Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 880.11067
Autor: Erdös, Pál; Joó, I.; Schnitzer, F.J.
Title: On Pisot numbers. (In English)
Source: Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 39, 95-99 (1996).
Review: The algebraic integer 1 < q < 2 is called a Pisot number if |qi| < 1 for all of its conjugates. For a Pisot number q define the set Y by Y = {sumi = 0n\epsiloniqi: n \geq 0, \epsiloni in Z, 0 \leq \epsiloni \leq 2} and let
l2(q) = inf {|y1-y2|: y1,y2 in Y, y1\ne y2}. The authors prove that if 1 < q < (1+\sqrt{5})/2, then q is a Pisot number if and only if l2(q) > 0.
Reviewer: P.Kiss (Eger)
Classif.: * 11R06 Special algebraic numbers
Keywords: Pisot numbers; algebraic integers
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag