Zbl 111.01201

Erdős, Pál; Hajnal, András

On a classification of denumerable order types and an application to the partition calculus (In English)

Fundam. Math. 51, 117-129 (1962). [0016-2736]

Let Θ and Θ' be denumerable order types; Θ is discrete if $\eta \not\leq \Theta$. It is shown that if Θ is discrete, Θ has a rank $\varrho(\Theta)$ (an ordinal $<\omega_1$) defined from the way Θ is attainable from 0 and 1 via a transfinite process of ω - and ω^* -additions. It is shown that if Θ is not discrete, Θ is a sum of type η , $1 + \eta$, $\eta + 1$, or $1 + \eta + 1$ of non-zero discrete types. Among the theorems (here paraphrased) in the partition calculus proved by using rank are the following statements (the bracketed insertions have been made by the reviewer). $\Theta \to (\Theta, \aleph_0)^2$ if (and only if) $\Theta = \omega$ or $\Theta = \omega^*$ or $\eta \leq \Theta$ [or $\Theta < 2$]. $\Theta \to (\Theta', \aleph_0)^2$ if Θ is discrete and $\Theta' \neq n + \omega^*$ and $\Theta' \neq \omega + n$ for each $n < \omega$ [and Θ' is infinite]. $\Theta \to (\omega + n, \aleph_0)^2$ if and only if $\omega \cdot \omega^* \leq \Theta$.

[Minor errors: On line 27 of p. 125 replace " $\overline{S'' \cdot S_{n'_0}} = \aleph_0$ " by "either both $\underline{n_0} < n'_0$ and $\overline{\overline{S'' \cdot S_{n'_0}}} = \aleph$ ". Lines 18-20 of p. 125 neglect the possibility that $\overline{\overline{S'}} = \aleph_0$ and $[S']^2 \subset I_2$; however, this possibility may be handled trivially.]

A.H.Kruse

Classification:

05D10 Ramsey theory

04A10 Ordinal and cardinal numbers; generalizations

04A20 Combinatorial set theory

03E05 Combinatorial set theory (logic)