every point of S is a point of condensation of the set $\bigcup_{i>1} \bigcap_{r>i} A_{q_r}$, and every open set containing a point of S also contains a perfect subset of $\bigcap_{i=0} A_{q_{i+i}}$ for some j".

P. Georgiou

Classification:

28A12 Measures and their generalizations