Zbl 043.04902

Davenport, H.; Erdős, Pál

Articles of (and about)

On sequences of positive integers. (In English)

J. Indian Math. Soc., n. Ser. 15, 19-24 (1951).

Sind $a_1,...,a_n$ verschiedene natürliche Zahlen und ist $\{b_i\}$ die Folge der natürlichen Zahlen, welche durch irgendein a_i teilbar ist, so existiert die natürliche Dichte $A(a_1,...,a_m)$ der Folge $\{b_i\}$. Ist nun $\{a_i\}$ eine unendliche Folge (in wachsender Ordnung) von natürlichen Zahlen, so existiert $\lim_{m\to\infty} A(a_1,...,a_m) = A$, ist aber nicht immer, wie ein Beispiel von A.S.Besicovitch (Zbl 009.39504) zeigt, die Dichte der zugehörigen Folge $\{b_i\}$ der Zahlen, welche durch eins der a_j teilbar ist, außer wenn $\sum a_j^{-1}$ konvergiert. Die Verff. zeigten (Zbl 015.10001), daß aber A stets die untere Dichte d der $\{b_i\}$ ist (D sei die obere Dichte) und daß die logarithmische Dichte der $\{b_i\}$, d. h. daß $\lim_{x\to\infty} \frac{\beta(x)}{\log x}$, wo $\beta(x) = \sum_{b_i \leq x} \frac{1}{b_i}$, existiert und gleich A ist. (Mit δ und Δ bezeichnen wir die untere und obere logarithmische Dichte.) Der damalige Beweis verwendete aber tiefe analytische Hilfsmittel. Die Verff. geben nun einen elementaren Beweis. Da $A \leq d \leq \delta \leq \Delta \leq D$ ist, genügt es zu zeigen $\Delta \leq A$, also daß $\overline{\lim}_{x \to \infty} \frac{\beta(x)}{\log x} \leq A$ ist. Beim Beweis verwenden die Verff. den Begriff der multiplikativen Dichte: Seien

 $p_1, ..., p_k$ die ersten k Primzahlen, $\{n'\}$ die Menge aller Zahlen, welche nur durch $p_1, ..., p_k$ teilbar sind, ebenso seien die $\{b'\}$ aus der Folge $\{b_i\}$ definiert (dabei kann die Folge noch ganz beliebig sein), dann ist $B_k = \sum b'^{-1} / \sum n'^{-1}$ vorhanden. Existiert nun $\lim_{k\to\infty} B_k$ so heißt sie die multiplikative Dichte. Es ist leicht einzusehen, daß sie bei unserer Folge existiert, und mit Hilfe dieser Tatsache wird nun der Beweis geführt. Die Verff. bemerken noch, daß ($\alpha < 1$) $\lim_{x\to\infty} (1-\alpha)x^{\alpha-1} \sum_{b_i < x} b_i^{-\alpha}$ nicht zu existieren braucht.

Edmund Hlawka

Classification:

11B83 Special sequences of integers and polynomials

11B05 Topology etc. of sets of numbers