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ON COMBINED NONSTANDARD METHODS

IN FUNCTIONAL ANALYSIS

A. G. Kusraev and S. S. Kutateladze

The main nonstandard tool-kits are known as in�nitesimal analysis (Robinson's nonstandard

analysis) and Boolean-valued analysis. Sharp distinctions between these two versions of

nonstandard analysis in content and technique notwithstanding, many ways are open to their

simultaneous application. One of the simplest approaches consists in successive application of

di�erent nonstandard methods. It is demonstrated that combining is often useful in settling

the problems of functional analysis which stem mainly from the theory of vector lattices.

0. Introduction

The main nonstandard tool-kits are known as in�nitesimal analysis (Robin-

son's nonstandard analysis) and Boolean-valued analysis (see [1] and the references

therein). Sharp distinctions between these two versions of nonstandard analysis in

content and technique notwithstanding, many ways are open to their simultaneous

application [2, 3]. One of the simplest approaches consists in successive application

of di�erent nonstandard methods [4, 5]. A few examples below demonstrate that

combining is often useful in settling the problems of functional analysis which stem

mainly from the theory of vector lattices.

We believe �rmly in importance of constructing a synthetic theory that utilizes

both nonstandard ways of mathematical reasoning.

1. Boolean-valued models

The Boolean-valued approach is less popular than its in�nitesimal counterpart.

It so stands to reason to sketch the former. The reader may �nd the relevant

details in [1, 6]. A Boolean-valued model V (B) is constructed from a complete

Boolean algebra B . The class V (B) consists of B -valued functions and its elements

are thought as B -valued sets. To a set-theoretic proposition S := S(x1; : : : ; xn) with

parameters x1; : : : ; xn 2 V (B) there is assigned its Boolean truth value [[S]] 2 B . The

proposition S holds true in V (B) if [[S]] = 1. The following result asserts that V (B)

is a Boolean-valued model of ZFC, the Zermelo{Fraenkel Set Theory.
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1.1. Boolean-valued transfer principle. For every theorem S(x1; : : : , xn)

of ZFC, the equality [[S(x1; : : : ; xn)]] = 1 holds, i.e., S(x1; : : : ; xn) is valid inside

V (B) .

1.2. Maximum principle. For every formula S(v; x1; : : : ; xn) (x1; : : : ; xn
2 V (B)) of ZFC with one free variable v there exists an element x 2 V (B) for which

[[(9v)S(v; x1; : : : ; xn)]] = [[S(x; x1; : : : ; xn)]]:

In particular, V (B) contains some object R that plays the role of the reals R

inside V (B) .

1.3. Restricted transfer principle. There is an important procedure for

passing from the conventional von Neumann universe V to V (B) . Proceed as follows:

Given x 2 V , denote by the symbol x̂ the standard name of x in V (B); i.e., the

element determined from the following recursion schema:

?̂ := ?; dom(x̂) := fŷ j y 2 xg; im(x̂) := 1:

For every restricted formula S(v1; : : : ; vn) and elements x1; : : : ; xn 2 V (B) the

equivalence holds:

S(x1; : : : ; xn)$ [[S(x̂1; : : : ; x̂n)]] = 1:

1.4. Descent functor. There is a functorial procedure, called descent and

denoted by (�)#, which assigns to each mathematical object inside a Boolean-valued

model a standard object of a similar type. Given an element x 2 V (B) , its descent

is de�ned by x#:= ft 2 V (B) j [[t 2 x]] = 1g. The descent x# of x is a set. If

X;Y; f 2 V (B) and f is a mapping from X to Y inside V (B) then f# is a mapping

from X# to Y #. The same is true for a relation inside V (B) . Therefore, the descent

of an algebraic structure is again an algebraic structure of a similar type.

2. Boolean-valued integrals

Necessary information from the theory of vector lattices can be found in [10].

The following result is basic for what follows, see [1, 7].

2.1. Gordon's Theorem. Let R be the reals inside V (B) . The algebraic

system R# is a universally complete vector lattice. Moreover, there exists an iso-

morphism � of B onto the Boolean algebra P(R#) of band projections in R# such

that

b � [[x = y]]$ �(b)x = �(b)y;

b � [[x � y]]$ �(b)x � �(b)y
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for all x; y 2 R# and b 2 B .

Moreover, every order complete vector lattice F is isomorphic to an order dense

ideal of the universally complete vector lattice R#. Denote such isomorphism by

�F .

We now consider the class of the so-called Maharam operators. Let E and F be

vector lattices. A linear operator � : E ! F is a Maharam operator if � is positive

(0 � x 2 E ) 0 � �x), order-interval preserving (�([0; x] = [0;�x]; 0 � x 2 E),

and order continuous (x�& 0) �x�& 0). The following result gives a Boolean-

valued interpretation for a Maharam operator [10].

2.2. Theorem. Given order complete vector lattices E and F , let � : E ! F

be a strictly positive Maharam operator. In a suitable Boolean-valued model V (B)

there are an order complete vector lattice E and a strictly positive order continuous

functional ' : E ! R such that the diagram commutes

E
�

����! F

�E

??y �F

??y

E #
'

����! R#

i.e., �F � � = ' # ��E for a suitable order continuous lattice monomorphism �E :

E ! E#.

This result reduces the study of the class of Maharam operators to that of the

class of order continuous positive functionals. At the same time every order con-

tinuous linear functional is representable as Lebesgue integral over some measure

space. We may thus conclude that the essential part of the theory of Maharam op-

erators is simply a model-theoretic modi�cation of the classical integration theory.

The former emerges from the latter on using the Boolean-valued machinery.

The Loeb measure is proved to be a very useful tool of nonstandard analysis.

This construction extends without di�culties to measures with values in a Ba-

nach space. Extension becomes more involved for measures with values in a vector

lattices without a distinguished norm. Further progress in this direction requires

developing in�nitesimal constructions in a Boolean-valued model.

2.3. Problem. Suggest a Boolean-valued version of the Loeb measure and

integration technique. Study the corresponding class of linear operators.

3. Atomic decomposition of vector measures

We now demonstrate that successive application of the two nonstandard app-

roaches is e�ective sometimes. We consider the problem of atomic decomposition

of a �nitely additive measure. Let A be a Boolean algebra and let F be a vector

lattice. By a vector measure we mean an arbitrary mapping � : A ! F such that
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�(a1 _ a2) = �(a1) + �(a2) for all disjoint a1; a2 2 A. Denote by ba (A; F ) the

space of all bounded F -valued measures and put ba (A) := ba (A;R). A measure

� 2 ba (A; F ) is positive if �(a) � 0 for all a 2 A. It is well known that ba (A; F ) is

a Kantorovich space whose positive cone coincides with the set of positive measures.

An atom of a measure � 2 ba (A) is an element a0 2 A such that �(a0) 6= 0 and

for every a 2 A, a � a0, either �(a) = 0, or �(a0 n a) = 0. We say that a measure

� is atomic if � belongs to the band in ba (A) generated by discrete elements, and

� is di�use if � belongs to the complementary band.

The in�nitesimal approach uses Loeb's [11] concept of in�nitely �ne parti-

tion. By a �nite partition in a Boolean algebra A, we mean a �nite collection

fa1; : : : ; ang � A of nonzero elements with
Wn

k=1 ak = 1 and ak ^ al = 0 for k 6= l.

Denote by P := P(A) the collection of all �nite partitions in A. Take p1; p2 2 P.

We say that p1 is �ner than p2 if a =
W
fb 2 p1 j b � ag for each a 2 p2. The

idealization principle (in Nelson's credo) or the saturation principle (in Robinson's

credo) guarantees that in every standard Boolean algebra we may �nd a hyper�nite

partition which is �ner than each standard �nite partition. We call this object an

in�nitely �ne partition.

V. Troitski�� noticed that an in�nitely �ne partition possesses some additional

properties that can be used for a nonstandard approach to atomic decomposition.

3.1. Hammer{Sobczik Decomposition Theorem. Let � be a �nite

�nitely additive positive measure on a Boolean algebra A. Then there exist a se-

quence (�n)n2N of distinct zero-one measures on A, a sequence (rn)n2N of positive

reals, and a strongly continuous positive measure �0 on A, such that
P

1

n=1 rn <1

and � = �0 +
P

1

n=1 rn�n. Furthermore, this decomposition is unique.

C Let P be an in�nitely �ne partition of A. Take as p1 an element of P of

greatest measure. Let r1 =
��(p1) and �1 = �p1 . If � is strongly continuous then

r1 = 0. It follows that �1 = � � r1�1 is a positive standard measure. Now we

may apply this procedure to �1 and obtain �2 = �1 � r2�2, etc. Iterating the

process, we obtain the decreasing sequence (rn)n2�N of standard positive reals, the

sequence (�n)n2�N of standard distinct zero-one measures. By the transfer principle

we may extend these sequences to some standard sequences indexed by N . It is easy

that �0 de�ned by �0 = ��
P

1

n=1 rn�n is a standard strongly continuous positive

measure. B

The Boolean-valued approach deals with vector-valued measures. We introduce

a new notion of atomicity, and prove a corresponding result on atomic decomposi-

tion. As above, we denote by B := P(F ) the Boolean algebra of all band projections

in F .

A positive measure � 2 ba (A; F ) is B -discrete if for every measure � 2

ba (A; F ) such that 0 � � � � the representation � = �� holds for some operator

� : F ! F satisfying 0 � � � IF .
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We say that a measure � is B -atomic if � belongs to the band in ba (A; F ) gen-

erated by B -discrete elements, and � is B -di�use if � belongs to the complementary

band.

The essential starting point for B -atomic decomposition is the following result

on Boolean-valued representation of vector measures, see [12].

3.2. Theorem. For every measure � 2 ba (A; F ) there exists a unique

element m 2 V (B) such that [[m 2 ba (A; R)]] = 1 and [[m(a) = m(â)]] = 1 a 2 A.

The correspondence � 7! m is a lattice isomorphism from ba (A; F ) to ba (A; R)#.

If F = R# then the isomorphism is a bijection. Moreover,

(1) � is B -discrete if and only if m is discrete inside V (B) ;

(2) � is B -atomic if and only if m is atomic inside V (B) ;

(3) � is B -di�use if and only if m is di�use inside V (B) .

We are now in a position to state the B -atomic decomposition theorem and

the fact that the B -atomic fragment of a vector measure is the sum of a disjoint

sequence of ýspectral measures,þ see [13].

3.3. Theorem. Let � : A ! F be a positive bounded measure. Then there

exist a positive B -di�use measure �0 : A ! F , a decreasing sequence of positive

elements (Fn)n2N in F , and a sequence of pairwise disjoint Boolean homomorphisms

hn : A! B , n 2 N , such that the series
P

1

n=1 fn is order convergent and

�(a) = �0(a) +

1X

n=1

hn(a)fn (a 2 A):

The representation of � in this form is unique.

The problem of extending a �nitely additive vector measure may be treated

analogously by successive application of the two nonstandard approaches we discuss,

see [14].

4. Boolean-valued Banach spaces

Here we expose the Boolean-valued approach to studying Banach spaces with

complete Boolean algebras of projections. These spaces appear in various branches

of analysis, most frequently in the theory of operator algebras [4, 15, 16].

Let X be a Banach space and let L(X) stand for the set of all bounded linear

operators on X. Assume that a mapping ' : B �! L(X) is injective and satis�es

the following conditions:

(1) '(b) is a projection with norm one for all b 2 B ; moreover, '(1) = IX and

'(0) = 0;

(2) the projections '(b) and '(b0) commute for arbitrary b; b0 2 B ;

(3) the equalities '(b _ b0) = '(b) � '(b0) and '(b�) = IX � '(b) hold for all b

and b0.
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In this case the set B := '(B ) is referred to as a complete Boolean algebra of

projections in the space X. The above situation is symbolized by B @ L(X) and

the Boolean algebras B and B are identi�ed. If (e�)�2� is a partition of unity in B

and (x�)�2� is a family in X then an element x 2 X for which e�x� = e�x (� 2 �)

is called the mixing of (x�) given (e�). A Banach space X is B -cyclic if B � L(X)

and the following conditions hold:

(4) the mixing of an arbitrary bounded family in X given a partition of unity

in B (with the same index set) exists and is unique;

(5) the unit ball of X is closed under mixing.

The simplest example of a B -cyclic Banach space is the space of continuous

functions on the Stone space of B . Clearly, an AW ?-algebra and an JW -algebra

are B -cyclic Banach spaces.

Let X and Y be Banach spaces; moreover, assume that B � L(X) and B �

L(Y ). An operator T : X �! Y is B -linear if T is linear and commutes with

projections in B . The set of all bounded B -linear operators from X into Y is

B -cyclic if Y is a B -cyclic Banach space. We call a bijective B -linear operator a

B -isomorphism; if, in addition, the operator is norm-preserving, we speak about an

isometric B -isomorphism.

If X is a Banach space inside V (B) then the restricted descent of X consists of

elements x 2 X# satisfying [[kxk � ĉ]] = 1 for some c 2 R.

4.1. Theorem. The restricted descent of a Banach space within V (B) is a

B -cyclic Banach space. Conversely, if X is a B -cyclic Banach space, then there

is a Banach space X in V (B) , unique up to isometric isomorphism, such that the

restricted descent of X is isometrically B -isomorphic to X.

The notions of nonstandard hull and �-nonarchimedean hull of a normed space

are very useful patent tools of the geometric theory of Banach spaces. These notions

were originally introduced by W. A. J. Luxemburg as a development of ideas of

A. Robinson. It seems interesting to extend both notions to B -cyclic Banach spaces.

This could provide a uni�ed view of many results on the nonstandard hulls of

Banach spaces and Banach lattices.

4.2. Problem. Develop a theory of nonstandard hulls in a Boolean-valued

model. Study the corresponding construction of the ýdescendedþ nonstandard hull.

To address the problem needs developing and simplifying the formal facilities

that appear along the described path of combining descents and ascents with an

intermediate application of Robinson's in�nitesimal analysis.

In closing, we observe that there are at least three possibilities of combining

nonstandard methods: the �rst consists in implementing in�nitesimal constructions

in a Boolean-valued model; the second, in applying nonstandard methods succes-

sively; and the third, in seeking for Boolean-valued interpretations of internal and

external set theories. Each of these approaches involves its own technical advantages
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and disadvantages and should be judged upon its own merits and demerits.
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