Zbl 022.00903

Erdős, Paul; Wintner, Aurel

Additive arithmetical functions and statistical independence. (In English)

Amer. J. Math. 61, 713-721 (1939).

Important results are obtained concerning additive functions, i.e. functions f(n) which satisfy $f(n_1n_2) = f(n_1) + f(n_2)$, whenever $(n_1, n_2) = 1$; so that f(n) is determined by the values of $f(p^k)$, for all primes p and all k. It is shown that such a function has an asymptotic distribution function σ if and only if $\sum p^{-1}g(p)$ and $\sum' p^{-1}g(p)^2$ are convergent, when g(p) = f(p) or g(p) = 1 according as |f(p)| < 1 or $|f(p)| \ge 1$. Furthermore, if σ_p is the asymptotic distribution function of the function $f_p(n)$, which is defined by $f_p(n) = f(p^k)$ if $p^k|n$ and $p^{k+1} \nmid n$, then σ is the infinite convolution of the σ_p and the above condition for the existence of σ is identical with the condition that this infinite convolution be convergent. The complete proof of which large parts are given in earlier publications [cf. P. $Erd \delta s$, J. London Math. Soc. 13, 119-127 (1938; Zbl 018.29301)] is long and involves delicate operations with prime numbers related to Brunn's method.

E.R.van Kampen (Baltimore)

Classification:

11N60 Distribution functions (additive and positive multipl. functions)

11K65 Arithmetic functions (probabilistic number theory)