Zbl 016.10604

Erdős, Pál; Turán, Pál

On interpolation. I. Quadrature- and mean-convergence in the Lagrange- interpolation. (In English)

Ann. of Math., II. Ser. 38, 142-155 (1937).

Let $\{\xi_n\}$ be a sequence on n points from [-1,+1] varying with n; let $L_n(x)$ denote the sequence of Lagrange polynomials coinciding with a given R integrable function f(x) at the points ξ_n . The authors are interested in the mean convergence

(*)
$$\lim_{n \to \infty} \int_{-1}^{+1} |f(x) - L_n(x)|^p dx = 0$$

for p=2 and p=1. Let ξ_n be the zeros of the orthogonal polynomial $p_n(x)$ of degree n corresponding to the weight function $w(x) \geq \mu > 0$. Then (*) holds with p=2. The same is true if we choose for ξ_n the zeros of $p_n(x) + A_n p_{n-1}(x) + B_n p_{n-2}(x)$, where A_n arbitrary real, $B_n \leq 0$. If $\int_{-1}^{+1} w(x) dx$ and $\int_{-1}^{+1} w(x)^{-1} dx$ exist and ξ_n is defined by the zeros of the linear combination mentioned, (*) holds with p=1. Finally the existence of a continous function f(x) is proved for which (*) with p=2 does not hold provided that $\sum_{k=1}^{n} \int_{-1}^{+1} l_k(x)^2 dx$ is unbounded; here $l_k(x)$ are the fundamental polynomials of the Lagrange interpolation corresponding to the set ξ_n .

 $G.Szeg\ddot{o}$

Classification:

41A05 Interpolation

42A15 Trigonometric interpolation