Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 446.10033
Autor: Erdös, Paul; Nicolas, J.L.
Title: Grandes valeurs d'une fonction liée au produit d'entiers consecutifs. (Large values on a function related to the product of consecutive integers.) (In French)
Source: Publ. Math. Orsay 81.01, 30-34 (1981).
Review: Let f(n) = max{k; n in P(m,k); 1 \leq m \leq n; 1 \leq k \leq n} where n in P(m,k) means that n divides A = (m+1)...(m+k) but does not divide A/(m+i) for i = 1,...,k. The authors state without proofs several interesting results about the arithmetical functions f(n), among which are 1) sumn \leq xf(n) = (1+o(1))x log log x, 2) the maximal order of f(n) equals \frac{e\gamma/2 log n}{2(log log n) ½}+\frac{\gamma e\gamma log n}{4 log log n}(1+o(1)), where \gamma denotes Euler's constant.
Reviewer: A.Ivic
Classif.: * 11N37 Asymptotic results on arithmetic functions
11A25 Arithmetic functions, etc.
Keywords: asymptotic order; Euler's constant; linear sieve; highly composite numbers; product of consecutive integers
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag