Zbl 102.28501

Erdős, Pál; Hajnal, András

Some remarks on set theory. VII. (In English)

Acta Sci. Math. 21, 154-163 (1960). [0001-6969]

[Part VI: Zbl 078.04203]

For a family F of sets let $pF = \sup |X|$ $(X \in F)$. For a cardinal r the authors say that F has the property A(r) if some set X of cardinality $\langle r \rangle$ intersects every member of F: one could write $F \in A(r)$. Analogously, $F \in A(q,r)$ if $F' \subset F, |F'| < q \Rightarrow F' \in A(r).$ Def.: (1) $[p,q,r] \to s$ means that every F such that pF = p, $F \in A(q,r)$ possesses the property A(s) too. F possesses the property B(t) if every $F' \subseteq F$ with |F'| = t has a subfamily F'' of cardinality t such that $\bigcap F''$ is non empty. Let p = p(F); $F \in B(p) \Rightarrow F \in A(p)$ (Theorem 6); if moreover $p = \aleph_{\alpha}$ is singular and $F \in B(\aleph_{cf\alpha})$ then $F \in A(\aleph_{\alpha})$ (Theorem

If $p = \aleph_{\alpha}$ is singular, $r > \aleph_{\text{cf}\alpha}$ $q \leq p^+$ then $[p, q, r] \nrightarrow s$ for $s \leq p$ (Theorem 1); for $r \leq \aleph_{cf\alpha}$, $q > \aleph_{cf\alpha}$ one has $[p, q, r] \to p$ (Theorem 2). If \aleph_{α} is regular, then

 $[\aleph_{\alpha+n}, \aleph_{\alpha+n+1}, \aleph_{\alpha}] \to \aleph_{\alpha} \text{ (Theorem 5)}.$ Problem 1. Does $\aleph_{\omega+1}^{\aleph_0} \leq 2^{\aleph_0}$. $\aleph_{\omega+1} \text{ imply } [\aleph_{\omega+1}\aleph_{\omega+2}\aleph_1] \to \aleph_{\omega}$? There are also other results, concerning the relation (1), in particular implied by the general continuum hypothesis.

G.Kurepa

Classification:

05D10 Ramsey theory