Zbl 013.39003

Erdős, Paul

On the representation of an integer as the sum of k k-th powers. (In English) J. London Math. Soc. 11, 133-136 (1936).

Let f(m) denote the number of representations of m as the sum of k k-th powers of non-negative integers. The well-known "Hypothesis K" of Hardyand Littlewood [Math. Z. 23, 1-37 (1925)] is a conjecture that $f(m) = O(m^{\varepsilon})$ for every $\varepsilon > 0$. The author proves a result in the opposite direction, namely $f(m) > \exp\left\{\frac{c1\log m}{\log\log m}\right\}$ for an infinity of m, where c_1 is a positive number depending only on k. Of course, this does not disprove Hypothesis K. The method of proof is slightly different for odd and even k. Let us suppose that k is odd and take $p_1, ..., p_r$ to be consecutive primes greater than k for which (p-1,k)=1. Let $A=p_1...p_k$, $n=A^k$, B/A, A=BC. Let S_B denote the number of solutions of $x_i \leq n$, $x_i \equiv 0 \pmod{B}$, $x_1^k + \cdots + x_k^k \equiv 0 \pmod{n}$, $(x_1^k + \dots + x_{k-1}^k, C) = 1$ in non-negative integers x_1, \dots, x_k . Then $S_B > \frac{c_2^{n^{k-1}}}{\log p_r}$ and the number of solutions of $x_i \leq n$, $x_1^k + \cdots + x_k^k \equiv 0 \pmod{n}$ is at least $\frac{c_3 2^r n^{k-1}}{\log p_r}$. Hence there is an $m \leq k n^k$ which is a multiple of n and for which $f(m) \ge \frac{c_3 2^r}{k \log p}$. Since $r > \frac{c_4 \log n}{\log \log n}$, the result follows. — The proof for even k depends on the lemma: If C is a product of different primes, each of which satisfies p+k, $p \equiv 3 \pmod{4}$, (p-1,k)=2, then the number of solutions of $x^k + y^k \equiv a \pmod{C^k}$, where (a, C) = 1, is $C^k \prod_{p/c} (1 + p^{-1})$. The author states that his method enables him to prove that, if $a_1, a_2, ...$ are integers and $\frac{1}{k_1} + \cdots + \frac{1}{k_l} = 1$, then there is an infinity of m with more than $\exp\left\{\frac{c\log m}{\log\log m}\right\}$ representation in the form

$$a_1 x_1^k + \dots + a_l x_l^k \qquad (x_i \ge 0).$$

Wright (Aberdeen)

Classification:

11P05 Waring's problem and variants

11P55 Appl. of the Hardy-Littlewood method

11D85 Representation problems of integers