Zbl 114.01301

Articles of (and about)

Czipszer, J.; Erdős, Pál; Hajnal, András

Some extremal problems on infinite graphs (In English)

Publ. Math. Inst. Hung. Acad. Sci., Ser. A 7, 441-457 (1962).

Let the vertices of the infinite graph $G^{(\infty)}$ be the integers 1, 2, ..., n.... Let $G^{(n)}$ be the subgraph of $G^{(\infty)}$ consisting of the vertices 1,2,...,n and the edges joining them, and let g(n) denote the number of edges in $G^{(n)}$. If $G^{(n)}$ contains k vertices such that (i_j, i_{j+1}) is an edge for j = 1, 2, ..., k, then we say $G^{(k)}$ contains an I_k path. An I_{∞} path may be defined in similar manner. The authors proved in this paper the following theorems:

Theorem I: Let $G^{(\infty)}$ be a graph and assume for all $n > n_0$ an $\varepsilon > 0$ g(n) > $(\frac{1}{4} - \frac{1}{4}k^{-1} + \varepsilon)n^2$ where k = 2 or k = 3. Then $G^{(\infty)}$ contains infinitely many I_k -paths.

Theorem II. Let $G^{(\infty)}$ be a graph for which

$$g(n) > \frac{1}{8}n^2 + \left(\frac{1}{32} + \varepsilon\right)n^2/\log^2 n \text{ if } n > n_0.$$

Then $G^{(\infty)}$ contains infinitely many I_2 -paths. The result is the best possible since there exists a $G^{(\infty)}$ for which $g(n) > \frac{1}{8}n^2 + \frac{1}{32}n^2/\log^2 n + o(n^2/\log^2 n)$ and which does not contain any I_2 -path.

Theorem III. Let $G^{(\infty)}$ be such that $g(n) \geq \frac{1}{4}n^2 - Cn$. Then $G^{(\infty)}$ contains an infinite path. This result is best possible in the sense that C can not be replaced by A(n) where $A(n) \to \infty$.

Theorem IV. There exists a $G^{(\infty)}$ with $\liminf [g(n)/n^2] > \frac{1}{4}$ which does not contain an I_{∞} -path. But there exists a constant $\alpha > 0$ such that every $G^{(\infty)}$ with $\liminf [g(n)/n^2] > \frac{1}{2} - \alpha$ contains an I_{∞} -path. Theorem V. If $g(n) > \frac{1}{2}n^2 - \alpha$ Cn for infinitely many n then $G^{(\infty)}$ contains an infinite complete subgraph. But if we only assume that $g(n) > \frac{1}{2}n^2 - f(n)n$ for all n where f(n) tends to infinity as slowly as we please then $G^{(\infty)}$ does not have to contain an infinite complete graph.

 $J.D\acute{e}nes$

Classification:

05C35 Extremal problems (graph theory)