Zbl 103.16301

Erdős, Pál; Rényi, Alfréd

Articles of (and about)

On the evolution of random graphs (In English)

Publ. Math. Inst. Hung. Acad. Sci., Ser. A 5, 17-61 (1960).

A random graph $\Gamma_{n,N}$ is a undirected finite graph without parallel edges and slings. $\Gamma_{n,N}$ has n points $P_1,...,P_n$ and N edges (P_i,P_j) , which are chosen at random so that all $\binom{\binom{n}{2}}{N} = C_{n,N}$ possible choices are supposed to be equiprobable. Let be $P_{n,N}(A) = A_{n,N}/C_{n,N}$ the probability that $\Gamma_{n,N}$ has the property A, where $A_{n,N}$ denotes the number of graphs with the given points $P_1, ..., P_n$, with N edges (P_i, P_j) and with the property A. $\Gamma_{n,N}$ is studied under the condition that N is increased, i.e. if N is equal, or asymptotically equal, to a given function N(n) of n. For many properties A there is shown that there exists a "threshold function" A(n) of the property A tendig monotonically to $+\infty$ for $n \to +\infty$ such that $\lim_{n \to +\infty} P_{n,N(n)}(A) = 0$ or =1 if $\lim_{n\to+\infty}\frac{N(n)}{A(n)}=0$ or = $+\infty$. A(n) is a "regular threshold function" of A if there exists a probability distribution function F(x) such that $\lim_{n \to +\infty} P_{n,N(n)}(A) = F(x)$ if $\lim_{n \to +\infty} \frac{N(n)}{A(n)} = x$, where $0 < x < +\infty$ and x is a point of continuity of F(x). The investigated properties are as follows: the presence of certain subgraphs (e. g. trees, complete subgraphs, cycles, etc.) or connectedness, number of components etc. The results are of the following type: Theorem 3a. Suppose that $N(n) \sim cn$, where c > 0. Let γ_k denote the number of cycles of order k contained in $\Gamma_{n,N}$ (k=3,4,...). Then we have $\lim_{n\to+\infty} P_{n,N(n)}(\gamma_k=j)=\lambda^j e^{-\lambda}/j!$, where j=0,1,... and $\lambda = (2c)^k/2k$. Thus the threshold distribution corresponding to the threshold function A(n) = n for the property that the graph contains a cycle of order k is $1 - e^{-(2c)^k/2k}$.

K. Čulik

Classification: 05C80 Random graphs