Zbl 053.08002

Erdős, Pál; Straus, E.G.

On linear independence of sequences in a Banach space. (In English)

Pac. J. Math. 3, 689-694 (1953). [0030-8730]

This paper gives an answer to a problem raised by A.Dvoretzky: given a sequence of (algebraically) linearly independent unit vectors of a Banach space, does there exists a subsequence linearly independent in some stronger sense? The authors prove that, given any positively valued function $\varphi(n)$, every sequence of linearly independent unit vectors of a Banach space contains a subsequence x_n independent in the following sense: if C_n^k are scalars such that

(1)
$$\sup_{k} |C_n^k| < \varphi(n),$$
 (2) $\lim_{k \to \infty} \sum_{n=1}^{\infty} C_n^k x_n = 0,$

then $\lim_{k\to\infty}C_n^k=0$ for n=1,2,... This implies a fortiori that these vectors are linearly independent in the following sense: if $\sum_{n=1}^{\infty}c_nx_n=0$, then $c_n=0$ for n=1,2,... The authors prove also that if the condition (1) is dropped in the definition of linear independence, their theorem is no longer true. [The following misprints are to be noted: p. 689, line 13 the inequality is to be read $|C_n^{(k)}| < \varphi(n)$; p. 690, line 16 replace x_{n_i} by x_n ; p. 691, line 20 replace Q by O.]

A.Alexiewicz

Classification:

46B99 Normed linear spaces and Banach spaces