Zbl 095.03902

Erdős, Pál; Hajnal, András

Articles of (and about)

Some remarks on set theory. VIII. (In English)

Mich. Math. J. 7, 187-191 (1960). [0026-2285]

The authors consider independent sets and graphs (cf. also Erdős-Fodor, Zbl 078.04203). Let R denote the set of real numbers; for every $x \in R$ let S(x) be such that $x \notin S(x) \subset R$. A subset $S \subset R$ is independent provided for every $x,y\in S,\ x\neq y$ one has $x\not\in S(y),\ y\not\in S(x)$. Let H_0 denote the statement: R can be well-ordered into a Ω_c -sequence such that every set which is not cofinal with Ω_c has measure 0.

Theorem 1: If S(x) $(x \in R)$ is of measure 0 and is not everywhere dense, there exist 2 real independent numbers $x \neq y$ (under H_0 there are no 3 independent real numbers).

Theorem 2: If S(x) is bounded and has the exterior measure ≤ 1 , then there are n independent real numbers, for every $1 < n < \omega_0$. A σ -ideal I of subsets R is said to have the property P, symbolically $I \in P$, provided it contains a transfinite sequence B_{β} ($\beta < \Omega_c$) of members such that every member of I is contained in some B_{β} .

Theorem 3: If $\aleph_1 = c$ and $I \in P$, then each graph G_R on R contains an infinite chain or an antichain that is not in I (the statement may not hold provided $I \not\in P$).

Theorem 5: Let m < c. Let I_{α} ($\alpha < \Omega_c$) be a sequence of σ -ideals of subsets of R, each with property P. Then every graph G_R contains, for every $n < \omega$, a subgraph $\{x_i\} \cup \{y_\nu\}$ $(1 < i \le n, 1 < \alpha < \Omega_c)$ such that (x_i, y_α) is connected or there is an antichain in G_R which is contained in no I_{α} . The authors ask whether theorem 5 holds for m=c; they conjecture also that theorem 5 may not hold if the property P is delated, even for n = m = 2.

G.Kurepa

Classification:

04A99 Miscellaneous topics in set theory