Zbl 116.01104

Erdős, Pál

On a combinatorial problem (In English)

Nordisk Mat. Tidskr. 11, 5-10 (1963).

p sei eine natürliche Zahl. Wir betrachten Familien \mathfrak{F} von p-elementigen Mengen $A_1, ..., A_k$. \mathfrak{F} besitzt die "Bernstein- Eigenschaft", wenn es eine Menge B gibt, die a) einerseits mit jedem A_i wenigstens ein gemeinsames Element hat, b) anderseits aber keins der A_i ganz umfaßt. Nimmt man hinreichend viele Mengen A_i über einem geeigneten Elementenbereich, so wird a) u.U. die Zugehörigkeit so vieler Elemente zu B nach sich ziehen, daß b) nicht mehr erfüllbar ist. So hat z.B. für p=3 die aus 7 Mengen bestehende Familie $\{\{1,2,3,\},\{1,4,5\},\{1,6,7\},\{2,4,7\},\{2,5,6\},\{3,4,6\},\{3,5,7\}\}\$ die Bernstein-Eigenschaft nicht mehr, wohl aber jede Familie von 6 dreielementigen. m(p)sei die minimale Anzahl von p-elementigen A_i , die eine Familie bilden können, welche nicht mehr die Bernstein-Eigenschaft besitzt. Es ist m(1) = 1, m(2) = 3,m(3) = 7 (vgl. unser Beispiel). Weitere Werte sind nicht bekannt.

Der Verf. beweist die Abschätzung $(1-\varepsilon)2^P\log 2 < m(p) \le {2p-1 \choose p}$ für jedes $\varepsilon > 0$ und für $p > p_0(\varepsilon)$, wobei die rechte Ungleichung sogar stets gilt. Beweislemma ist eine Bedingung, die für Familien, in denen die A_i sogar verschiedene Anzahlen α_i haben dürfen, das Erfülltsein der Bernstein-Eigenschaft durch die Gültigkeit einer Formel zwischen den α_i garantiert. Diese Bedingung wird für unendliche Familien verallgemeinert und auf eine verfeinerte Bernstein-Eigenschaft [welche wie das hier behandelte Problem erstmals in einer Arbeit von Erdős und A. Hajnal, Acta Math. Acad. Sci. Hung. 12, 87-123 (1961; Zbl.201.32801) auftritt] ausgedehnt.

Zusatz: Die behauptete Implikation \Rightarrow (3) gilt i.a. nicht, wie das Gegenbeispiel $\alpha_1 = \alpha_2 = 2$; $\alpha_3 = 4$ zeigt. Dies beeinträchtigt aber die anderen Schlüsse nicht. W.Oberschelp

Classification:

05A99 Classical combinatorial problems