Zentralblatt MATH
Publications of (and about) Paul Erdös
Zbl.No: 261.10007
Autor: Erdös, Paul; Ruzsa, I.jun.; Sarközy, A.
Title: On the number of solutions of f(n) = a for additive functions. (In English)
Source: Acta Arith. 24, 1-9 (1973).
Review: Let f be a real-valued additive arithmetical function, G(c,x) = sumf(n) = c1, G(x) = maxc \ne 0 G(c,x). It is proved that maxf limx > oo {G(x) \over x} = 1/2 (the limit exists for every f) and log 2 < liminfx > oo maxf {G(x) \over x} \leq limsupx > oo maxf {G(x) \over x} < 1-10-1000.
Classif.: * 11A25 Arithmetic functions, etc.
11K65 Arithmetic functions (probabilistic number theory)
© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag