Zbl 070.29601

Erdős, Pál; Rényi, Alfréd

On the number of zeros of successive derivatives of analytic functions. (In English. RU summary)

Acta Math. Acad. Sci. Hung. 7, 125-144 (1956). [0001-5954]

Let $N_k(f(z),r)$ denote the number of zeros of $f^{(k)}(z)$ in $|z| \leq r < R$. The following theorems, which include and extend results of $G.P\'{o}lya$ [Bull. Am. Math. Soc. 49, 178-191 (1943; Zbl 061.11510)] and Evgrafov (Interpolationsaufgabe von Abel-Gončarov, Moskau 1954) are proved.

Theorem 1. If f(z) is regular in |z| < 1 and 0 < r < 1, then $\lim_{k\to+\infty} k^{-1}N_k(f(z),r) \leq K(r)$, where K(r) is the only positive root of $K = r(1+K)^{1+1/K}.$

Theorem 2. Let $q(r) \uparrow +\infty$ in $0 < r < +\infty$. Let x = h(y) denote the inverse function of y = g(x). Then, if f(z) is an integral function which satisfies

$$\underline{\lim_{r \to +\infty}} \{g(r)\}^{-1} \log M(r) < 1,$$

we have

$$\underline{\lim_{k \to +\infty}} k^{-1} N_k(f(z), 1) h(k) \le e^2.$$

Theorem 3. If f(z) is an integral function and z_k is the zero of $f^{(k)}(z)$ which is nearest the origin (k = 1, 2, 3, ...), and if x = H(y) is the inverse function of $y = \log M(x)$, then $\underline{\lim}_{k \to +\infty} \{k|z_k|\}^{-1} H(k) \le e(\log 2)^{-1}$.

Theorem 4. If f(z) is regular in |z| < R and is not a polynomial, then $\overline{\lim}_{k\to+\infty} k|z_k| \geq R\log 2$. The proof are based on Jensen's formula and Rouché's theorem.

N.A.Bowen

Classification:

30C15 Zeros of polynomials, etc. (one complex variable)