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FROBENIUS ALGEBRAS AND AMBIDEXTROUS ADJUNCTIONS

AARON D. LAUDA

Abstract. In this paper we explain the relationship between Frobenius objects in
monoidal categories and adjunctions in 2-categories. Specifically, we show that every
Frobenius object in a monoidal category M arises from an ambijunction (simultaneous
left and right adjoints) in some 2-category D into which M fully and faithfully embeds.
Since a 2D topological quantum field theory is equivalent to a commutative Frobenius
algebra, this result also shows that every 2D TQFT is obtained from an ambijunction in
some 2-category. Our theorem is proved by extending the theory of adjoint monads to
the context of an arbitrary 2-category and utilizing the free completion under Eilenberg-
Moore objects. We then categorify this theorem by replacing the monoidal category M
with a semistrict monoidal 2-category M , and replacing the 2-category D into which
it embeds by a semistrict 3-category. To state this more powerful result, we must first
define the notion of a ‘Frobenius pseudomonoid’, which categorifies that of a Frobenius
object. We then define the notion of a ‘pseudo ambijunction’, categorifying that of an
ambijunction. In each case, the idea is that all the usual axioms now hold only up
to coherent isomorphism. Finally, we show that every Frobenius pseudomonoid in a
semistrict monoidal 2-category arises from a pseudo ambijunction in some semistrict
3-category.

1. Introduction

In this paper we aim to illuminate the relationship between Frobenius objects in monoidal
categories and adjunctions in 2-categories. One of the results we prove is that:

Every Frobenius object in any monoidal category M arises from simultaneous
left and right adjoints in some 2-category into which M fully and faithfully
embeds.

To indicate the two-handedness of these simultaneous left and right adjoints we refer to
them as ambidextrous adjunctions following Baez [3]. We sometimes refer to an ambidex-
trous adjunction as an ambijunction for short.

Intuitively, the relationship between Frobenius objects and adjunctions can best be un-
derstood geometrically. This geometry arises naturally from the language of 2-categorical
string diagrams [14, 35]. In string diagram notation, objects A and B of the 2-category D
are depicted as 2-dimensional regions which we sometimes shade to differentiate between
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different objects:

A B

The morphisms of D are depicted as one dimensional edges. Thus, if L: A → B and
R: B → A are morphisms in D, then they are depicted as follows:

A B

L

L

B A

R

R

and their composite RL: A → A as:

A B

L

L

◦ B A

R

R

= A AB

R

R

L

L

.

As a convenient convention, the identity morphisms of objects in D are not drawn. This
convention allows for the identification:

A = A A

1A

1A

of string diagrams.
The 2-morphisms of D are drawn as 0-dimensional vertices or as small discs if we

want to label them. Hence, the unit i: 1 ⇒ RL and counit e: LR ⇒ 1 of an adjunction

A
L ��
⊥ B
R

�� are depicted as:

A A

B

L R

1A

i��������

B B

A

R L

1B

e��������

However, using the convention for the identity morphisms mentioned above and omitting
the labels we can simplify these string diagrams as follows:

A

B

L R
B

A

R L
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We can also express the axioms for an adjunction, often referred to as the triangle identities
or zig-zag identities, by the following equations of string diagrams:

A

B
L

L

= A B

L

L
B

A
R

R

= B A

R

R

Early work on homological algebra [11, 28] and monad theory [10, 21] showed that an

adjunction A
L ��
⊥ B
R

�� endows the composite morphism RL with a monoid structure in

the monoidal category Hom(A,A). This monoid in Hom(A,A) can be vividly seen using
the language of 2-categorical string diagrams. The multiplication on RL is defined using
the unit for the adjunction as seen below:

A AB

��������
��
��

��
��

��
�

��
��

��
�

L R RL

L R

and the unit for multiplication is
A

B

L R

the unit of the adjunction. The associativity axiom:

A AB

��
����

��

�� ��
��

�

��
��

��
�

��
��

��
�

L R L R RL

L R

=

A AB

��
�� �� ��

����
��

�

��
��

��
�

��
��

��
�

L R L R RL

L R

follows from the interchange law in the 2-category D, and the unit laws:

A AB

���
��

��

		
	











L R

L R

=

A AB

L R

L R

=

A AB

����
��
�







		
		
		
	
RL

L R

follow from the triangle identities in the definition of an adjunction.

Starting with an adjunction A
L ��
� B
R

�� where L is the right adjoint produces the color

inverted versions of the diagrams above. The unit j: 1B ⇒ LR and counit k: RL ⇒ 1A
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would appear as:

B

A
R L

A

B

L R

In this case RL becomes a comonoid in Hom(A,A) whose comultiplication is given by the
diagram:

A AB

��
��

������

�������

�������

L R RL

L R

and whose counit is:

A

B

L R

the counit of the right adjunction. By similar diagrams as those above, the coassociativity
and counit axioms follow from the axioms of a 2-category and the axioms of an adjunction.

When the morphisms L is both left and right adjoint to R the object RL of Hom(A,A)
is both a monoid and a comonoid. These structures satisfy compatibility conditions,
known as the Frobenius identities, making RL into a Frobenius object. Indeed, the
Frobenius identities:
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�����
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�
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LRLR

LR RL

=
��
��
��

��
��

��

������

������

��
��

��
��

����

����

LR RL

LR RL

= ��
��

�
��

��
�

�����
����� ��

��
��

�

��
��

��
�

RL RL

RLLR

follow from the interchange axiom of the 2-category D. Thus we have shown that the
axioms of an ambijunction in a 2-category beautifully imply all the axioms of a Frobenius
object; by drawing string diagrams their relationship becomes much more transparent.

The converse, that every Frobenius object in the monoidal category M actually arises
in this way from an ambidextrous adjunction in some 2-category D into which M fully
and faithfully embeds, has thus far not been proven in a completely general context. An
attempt to prove this result was made by Müger [31] who showed that, with certain extra
assumptions about the monoidal category M , a 2-category E into which M fully and
faithfully embeds can be constructed, and Frobenius objects in M correspond precisely to
ambijunctions in this 2-category E . However, we will see that the converse can be proven
quite naturally using the language of monad theory where questions like this have already
been resolved. Extending the work of Lawvere [27], Street [36] has made substantial
progress by proving this result in the context of the 2-category Cat. Street’s approach
suggests a natural framework for proving the completely general result and experts in
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2-categorical monad theory and enriched category theory will find that our proof is a
straight forward extension of Street’s work. Using a wealth of results from category
theory, especially the formal theory of monads [32], we extend Street’s work and prove
this result for Frobenius objects in a generic monoidal category M .

To understand the relevance of monad theory a bit of background is in order. A
monad on a category A can be defined as a monoid in the functor category [A,A]. The
theory of monads has been well developed and, in particular, it is well known that every
monad T on a category A arises from a pair of adjoint functors A ��

⊥ B�� . The problem
of constructing an adjunction from a monad has two well known solutions — the Kleisli
construction A ��

⊥ AT�� [21], and the Eilenberg-Moore construction A ��
⊥ AT

�� [10].
These two solutions are the initial and terminal solution to the problem of constructing
such an adjunction, in the general sense explained in [32]. Similarly, a comonoid in [A,A]
is known as a comonad, and these constructions work equally well to create a pair of
adjoint functors where the functor AT → A is now the left adjoint.

An interesting situation arises when the endofunctor T :A → A defining the monad
has a specified right adjoint G. In this case, Eilenberg and Moore showed that G can
be equipped with the structure of a comonad G, and that the Eilenberg-Moore category
of coalgebras AG for the comonad G is isomorphic to the Eilenberg-Moore category of
algebras AT for the monad T [10]. The isomorphism AT ∼= AG also has the property that
it commutes with the forgetful functors into A.

If the functor T is equipped with a natural transformation from T to the identity of
A such that precomposition with the monad multiplication is the counit for a specified
self adjunction, then we call the resulting structure a Frobenius monad. This turns out
to be the same as a Frobenius object in [A,A]. Street uses these results to show that a
Frobenius monad always arises from a pair of adjoint functors that are both left and right
adjoints — an ambijunction in Cat.

The approach outlined above is essentially the one taken in this paper. Monads and
adjunctions can be defined in any 2-category, and many of the properties of monads and
adjunctions in Cat carry over to this abstract context. For instance, every adjunction in
a 2-category K gives rise to a monad on an object of K. However, it is not always true
that one can find an adjunction generating a given monad. This can be attributed to the
lack of an object in K to play the role of the Eilenberg-Moore category of algebras (or
the lack of a Kleisli object, but we will focus on Eilenberg-Moore objects in this paper).
When such an object does exist it is called an Eilenberg-Moore object for the monad T.
The existence of Eilenberg-Moore objects in a 2-category K is a completeness property of
the 2-category in question. In particular, K has Eilenberg-Moore objects if it is finitely
complete as a 2-category [32, 34].

Recall that every bicategory is biequivalent to a strict 2-category, and hence every
monoidal category is biequivalent to a strict monoidal category. Let M be a monoidal
category and denote as Σ(M) the suspension of a strictification of M . Then since the
2-category Σ(M) has only one object, say •, a Frobenius object in M is just a Frobenius
monad on the object • in the 2-category Σ(M). It is tempting to use Eilenberg and
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Moore’s theorem on adjoint monads to conclude that this Frobenius monad arose from an
ambijunction, but their construction used the fact the 2-category K was Cat. Since Cat is
finitely complete as a 2-category, this allows the construction of Eilenberg-Moore objects
which are a crucial ingredient in Eilenberg and Moore’s result. Considering Frobenius
monads in Σ(M), the strictification of the suspension of the monoidal category M , it is
apparent that the required Eilenberg-Moore object is unlikely to exist: the 2-category
Σ(M) has only one object! Fortunately, there is a categorical construction that enlarges
a 2-category into one that has Eilenberg-Moore objects. This is known as the Eilenberg-
Moore completion and it will be discussed in greater detail later. The important aspect to
bear in mind is that this construction produces a 2-category together with an ambijunction
generating our Frobenius object.

Frobenius objects have found tremendous use in topology, particularly in the area
of topological quantum field theory. A well known result going back to Dijkgraaf [9]
states that 2-dimensional topological quantum field theories are equivalent to commutative
Frobenius algebras, see also [1, 22]. Our result then indicates that:

Every 2D topological quantum field theory arises from an ambijunction in some
2-category.

More recently, higher-dimensional analogs of Frobenius algebras have begun to appear in
higher-dimensional topology. For example, instances of categorified Frobenius structure
have appeared in 3D topological quantum field theory [37], Khovanov homology — the
homology theory for tangle cobordisms generalizing the Jones polynomial [20], and the
theory of thick tangles [26].

In all of the cases mentioned above, the higher-dimensional Frobenius structures can
be understood as instances of a single unifying notion — a ‘Frobenius pseudomonoid’.
A Frobenius pseudomonoid is a categorified Frobenius algebra — a monoidal category
satisfying the axioms of a Frobenius algebra up to coherent isomorphism. Being inher-
ently categorical, our approach to solving the problem of constructing adjunctions from
Frobenius objects suggests a quite natural procedure for not only defining a Frobenius
pseudomonoid1, but more importantly, for showing that:

Every Frobenius pseudomonoid in a semistrict monoidal 2-category arises from
a pseudo ambijunction in a semistrict 3-category.

The categorified theorem as stated above takes place in the context of a semistrict
3-category, also referred to as a Gray-category. We take this as a sufficient context for
the generalization since every tricategory or weak 3-category is triequivalent to a Gray-
category [12]. A Gray-category can be defined quite simply using enriched category
theory [19]. Specifically, a Gray-category is a category enriched in Gray. Although a
more explicit definition of a Gray-category can be given, see for instance Marmolejo [29],
we will not be needing it for this paper. Adjunctions as well as monads generalize to this

1Note that our definition of Frobenius pseudomonoid nearly coincides with the notion given by
Street [36]; the slight difference is that certain isomorphisms in our definition are made explicit.
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context and are called pseudoadjunctions and pseudomonads, respectively. They consist
of the usual data, where the axioms now hold up to coherent isomorphism. In the context
of an arbitrary Gray-category we extend the notion of mateship under adjunction to the
notion of mateship under pseudoadjunction. Eilenberg-Moore objects and the Eilenberg-
Moore completion also make sense in this context, so we are able to categorify Eilenberg
and Moore’s theorem on adjoint monads, as well as our theorem relating Frobenius objects
to ambijunctions, to the context of an arbitrary Gray-category.

We remark that Street has demonstrated that the condition for a monoidal category
to be a Frobenius pseudomonoid is identical to the condition of ∗-autonomy [36]. These
∗-autonomous monoidal categories are known to have an interesting relationship with
quantum groups and quantum groupoids [8]. Combined with our result relating Frobenius
pseudomonoids to pseudo ambijunctions, the relationship with ∗-autonomous categories
may have implications to quantum groups, as well as the field of linear logic where ∗-
autonomous categories are used extensively.

2. Adjoint monads and Frobenius objects

This section can be viewed as a decategorification of the results in Section 3. The expert
is encouraged to skip this section and proceed directly to Section 3. For the non-expert,
an extended version of this paper is available where additional details are included [25].

2.1. Preliminaries. In this section we review the concepts of adjunctions and monads
in an arbitrary 2-category along with some of the general theory needed later on. A good
reference for much of the material presented in this section is [17].

2.2. Definition. An adjunction i, e: F � U : A → B in a 2-category K consists of mor-
phisms U : A → B and F : B → A, and 2-morphisms i: 1 ⇒ UF and e: FU ⇒ 1, such
that

UFU
Ue

��
��

��
��

��

��
��

��
��

U

iU
����������

�������� �� U

and

FUF
eF

��
��

��
��

��

��
��

��
��

F

Fi
����������

�������� �� F

commute.

2.3. Proposition. If i, e: F � U : A → B and i′, e′: F ′ � U ′: B → C are adjunctions in
the 2-category K, then FF ′ � U ′U with unit and counit:

ī := 1
i′ �� U ′F ′ U ′iF ′

�� U ′UFF ′

ē := FF ′U ′U
Fe′U �� FU

e �� 1

2.4. Definition. Let i, e: F � U : A → B and i′, e′: F ′ � U ′: A′ → B′ in the 2-category
K. It was shown by Kelly and Street [17] that if a: A → A′ and b: B → B′, then there is
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a bijection between 2-morphisms ξ: bU ⇒ U ′a and 2-morphisms ζ: F ′b ⇒ aF , where ζ is
given in terms of ξ by the composite:

ζ = F ′b
F ′bi �� F ′bUF

F ′ξF �� F ′U ′aF
e′aF �� aF

and ξ is given in terms of ζ by the composite:

ξ = bU
i′bU �� U ′F ′bU

U ′ζU �� U ′aFU
U ′ae �� U ′a .

Under these circumstances we say that ξ and ζ are mates under adjunction.

The naturality of this bijection can be expressed as an isomorphism of certain double
categories, see Proposition 2.2 [17]. In both cases, the objects of the double categories are
those of K. The horizontal arrows are the morphisms of K with the usual composition and
the vertical arrows are the adjunctions in K with the composition given in Proposition 2.3.
In the first double category, a square with sides a: A → A′, b: B → B′,i, e: F � U : A → B,
and i′, e′: F ′ � U ′: A′ → B′ is a 2-cell ξ: bU ⇒ U ′a. In the second double category a
square with the same sides is a 2-cell ζ: F ′b ⇒ aF . The isomorphism between these two
double categories makes precise the idea that the association of mateship under adjunction
respects composites and identities both of adjunctions and of morphisms in K.

2.5. Definition. A monad T = (T, µ, η) in a 2-category K on the object B of K consists
of an endomorphism T : B → B together with 2-morphisms called the multiplication for
the monad µ: T 2 ⇒ T , and the unit for the monad η: 1 ⇒ T , such that

T
Tη ��

��
��

��
��

��
��

��
��

TT

µ

��

T
ηT��

��
��

��
��

��
��

��
��

T

and

T 3
µT ��

Tµ

��

T 2

µ

��
T 2

µ
�� T

commute.

A comonad is defined by reversing the directions of the 2-cells. A complete treatment
of monads in this generality is presented in [24, 32]. It is clear that if i, e: F � U : A → B
is an adjunction in K, then (UF,UeF, i) is a monad on B. We now recall a result due to
Eilenberg-Moore [10], proven in the context K = Cat, that easily generalizes to arbitrary
K.

2.6. Proposition. Let T = (T, µ, η) be a monad on an object B in a 2-category K such
that the endomorphism T : B → B has a specified right adjoint G with counit σ: TG → 1
and unit ι: 1 → GT . Then G = (G, ε, δ) is a comonad where ε and δ are the mates under
adjunction of η and µ with the explicit formulas ε = σ.ηG and δ = G2σ.G2µG.GιTG.ιG
and G is said to be a comonad right adjoint to the monad T, denoted T � G.

Proof. This statement immediately follows from the composition preserving property of
the bijection of mates under adjunction.
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2.7. Definition. A monad T in the 2-category K is called a Frobenius monad if it is
equipped with a morphism ε: T → 1 such that ε.µ is the counit for an adjunction T � T .

The notion of a Frobenius monad (or Frobenius standard construction as it was origi-
nally called) was first defined by Lawvere [27]. In Street [36] several definitions of Frobe-
nius monad are given and proven equivalent. If one regards the monoidal category Vect
as a one object 2-category Σ(Vect), then a Frobenius monad in Σ(Vect) is just the usual
notion of a Frobenius algebra.

2.8. Definition. An action of the monad T on a morphism s: A → B in the 2-category
K is a 2-morphism ν: Ts ⇒ s such that

s
ηs ��

��
��

��
��

��
��

��
�� Ts

ν

��
s

and

T 2s
µs ��

Tν
��

Ts

ν

��
Ts ν

�� s

commute. A morphism s together with an action is called a T-algebra (with domain A).

For any morphism s: A → B in K, Ts with action µs: T 2s ⇒ Ts is a T-algebra.
For reasons that will soon become apparent we call the T-algebra (Ts, µs) a free T-
algebra. The traditional notion of T-algebra corresponds to the notion presented above
when K = Cat and A is the one object category. In this case we identify the map s: 1 → B
with its image.

2.9. Definition. Let T be a monad in K. For each A in K define the category T-AlgA

whose objects are T-algebras, and whose morphisms between T-algebras (s, ν) and (s′, ν ′)
are those 2-morphisms h: s ⇒ s′ of K making

Ts
Th ��

ν

��

Ts′

ν′
��

s
h

�� s′

commute. We call the morphisms in T-AlgA morphisms of T-algebras.

Given a morphism K: A′ → A in K, one can define a change of base functor K̂:
T-AlgA → T-AlgA′ . If h: (s, ν) → (s′, ν ′) is in T-AlgA, then its image under K̂ is
hK: (sK, νK) → (s′K, ν ′K). If k: K ⇒ K ′ in K then we get a natural transformation
k̂: K̂ ⇒ K̂ ′ such that k̂(s,ν) = sk. In fact, this shows that the construction of T-algebras
defines a 2-functor T-Alg:Kop → Cat.

As with the case when K = Cat we have a forgetful functor UT

A: T-AlgA → K(A,B)
with left adjoint: F T

A :K(A,B) → T-AlgA. This adjunction exists for every A in K. In
fact, we have the following:
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2.10. Proposition. The collection of adjunctions iT

A, eT

A: F T

A ⇒ UT

A: T-AlgA → K(A,B)
defined for each A in K defines an adjunction

iT, eT: F T ⇒ UT: T-Alg → K(−, B)

in the 2-category [Kop,Cat] consisting of 2-functors Kop → Cat, 2-natural transforma-
tions between them, and modifications.

2.11. Definition. We say that an Eilenberg-Moore object exists for a monad T if the
2-functor T-Alg:Kop → Cat is representable. An Eilenberg-Moore object for the monad
T is then just a choice of representation for the 2-functor T-Alg, that is an object BT of
K together with a specified 2-natural isomorphism from T-Alg to the 2-functor K(−, BT).

If an Eilenberg-Moore object exists for a monad T then by the enriched Yoneda lemma,
or 2-categorical Yoneda lemma as it is sometimes referred to in this context, the adjunction
of Proposition 2.10 arises from an adjunction iT, eT: F T � UT: B → BT in K.

Given a comonad G in K we can define the category G-CoAlgA of G-coalgebras
(s, ν̄) and maps of G-coalgebras by reversing the directions of the 2-cells in the defini-
tion of T-AlgA and substituting the appropriate data for G. We also have a 2-functor
G-CoAlg:Kop → Cat and the forgetful 2-natural transformation UG: G-CoAlg → K(−B).
However, in this case, UG has a right adjoint F G. An Eilenberg-Moore object for a
comonad is just a choice of representation for the 2-functor G-CoAlg. If an Eilenberg-
Moore object for G does exist then, again by the 2-categorical Yoneda lemma, the ad-
junction iG, eG: F G � UG: G-CoAlg → K(−, B) arises from an adjunction iG, eG: F G �
UG: B → BG in K.

2.12. Adjoint monads. Given T � G in Cat, Eilenberg and Moore [10] showed that
mateship under adjunction of action and coaction defines an isomorphism BT ∼= BG of
categories between the Eilenberg-Moore category of T-algebras for the monad T and the
Eilenberg-Moore category of G-coalgebras for the comonad G. In this section we continue
the program for the formal theory of monads begun by Street [32]. In particular, we
extend the classical theory of adjoint monads developed by Eilenberg and Moore to the
context of an arbitrary 2-category.

We can utilize the results of Eilenberg and Moore by observing that a monad T on B
defines a traditional monad K(A, T) on the category K(A,B) for every other object A in
the 2-category K. Furthermore, T-AlgA is just the category of algebras for this monad.

2.13. Lemma. Let T be a monad on B ∈ K. If ι, σ: T � G and G is equipped with the
comonad structure G from Proposition 2.6, then the category T-AlgA is isomorphic to
the category G-CoAlgA and this isomorphism commutes with the forgetful functors to
K(A,B).

Proof. By the remarks prior to the statement of the lemma this result follows from the
work of Eilenberg-Moore [10]. We denote the isomorphism as

MA: T-AlgA → G-CoAlgA: h: (s, ν) → (s′, ν ′) 
→ h: (s, ν̄) → (s′, ν̄ ′)
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where ν is the mate of ν̄ and ν ′ is the mate of ν̄ ′ under the adjunction T � G. We denote
the inverse as MA.

2.14. Theorem. [The adjoint monad theorem] Let T be a monad in K with T � G
and denote the induced comonad of Proposition 2.6 as G. Then there is a 2-natural
isomorphism M: T-Alg → G-CoAlg making the following diagram

T-Alg G-CoAlg

K(−, B)

M ��

UT
����

��
��

��
�

UG
����

��
��

��
�

commute. Furthermore, if one exists, an Eilenberg-Moore object BT for the monad T

serves as an Eilenberg-Moore object BG for the comonad G. So that the above diagram
arises via the 2-categorical Yoneda lemma from the commutative diagram:

BT BG

B

M ��

UT

������������

UG

������������

in K.

Proof. We show that the collection of natural isomorphisms MA defined in Lemma 2.13
define a 2-natural isomorphism M: T-Alg → G-CoAlg. The 1-naturality of M follows
from the fact that if K: A′ → A, then

K̂MA(s, ν) =
(
sK, (gν.ιs)K

)
=

(
sK, gνK.ιsK

)
= MA′K̂(s, ν).

The 2-naturality of M follows from the fact that MA is the identity on morphisms. Hence,
M is a 2-natural transformation. From Lemma 2.13 it is clear that M commutes with
the forgetful functors since this is verified pointwise.

If BT is an Eilenberg-Moore object for the monad T , then we have a choice of 2-
natural isomorphism K(−, BT) ∼= T-Alg. Composing this 2-natural isomorphism with
the 2-natural isomorphism M equips BT with the structure of an Eilenberg-Moore object
for the comonad G. Since the 2-natural isomorphism M commutes with the forgetful
2-natural isomorphisms UT and UG, it is clear that their images under the 2-categorical
Yoneda lemma will make the required diagram commute.

This theorem shows that if the monad T has an adjoint comonad G, and if the
Eilenberg-Moore objects exists, then the ‘forgetful morphism’ UT: BT → B has not only a
left adjoint F T, but also a right adjoint MF G. We can also extend the classical converse
of this theorem to show that if a morphism has both a left and right adjoint, then the
induced monad and comonad are adjoint.
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2.15. Theorem. Let B
L1 ��
⊥ C
R

�� and B
L2 ��
� C
R

�� be specified adjunctions in the 2-

category K. Also, let T1 be the monad on B induced by the composite RL1, and T2 be the
comonad on B induced by the composite RL2. Then T1 � T2 via a specified adjunction
determined from the data defining the adjunctions L1 � R � L2.

Proof. Let i1, e1: L1 � R: C → B and i2, e2: R � L2: B → C, then it follows from
the composition of adjunctions that RL1 � RL2 with ι = Ri2L1.i1: 1 ⇒ RL2RL1 and
σ = e2.Re1L2: RL1RL2 ⇒ 1. The triangle identities follow from the triangle identities
for the pairs (i1, e1) and (i2, e2). It remains to be shown that µ = L1e1R is mates under
adjunction with δ = Ri2L2 and η = i1 is mates with ε = e2.

The mate to e2 is given by the composite:

1
i1 �� RL1

Ri2L1 �� RL2RL1
e2RL1 �� RL1

but, by one of the triangle identities, this is just the map i1. The mate to i1 is given by
the composite:

RL2
i1RL2 �� RL1RL2

Re1L2 �� RL2
e2 �� 1

and by the other triangle identity is equal to e2. Hence η is the mate of ε. In a similar
manner it can be shown that µ is the mate of δ using multiple applications of the triangle
identities.

2.16. Eilenberg-Moore completions. As we saw in the introduction, one of the aims
of this paper is to show that every Frobenius object in any monoidal category arises from
an ambijunction in some 2-category. To prove this, one is tempted to apply Theorem 2.14.
However, when regarding a Frobenius object in a monoidal category as a Frobenius monad
on the suspension of the monoidal category caution must be exercised. The 2-category
Σ(M) has only one object. Thus, it is unlikely that the Eilenberg-Moore objects, supposed
to exist in Theorem 2.14, actually exists in Σ(M).

Street [34] has shown that an Eilenberg-Moore object can be considered as a certain
kind of weighted limit. He has also shown that the weight is finite in the sense of [16]. In
The Formal Theory of Monads. II. [24], Lack and Street use this result to show that one
can define EM(K); the free completion under Eilenberg-Moore objects of the 2-category
K. Since the free completion under a class of colimits is more accessible than completions
under the corresponding limits, Lack and Street first construct Kl(K) — the free comple-
tion under Kleisli objects. They then take EM(K) to be Kl(Kop)op. Since a Kleisli object
is a colimit, to construct Kl(K) one must complete K embedded in [Kop,Cat], by Yoneda,
under the class of Φ-colimits, where Φ consists of the weights for Kleisli objects. This
amounts to taking the closure of the representables under Φ-colimits [19]. By the theory
of such completions, we obtain a 2-functor Z:K → EM(K) with the property that for any
2-category L with Eilenberg-Moore objects, composition with Z induces an equivalence of
categories between the 2-functor category [K,L] and the full subcategory of the 2-functor
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category [EM(K),L] consisting of those 2-functors which preserve Eilenberg-Moore ob-
jects [24]. Furthermore, the theory of completions under a class of colimits also tells us
that Z will be fully faithful.

The Eilenberg-Moore completion can also be given a concrete description. The object
of EM(K) are the monads in K and the morphisms are the usual morphisms of monads.
Hence, a morphism from T = (T : B → B, µ, η) to T

′ = (T ′: C → C, µ′, η′) in EM(K) is a
morphism F : B → C and a 2-morphisms φ: T ′F ⇒ FT of K satisfying two equations:

T ′T ′F

µ′F
��

T ′φ �� T ′FT
φT �� FTT

Fµ

��
TF

φ
�� FT

F

Fη

��
��

��
��

�

��
��

��
�

η′F

�� ��
��

��
�

��
��

��
�

T ′F
φ

�� FT

A crucial observation made by Lack and Street is that the 2-morphisms in EM(K) are
not the 2-morphisms of the 2-category of monads. Rather, a 2-morphism from (F, φ) to
(F ′, ψ) in EM(K) consists of a 2-morphism f : F → F ′T satisfying

T ′F
φ ��

T ′f
��

FT
fT �� F ′TT

F ′µ
��

T ′F ′T
ψT

�� F ′TT
F ′µ

�� F ′T

2.17. EM-Completions in Vect. The Eilenberg-Moore completion may seem rather
substantial, so in order to gain some insight into this procedure we briefly discuss the
implications of this completion for Vect. The objects of EM(Σ(Vect)) will be the monads
in Σ(Vect). In this case, a monad in Σ(Vect) is an algebra in the traditional sense of
linear algebra — a vector space equipped with an associative, unital multiplication. For
the duration of this example ‘algebra’ is to be interpreted in this sense; not in the sense of
an algebra for a monad. A morphism in EM(Σ(Vect)) from an algebra A1 to an algebra

A2 amounts to a vector space V together with a linear map V ⊗ A2
φ

�� A1 ⊗ V such
that

V ⊗A2⊗A2

V ⊗m2

��

φ⊗A2
�� A1⊗V ⊗A2

A1⊗φ
�� A1⊗A1⊗V

m1⊗V
��

V ⊗A2
φ

�� A1⊗V

V

ι1⊗V

����������
V ⊗ι2

����������

V ⊗A2
φ

�� A1⊗V

commute, where (m1, ι1) and (m2, ι2) are the multiplication and unit for the algebras A1

and A2 respectively. This might be described as a left-free bimodule: a vector space V with

a right A2 action on A1⊗V given by A1 ⊗ V ⊗ A2
A1⊗φ

�� A1 ⊗ A1 ⊗ V
m1 �� A1 ⊗ V . This

action makes A1⊗V into a (A1, A2)-bimodule. The composite of morphisms (V, φ): A1 →
A2 and (V ′, φ′): A2 → A3 is given by (V ⊗ V ′, φ ⊗ V ′ ◦ V ⊗ φ′): A1 → A3 – the left-free
bimodule A1 ⊗ V ⊗ V ′.
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A 2-morphism in EM(Σ(Vect)) from (V, φ) ⇒ (V ′, ψ) is a linear map ρ: V → A1 ⊗V ′

making

V ⊗A2

φ
��

ρ⊗A2

��

A1⊗V
A1⊗ρ

�� A1⊗A1⊗V ′

m1⊗V ′
��

A1⊗V ′⊗A2
A1⊗ψ

�� A1⊗A1⊗V ′
m1⊗V ′

�� A1⊗V ′

commute. This amounts to saying that a 2-morphism is just a bimodule homomorphism
of left-free bimodules. To summarize:

Every Frobenius algebra in Vect will be shown to arise from an ambijunction
in the 2-category EM(Σ(Vect)) consisting of: algebras, left-free bimodules,
and bimodule homomorphisms.

Recall that the Eilenberg-Moore completion was obtained from the Kleisli completion as
Kl(Kop)op. Hence, a similar description of the Kleisli completion of Σ(Vect) can be given
in terms of right-free bimodules2.

Ambijunctions in the Eilenberg-Moore completion of Σ(Vect) correspond to the notion
of a Frobenius extension familiar to algebraists, see for example [15]. For an algebra
A over the field k we have the inclusion map ι: k → A. The category of A-modules
corresponds to the category of algebras for the monad A in Σ(Vect). The restriction
functor Res: A−mod → k−mod has left and right adjoint functors: the induction functor
Ind(M) = A ⊗k M and coinduction CoInd(M) = Homk(A,M). When A is a Frobenius
algebra in Vect these functors are isomorphic defining an ambijunction generating A.

2.18. Frobenius monads and ambijunctions.

2.19. Lemma. Let T = (T, µ, η, ε) be a Frobenius monad on K with ι, ε.µ: T � T . For
notational convenience, denote the induced comonad of Proposition 2.6 on T as G. Then
the 2-natural isomorphism M of Theorem 2.14 satisfies the commuting diagram

T-Alg G-CoAlg

K(−, B)

M ��

UT ����
��

��
� F T

���������
UG����

��
��

�F G
		�������

Proof. By Theorem 2.14 all we must show is that MF T = F G. Hence, by the remarks
prior to Lemma 2.13 this follows from [10].

2This description of the Eilenberg-Moore completion and Kleisli completion was explained to the
author by Steve Lack.
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Compare the following two Theorems to Proposition 1.4 and Proposition 1.5 of [36].

2.20. Theorem. Given a Frobenius monad (T, µ, η, ε) on an object B in K, then in
EM(K) the left adjoint F T: B → BT to the forgetful functor UT: BT → B is also right
adjoint to UTwith counit ε. Hence, the Frobenius monad T is generated by an ambidextrous
adjunction in EM(K).

Proof. Identify T with its fully faithful image via the 2-functor Z:K → EM(K); then an
Eilenberg-Moore object BT for the monad T exists in EM(K). Let G denote the induced
comonad structure on T given in Proposition 2.6. Then by the adjoint monad theorem,
the object BT serves as an Eilenberg-Moore object BG for the comonad G and we have
that UT = UGM.

By the remarks following Definition 2.11 we have iT, eT: F T � UT: B → BT and
iG, eG: F G � UG: B → BG. Since UGF G generates the comonad G and ε is the counit
for the comonad G, it is clear that eG = ε above. All that remains to be shown is that
MF T = F G. This follows by the 2-categorical Yoneda lemma applied to Lemma 2.19.
Hence, the Frobenius monad T = UTF T is generated by an ambijunction F T � UT � F T

in EM(K).

2.21. Theorem. Let i, e, j, k: F � U � F : B → C be an ambidextrous adjunction in the
2-category K. Then the monad (UF,UiF, e) generated by the adjunction is a Frobenius
monad with ε = k.

Proof. All we must show is that UF � UF with counit k.UiF . Define the unit of the
adjunction to be UjF.i. The zig-zag identities follow from the zig-zag identities for (i, e)
and (j, k).

2.22. Corollary. If B
F ��

� ⊥ C
U

�� is a specified ambijunction in the 2-category K, then

UF is a Frobenius object in the strict monoidal category K(B,B).

Proof. By Theorem 2.21, UF defines a Frobenius monad on the object B in K. As
explained above, this is simply a Frobenius object in the monoidal category K(B,B).

2.23. Corollary. A Frobenius object in a monoidal category M yields an ambijunc-
tion in EM(Σ(M)), where Σ(M) is the 2-category obtained by the strictification of the
suspension of M .

Proof. Recall that a monad on an object B in a 2-category K can be thought of as a
monoid object in the monoidal category K(B,B). Similarly, a comonad on B is just a
comonoid object in K(B,B). Regarding M as a one object 2-category Σ(M), a Frobenius
object in M is simply a Frobenius monad in Σ(M). Applying Theorem 2.20 completes
the proof.
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2.24. Corollary. Every Frobenius algebra in the category Vect arises from an ambidex-
trous adjunction in the 2-category whose objects are algebras, morphisms are bimodules of
algebras, and whose 2-morphisms are bimodule homomorphisms.

Proof. This follows immediately from Corollary 2.23 and the discussion in subsection
2.17.

2.25. Corollary. Every 2D topological quantum field theory, in the sense of Atiyah [2],
arises from an ambidextrous adjunction in the 2-category whose objects are algebras, mor-
phisms are bimodules of algebras, and whose 2-morphisms are bimodule homomorphisms.

Proof. Since a 2D topological quantum field theory is equivalent to a commutative
Frobenius algebra [1, 22], the proof follows from Corollary 2.24.

3. Categorification

In this section we extend the theory of the previous section to the context of Gray-
categories. Gray is the symmetric monoidal closed category whose underlying category is
2-Cat; the category whose objects are 2-categories, and whose morphisms are 2-functors.
Gray differs from 2-Cat in that Gray has a more interesting monoidal structure than
the usual cartesian monoidal structure on 2-Cat. A Gray-category, also known as a
semistrict 3-category, is defined using enriched category theory [19] as a category enriched
in Gray. The unusual tensor product in Gray, or ‘Gray tensor product’, has the effect of
equipping a Gray-category K with a cubical functor M :K(B,C) × K(A,B) → K(A,C)
for all objects A,B,C in K. This means that if f : F ⇒ F ′ in K(A,B), and g: G ⇒ G′ in
K(B,C), then, rather than commuting on the nose, we have an invertible 3-cell Mg,f —
denoted gf following Marmolejo [29] — in the following square:

GF G′F

G′F ′.GF ′

gF ��

G′f

��
Gf

��

gF ′
��

gf���

We take this notion to be a sufficiently general extension since every tricategory or weak
3-category is triequivalent to a Gray-category [12].

The proof of the adjoint monad theorem relied heavily on the notion of mates under
adjunction and the fact that this relationship respected composites of morphisms and
adjunctions. In order to categorify this theorem we will first have to categorify the notion
of mates under adjunction to the notion of mates under pseudoadjunction. In this case,
rather than a bijection between certain morphisms, we will have an equivalence of Hom
categories. The naturality of this equivalence will also be discussed.

In Section 3.8 we define the notion of a pseudomonad in a Gray-category and review
some of the basic theory. Using the notion of mateship under pseudoadjunction it is shown
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that if a pseudomonad has a specified pseudoadjoint G, then G is a pseudocomonad. All
of the theorems from the previous section are then extended into this context and the
notion of a Frobenius pseudomonad and Frobenius pseudomonoid are given. The main
result that every Frobenius pseudomonoid arises from a pseudo ambijunction is then
proven as a corollary of the categorified version of the Eilenberg-Moore adjoint monad
theorem in Section 3.17.

3.1. Pseudoadjunctions. We begin with the definition of a pseudoadjunction given
by Verity in [38] where they were called locally-adjoint biadjoint pairs. For more details
see also the discussion by Lack where the ‘free living’ or ‘walking’ pseudoadjunction is
defined [23].

3.2. Definition. A pseudoadjunction I, E, i, e: F �p U : A → B in a Gray-category K
consists of morphisms U : A → B and F : B → A, 2-morphisms i: 1 ⇒ UF and e: FU ⇒ 1,
and coherence 3-isomorphisms

U

UFU

U

iU

		��������

��������

Ue




��

��
��

��

��
��

��
��

1
��

I

���
and

F

FUF

F

Fi

		��������

��������

eF




��

��
��

��

��
��

��
��

1
��

E ���

such that the following two diagrams are both identities:

FU

FU

FUFU 1

FU

FUe

		�������

�������

eFU




��

��
��

�

��
��

��
�

e




��

��
��

��

��
��

��
��

e

		��������

��������

FiU ��

1
��

1 ��

e−1
e���

FI ���

EU ���

UF

UF

1 UFUF

UF

i
		��������

��������

i 


��

��
��

��

��
��

��
��

iUF 


��

��
��

�

��
��

��
�

UFi
		�������

�������

UeF ��

1

��

1

��i−1
i ���

IF���

UE���

We will sometimes denote a pseudoadjunction as F �p U and say that the morphism
U is the right pseudoadjoint of F . Likewise, F is said to be the left pseudoadjoint of U .

3.3. Proposition. If I, E, i, e: F �p U : A → B and I ′, E ′, i′, e′: F ′ �p U ′: B → C, then
FF ′ �p U ′U with

ī := 1
i′ �� U ′F ′ U ′iF ′

�� U ′UFF ′

ē := FF ′U ′U
Fe′U �� FU

e �� 1
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and

Ī :=

U ′U U ′U U ′U

U ′F ′U ′U U ′UFU

U ′UFF ′U ′U

1
��

1
��

i′U ′U


���������

���������

U ′e′U

�����������

���������
U ′Ui



���������

���������

U ′eU

�����������

���������

U ′iF ′U ′U


���������

���������

U ′UFe′U

�����������

���������

I′U
���

U ′I
���

U ′ie′U

���

Ē :=

FF ′ FF ′ FF ′.

FF ′U ′F ′ FUFF ′

FF ′U ′UFF ′

1
��

1
��

FF ′i′


���������

���������

Fe′F ′

�����������

���������
iFF ′ 

���������

���������

FeF ′

�����������

���������

FF ′U ′iF ′


���������

���������

Fe′UFF ′

�����������

���������

FE′���
EF ′���

Fi−1
e′ F ′

���

Proof. The proof is given in [13] although it is a routine verification and can be checked
directly.

3.4. Proposition. Let

• I, E, i, e: F �p U : A → B, and

• I ′, E ′, i′, e′: F ′ �p U ′: A′ → B′

in the Gray-category K. If a: A → A′ and b: B → B′, then there is an equivalence of
categories K(bU, U ′a) � K(F ′b, aF ) given by:

Θ:K(bU, U ′a) → K(F ′b, aF )

ξ 
→ ζ = F ′b
F ′bi �� F ′bUF

F ′ξF �� F ′U ′aF
e′aF �� aF

ω: ξ1 � ξ2 
→ F ′b
F ′bi �� F ′bUF

F ′ξ1F

��

F ′ξ2F

��F ′U ′aFF ′ωF ���

e′aF �� aF

and

Φ:K(F ′b, aF ) → K(bU, U ′a)

ζ 
→ ξ = bU
i′bU �� U ′F ′bU

U ′ζU �� U ′aFU
U ′ae �� U ′a


: ζ1 � ζ2 
→ bU
i′bU �� U ′F ′bU

U ′ζ1U

��

U ′ζ2U

��U ′aFUU ′
U ���

U ′ae �� U ′a .
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Proof. It is clear that Θ is a functor from its definition above. That is, Θ preserves
composites of 3-morphisms along 2-morphisms in K. Let ξ be an object of K(bU, U ′a) so
that ΦΘ(ξ) is given by the composite

bU
i′bU �� U ′F ′bU

U ′F ′biU�� U ′F ′bUFU
U ′F ′ξFU�� U ′F ′U ′aFU

U ′e′aFU�� U ′aFU
U ′ae �� U ′a .

Define an isomorphism γξ: ξ � ΦΘ(ξ) by the diagram

bU U ′F ′bU

U ′F ′bUFU U ′F ′U ′aFU U ′aFU

U ′aU ′F ′bU U ′F ′U ′a

U ′a

i′bU
��

U ′F ′biU

��
��

��
��

��
�

��
��

��
��

�

U ′F ′ξFU
��

U ′e′aFU
��

U ′ae

		������������

������������

ξ

���������������������������������

�������������������������������

1

���������������������������������

�������������������������������

U ′F ′ξ ��1 ��

U ′F ′bUe

		������������

������������

U ′F ′U ′ae

��
�����������

�����������

U ′e′a
��

i′U ′a




��
��

��
��

��
��

��
��

��
��

��
��

U ′e′−1
e���

U ′F ′bE−1��� U ′F ′ξ−1
e���

i′−1
ξ ��� I′a

��� �
����
�
��
�

which is invertible because I ′, E and the structural maps in the Gray-category are invert-
ible. It is straight forward to check the naturality of this isomorphism. Let ω: ξ1 � ξ2;
then γξ2 ◦ω = ΦΘ(ω)◦γξ1 by the invertibility of I ′, E and the axioms of a Gray-category.
The isomorphism γ̄ζ : ζ � ΘΦ(ζ), for ζ in K(F ′b, aF ), is given by:

F ′b F ′bUF

F ′U ′F ′bUF F ′U ′aFUF F ′U ′aF

aFF ′bUF aFUF

aF

F ′bi
��

F ′i′bUF

��
��

��
��

��
�

��
��

��
��

�

F ′U ′ζUF
��

F ′U ′aeF
��

e′aF

		������������

������������

ζ

���������������������������������

�������������������������������

1

����������������������������������

��������������������������������

ζUF ��1 ��

e′F ′bUF

		������������

������������

e′aFUF

��
�����������

�����������

aeF
��

aiF




��

��
��

��
��

��

��
��

��
��

��
��

e′aeF���

E′−1bUF��� e′ζUF���

ζi ��� aI
��� �
����
�
��
�

By similar arguments as above this isomorphism is natural.

Using this equivalence of categories we extend the notion of mateship under adjunc-
tion to the notion of mateship under pseudoadjunction. We now express the naturality
conditions this equivalence satisfies:

3.5. Proposition. Consider the collection of pseudoadjunctions and morphisms:

• I, E, i, e: F �p U : A → B,

• I ′, E ′, i′, e′: F ′ �p U ′: A′ → B′,
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• I ′′, E ′′, i′′, e′′: F ′′ �p U ′′: A′′ → B′′, and

• a: A → A′, a′: A′ → A′′, b: B → B′, b′: B′ → B′′,

in the Gray-category K. Let

Θ:K(bU, U ′a) → K(F ′b, aF ) Φ:K(F ′b, aF ) → K(bU, U ′a)

Θ′:K(b′U ′, U ′′a′) → K(F ′′b′, a′F ′) Φ′:K(F ′′b′, a′F ′) → K(b′U ′, U ′′a′)

Θ̄:K(b′bU, U ′′a′a) → K(F ′′b′b, a′aF ) Φ̄:K(F ′′b′b, a′aF ) → K(b′bU, U ′′a′a)

be the functors from Proposition 3.4 defining the relevant equivalences of categories. Then
there exists a natural isomorphism W between the following pasting composites of functors:

a′Θ(−).Θ′(−)b : K(bU, U ′a) ×K(b′U ′, U ′′a′) → K(F ′′b′b, a′aF )

Θ̄(−a.b′−) : K(bU, U ′a) ×K(b′U ′, U ′′a′) → K(F ′′b′b, a′aF ),

and a natural isomorphism Y between the pasting composites:

Φ′(−)a.b′Φ(−) : K(F ′b, aF ) ×K(F ′′b′, a′F ′) → K(b′bU, U ′′a′a)

Φ̄(a′ − . − b) : K(F ′b, aF ) ×K(F ′′b′, a′F ′) → K(b′bU, U ′′a′a).

Proof. Let ξ ∈ K(bU, U ′a) and ξ′ ∈ K(b′U ′, U ′′a′), then W (ξ×ξ′) is given by the following
pasting composite of invertible 3-morphisms:

F ′′b′b

F ′′b′U ′F ′b

F ′′U ′′a′F ′b a′F ′b a′F ′bUF

a′F ′U ′aF

a′aFF ′′b′U ′F ′bUF

F ′′U ′′a′F ′bUF

F ′′U ′′a′F ′U ′aF

F ′′b′bUF F ′′b′U ′aF F ′′U ′′a′aF

F ′′b′U ′F ′U ′aF

F ′′b′U ′aF

F ′′b′i′b ��������
������

F ′′ξ′F ′b ������������
����������

e′′a′F ′b �� a′F ′bi ��
a′F ′ξF

������������

����������

a′e′aF

�����
���

���
���

F ′′b′bi

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

F ′′b′ξF
��

F ′′ξ′aF
��

e′′a′aF

��
                

                

F ′′b′U ′F ′bi




��
��

�
��

��
�

F ′′b′i′bUF

��
!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!

F ′′U ′′a′F ′bi ������������

����������

F ′′ξ′F ′bUF ��"""""""""""""""""

"""""""""""""""""

e′′a′F ′bUF

������������
����������

F ′′U ′′a′F ′ξF

��#################

#################

F ′′U ′′a′e′aF

��
$$

$$
$$

$$
$$

$$
$$

$

$$
$$

$$
$$

$$
$$

$$
$

e′′a′F ′U ′aF
		�����

�����
F ′′b′U ′F ′ξF

��%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%

F ′′b′i′U ′aF

��&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&

F ′′ξ′F ′U ′aF ��'''''''''''''''' ''''''''''''''''

F ′′bU ′e′aF




��

��
��

��
�

��
��

��
��

�

F ′′ξ′aF

��(((((((((((((((((

(((((((((((((((((
1

  )))))))))))))))))

)))))))))))))))))

F ′′b′i′bi ���
F ′′b′i′ξF���

F ′′b′I′aF ���

F ′′ξ′
e′aF���

F ′′ξ′
F ′ξF ���

e′′
a′F ′bi ���F ′′ξ′

F ′bi ���
e′′
a′F ′ξF���

e′′
ae′aF���

If ω: ξ1 � ξ2 and ω′: ξ′1 � ξ′2 then the naturality of W follows from the axioms of the cubi-
cal functor defining the Gray tensor product. Given ζ ∈ K(F ′b, aF ) and ζ ′ ∈ K(F ′′b′, a′F ′)
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the natural isomorphism Y can be defined similarly:

b′bU

b′U ′F ′bU

b′U ′aFU b′U ′a U ′′F ′′b′U ′a

U ′′a′F ′U ′a

U ′′a′a
U ′′F ′′b′U ′F ′bU

U ′′F ′′b′U ′aFU

U ′′a′F ′U ′aFU

U ′′F ′′b′bU U ′′a′F ′bU U ′′a′aFU

U ′′a′F ′U ′F ′bU

U ′′a′F ′bU

b′i′bU
		���������

���������

b′U ′ζU   )))))))))
)))))))))

b′U ′ae �� i′′b′U ′a ��
U ′′ζ′U ′a

��((((((((
((((((((

U ′′a′e′a




��

��
��

��
�

��
��

��
��

�

i′′b′bU

!!
$$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

$$
$$

$$

U ′′ζ′bU
��

U ′′a′ζU
��

U ′′a′ae

""
!!!!!!!!!!!!!!

!!!!!!!!!!!!!!

i′′b′U ′F ′bU

##
**

**
**

**
**

**

U ′′F ′′i′bU

��
                

                

i′′b′U ′aFU ������������

����������

U ′′F ′′b′U ′ζU ��"""""""""""""""""
"""""""""""""""""

U ′′F ′′b′U ′ae

������������
����������

U ′′ζ′F ′U ′aFU

��#################

#################

U ′′a′e′aFU

��
��

��
��

��
��

��
��

��

��
��

��
��

��
��

��
��

U ′a′F ′U ′ae

��
++++++

++++++
U ′′ζ′U ′F ′bU

��%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%

U ′′a′F ′i′bU

��&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&

U ′′a′F ′U ′ζ′U ��''''''''''''''''
''''''''''''''''

U ′′a′e′F ′bU




��

��
��

��
�

��
��

��
��

�

U ′′a′ζU

��####################

####################
1

  )))))))))))))))))

)))))))))))))))))

(i′′b′
i′ )

−1bU ���
U ′′(ζ′

i′ )
−1���

U ′′a′E′−1bU ���

U ′′a′(e′
F ′U′ζ′ )

−1U���

U ′′(ζ′
U′ζ)−1U ���

(i′′
b′U′aFUe

)−1

���(i′′
b′U′ζ)−1U ���

U ′′(ζ′
U′ae

)−1���

U ′′a′(e′ae)−1���

and by similar arguments, Y can be shown to be natural.

We will find it necessary later in this paper to refer to the natural isomorphisms W
and Y within the context of some specified choices of composable pseudoadjunctions and
morphisms a, a′, b, b′. We will refer to these isomorphisms generically as W and Y , even
though we will consider many different choices of pseudoadjunctions and morphisms. This
is possible since these natural isomorphisms exist for every possible choice of this data.
Furthermore, the specific pseudoadjoints and morphisms should be clear from the context.
When no confusion is likely to arise we will also denote Θ′, Θ̄, Φ′, and Φ̄ simply as Θ and
Φ, respectively. Note in particular that when a = 1A, b = 1B, a′ = 1A, b′ = 1B, then we
have Θ(ξ).Θ(ξ′) ∼= Θ(ξ′.ξ), and similarly for Φ.

3.6. Proposition. Consider the collection of pseudoadjunctions and morphisms:

• I, E, i, e: F �p U : A → B,

• I ′, E ′, i′, e′: F ′ �p U ′: A′ → B′,

• I1, E1, i1, e1: F1 �p U1: B → C,

• I ′
1, E

′
1, i

′
1, e

′
1: F

′
1 �p U ′

1: B
′ → C ′, and

• a: A → A′, b: B → B′, c: C → C ′

in the Gray-category K. Let

Θ:K(bU, U ′a) → K(F ′b, aF ) Φ:K(F ′b, aF ) → K(bU, U ′a)

Θ1:K(cU1, U
′
1b) → K(F ′

1c, bF1) Φ1:K(F ′
1c, bF1) → K(cU1, U

′
1b)

Θ̄:K(cU1U,U ′
1U

′a) → K(F ′F ′
1c, aFF1) Φ̄:K(F ′F ′

1c, aFF1) → K(cU1U,U ′
1U

′a)

be the functors from Proposition 3.4 defining the relevant equivalences of categories. Here
Θ̄ and Φ̄ are the equivalence corresponding to the composite pseudoadjunction defined in
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Proposition 3.3. Then there exists a natural isomorphism V between the following pasting
composites of functors:

Θ(−)F1.F
′Θ1(−) : K(bU, U ′a) ×K(cU1, U

′
1b) → K(F ′F ′

1c, aFF1)

Θ̄(U ′
1 − . − U) : K(bU, U ′a) ×K(cU1, U

′
1b) → K(F ′F ′

1c, aFF1),

and a natural isomorphism X between the pasting composites:

U ′
1Φ(−).Φ1(−)U : K(F ′b, aF ) ×K(F ′

1c, bF1) → K(cU1U,U ′
1Ua)

Φ̄(−F1.F
′−) : K(F ′b, aF ) ×K(F ′

1c, bF1) → K(cU1U,U ′
1Ua).

Proof. Let ξ ∈ K(bU, U ′a) and ξ1 ∈ K(cU1, U
′
1b), then V (ξ× ξ1) is given by the following

pasting composite of invertible 3-morphisms:

F ′F ′
1c

F ′F ′
1cU1F1

F ′F ′
1U ′

1bF1 F ′bF1 F ′bUFF1

F ′U ′aFF1

aFF1

F ′F ′
1cU1F1

F ′F ′
1cU1UFF1 F ′F ′

1U ′
1bUFF1 F ′F1U1UaFF1

F ′U ′aFF1

FF ′
1ci1

�������
�����

F ′F ′
1ξ1F1

�������
�����

F ′e′1bF1 �� F ′biF1 ��

F ′ξFF1
�������

�����

e′aFF1

�����
���

���
���

F ′F ′
1ci1 �����

��
���

��

F ′F ′
1cU1iF1 �����

��
���

��

F ′F ′
1ξ1UFF1

��
F ′F ′

1U1ξFF1

��
F ′e′1U ′aFF1

�������
�����

e′aFF1

��������
������

FF1U1biF1

��
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,

F ′e′1bUFF1

$$������������������������������

������������������������������

F ′F ′
1ξ1i

F1 ���
F ′e′1ξ

FF1���
F ′e′1bi

F1 ���

Since this 3-isomorphism is composed entirely of Gray-naturality isomorphisms, it is clear
that V is a natural isomorphisms. Given ζ ∈ K(F ′b, aF ) and ζ1 ∈ K(F ′

1c, bF1) the natural
isomorphism X can be defined similarly:

cU1U

U ′
1F ′

1cU1U

U ′
1bF1U1U U ′

1bU U ′
1U ′F ′bU

U ′
1U ′aFU

U ′
1U ′a

U ′
1F ′

1cU1U

U ′
1U ′F ′F ′

1cU1U U ′
1U ′F ′bF1U1U U ′

1U ′aFF1U1U

U ′
1U ′aFU

i′1cU1U
�������

�����

U ′
1ζ1U1U

�������
�����

U ′
1be1U

��
U ′

1i′bU
��

U ′
1U ′ζ′U
�����

��
���

��

U ′
1U ′ae

�����
��

���
��

i′1cU1U �������
�����

U ′
1i′F ′

1cU1U �����
��

���
��

U ′
1UF ′ζ1U1U

��
U ′

1U ′ζF1U1U
��

U ′
1U ′aFe1U

�������
�����

U ′
1U ′ae

�������
�����

U ′
1i′bF1U1U

��
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,
,,

,,

U ′
1U ′F ′be1U

$$������������������������������

������������������������������

U ′
1(i′ζ1 )−1U1U ��� U ′

1U ′(ζe1 )−1U���

U ′
1(i′be1U )−1 ���

As with the isomorphisms W and Y in Proposition 3.5, we will find it necessary to
generically refer to the natural isomorphisms V and X even though we may consider many
different choices of pseudoadjunctions and composable morphisms a, b, c. Again, this is
allowed because these natural isomorphisms exist for every choice of this data.

Before moving on to the theory of pseudomonads we first collect a result about the
functors Θ and Φ.
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3.7. Proposition. Let Θ and Φ be as in Proposition 3.4 with I, E, i, e: F �p U =
I ′, E ′, i′, e′: F ′ �p U ′ and a = 1A and b = 1B. Then in the category K(U,U) the ob-
ject Φ(1F ) is isomorphic to the object 1U , and in the category K(F, F ) the object Θ(1U)
is isomorphic to the object 1F .

Proof. The isomorphisms are I−1 and E respectively.

3.8. Pseudomonads. Here we present the theory of pseudomonads. For more details
see [23, 29, 30].

3.9. Definition. A pseudomonad T = (T, µ, η, λ, ρ, α) on an object B of the Gray-
category K consists of an endomorphism T : B → B together with multiplication for
the pseudomonad µ: T 2 ⇒ T , unit for the pseudomonad η: 1 ⇒ T , and coherence 3-
isomorphisms

T TT T

T

ηT �� Tη��




��

��
��

��
��

��

��
��

��
��

��
��

%% ��
��

��
��

��
��

��
��

��
��

��
��

µ

��

λ
�&& ��

���
�

��
� ρ�''���

������
and

T 3

T 2 T 2

T

Tµ

(( ��
��

�
��

��
� µT

))
��

��
�

��
��

�

µ ))
��

��
�

��
��

�

µ(( ��
��

�
��

��
�

α -*�

such that the following two equations are satisfied:

T 4 T 3

T 3 T 2

T 3

T 2 T

T 2µ ��

µT 2

��

TµT

��
..

..
..

..
..

..

Tµ
��

µT

��

Tµ

��
..

..
..

..
..

..

µT ��
..

..
..

..
..

.. µ

��

µ
��

Tα +*  
     

αT
/,� /////////

α
�&& ��

���
�

��
�

=

TT 2

T 2T 3

T 2

T 3T 4

µ
��

µ

��µ ��
..

..
..

..
..

..

Tµ ��

µT

��

µT ��
..

..
..

..
..

..

Tµ

��
..

..
..

..
..

..

µT 2

��

T 2µ ��

α
 +*  

     

α/,� /////////

µ−1
µ

�&& ��
���

�
��

�

T 2

T 2

T 3 T

T 2

TηT ��

Tµ
		�����

�����

µ




��

��
�

��
��

�

µ

		�����
�����µT 



��
��

�

��
��

�
α

���
= T

T 3

T 2 T 2

T 3

µ ��

TηT
		�����

�����
��

Tµ




��

��
�

��
��

�

µT

		�����
�����TηT 



��
��

�

��
��

�

Tλ ���

ρT ���

This definition was given by F. Marmolejo in [29] and can be understood as a pseu-
domonoid (in the sense of [7]) in K(B,B). An elegant treatment of pseudomonads is
presented in [23] where the ‘free living’ or ‘walking’ pseudomonad is defined. A pseudo-
comonad G = (G, δ, ε, λ̄, ρ̄, ᾱ) is defined by reversing the directions of the 2-cells in the
definition of a pseudomonad. A pseudocomonad can also be understood as a pseudo-
comonoid in K(B,B).
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3.10. Proposition. [Lack [23]] A pseudoadjunction F �p U : B → C in the Gray-
category K induces a pseudomonad (UF, i, UeF, IF, UE,Ue−1

e ) on the object B in K.

3.11. Proposition. Let T = (T, µ, η, λ, ρ, α) be a pseudomonad on an object B in a
Gray-category K such that the endomorphism T : B → B has a specified right pseudoad-
joint G with counit σ: TG → 1, unit ι: 1 → GT , and coherences Υ: σT.T ι → 1 and
Σ: 1 → Gσ.ιG. Then mateship under pseudoadjunction, together with the natural isomor-
phisms in Propositions 3.5 and 3.6, define a pseudocomonad G = (G, ε, δ, λ̄, ρ̄, ᾱ) on G
with explicit formulas:

ε := Φ(η) = σ.ηG

δ := Φ(µ) = G2σ.G2µG.GιTG.ιG

λ̄ := GΦ(η).Φ(µ) GΦ(η).Φ(1T )G.Φ(µ) Φ(ηT ).Φ(µ) Φ(µ.ηT ) Φ(1T ) G
Σ−1

- *�Φ(λ)- *�Y-*�X.Φ(µ)-*�GΦ(η).ΣG.Φ(µ)- *�

ρ̄ := Φ(η)G.Φ(µ)Φ(1T ).Φ(η)G.Φ(µ)Φ(Tη).Φ(µ)Φ(µ.Tη)Φ(1T )G
Σ- *� Φ(ρ)- *� Y −1

-*� X−1
- *� Σ−1.Φ(η)G.Φ(µ)- *�

ᾱ :=

GΦ(µ).Φ(µ)GΦ(µ).Φ(1T )G.Φ(µ)Φ(µT ).Φ(µ)Φ(µ.µT )

Φ(µ.Tµ)Φ(Tµ).Φ(µ)GGΦ(1T ).Φ(µ)G.Φ(µ)Φ(µ)G.Φ(µ)
GGΣ.Φ(µ)G.Φ(µ)- *� X.Φ(µ)- *� Y- *�

Φ(α)- *� Y −1
-*� X−1.Φ(µ)- *� GΦ(µ).Σ−1G.Φ(µ)-*�

Under these circumstances G is said to be a pseudocomonad right pseudoadjoint to the
pseudomonad T, denoted T �p G.

Proof. Mateship under pseudoadjunction preserves composites along morphisms and
pseudoadjoints up to natural isomorphism by Propositions 3.5 and 3.6. Therefore because
T = (T, µ, η, λ, ρ, α) is a pseudomonad, G = (G, ε, δ, λ̄, ρ̄, ᾱ) defines a pseudocomonad on
B.

3.12. Definition. A pseudomonad T in the Gray-category K is called a Frobenius pseu-
domonad if it is equipped with a map ε: T → 1 such that ε.µ is the counit for a specified
pseudoadjunction T �p T .

We use this notion of Frobenius pseudomonad to define a Frobenius pseudomonoid in
a Gray-monoid or semistrict monoidal 2-category. A Gray-monoid is just a one object
Gray-category. In particular, if K is a Gray-category and B is an object of K, then
K(B,B) is a Gray-monoid. A Frobenius pseudomonad on B is then just a Frobenius
pseudomonoid in the Gray-monoid K(B,B). This definition of Frobenius pseudomonoid
takes the minimalist approach, a pseudomonoid equipped with the specified pseudoadjoint
structure that enables one to construct a pseudocomonoid structure. For a more explicit
description of this definition see Street’s work [36]. One may prefer the definition of
a Frobenius pseudomonoid to be symmetrical: a pseudomonoid, and a pseudocomonoid
subject to compatibility conditions. In the sequel to this paper we explain the relationship
between these two perspectives which turn out to be equivalent in a precise sense [26].

We now describe the generalization of algebras for a monad and construct the 2-
category of pseudoalgebras based at A for a pseudomonad T. Pseudoalgebras for a
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2-monad were first explicitly defined by Street [33] and were well known to the Aus-
tralian category theory community at that time [18]. For a treatment using the powerful
machinery of Blackwell-Kelly-Power [5], see [4]. The treatment we give here follows Mar-
molejo [29].

3.13. Definition. Let T be a pseudomonad in the Gray-category K and let A be an
object of K. We define a pseudoalgebra based at A for the pseudomonad T to consist of
a morphism s: A → B, a 2-morphisms ν: Ts ⇒ s, and 3-isomorphisms

s Ts

s

ηs ��
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��

��
��

��
�

��
��

��
��

��
��

�

ν

��

ψ

�&& ��
���

�
��

�

and

T 2s

Ts Ts

s

Tν

(( ��
��

�
��

��
� µs

))
��

��
�

��
��

�

ν ))
��

��
��

��
��

��

ν(( ��
��

��
��

��
��

χ -*�

such that the following two equations are satisfied:

T 3s T 2s

T 2s Ts

T 2s

Ts s

T 2ν ��

µT 2

��

TµT

��
..

..
..

..
..

..

Tµ
��

µν

��

Tν

��
..

..
..

..
..

..

µν ��
..

..
..

..
..

.. ν

��
ν

��

Tχ +*  
     

αs
/,� /////////

χ

�&& ��
���

�
��

�

=

sTs

TsT 2s

Ts

T 2sT 3s

ν
��

ν

��ν ��
..

..
..

.

..
..

..
.

Tν ��

µs

��

µs ��
..

..
..

..
..

..

Tν

��
..

..
..

..
..

..

µTs

��

T 2ν ��

χ
 +*  

     

χ/,� /////////

µ−1
ν

�&& ��
���

�
��

�

Ts

Ts

T 2s s

Ts

Tηs ��

Ts
		�����

�����

ν




��

��
��

��
��

��

ν

		������

������µs 


��

��
�

��
��

�
χ

���
= s.

T 2s

Ts Ts

T 2s

ν ��

Tηs
		�����

�����
��

Tν




��

��
�

��
��

�

µs

		�����
�����Tηs 



��
��

�

��
��

�

Tψ ���

ρs ���

It is clear that for any morphism r: A → B in K, Tr with action µr: T 2r ⇒ Tr and
coherence λr: µr.ηTr � Tr and αr: µr.Tµt � µr.µTr is a pseudoalgebra based at A. We
call the pseudoalgebra Tr a free pseudoalgebra.

3.14. Definition. Let T-AlgA be the 2-category whose objects are pseudoalgebras based
at A for the pseudomonad T. A morphism (h, 
): (s, ν, ψ, χ) → (s′, ν ′, ψ′, χ′) in T-AlgA

consists of a 2-morphism h: s ⇒ s′ in K (a morphism in K(A,B)), together with an
invertible 3-morphism

Ts

Ts′ s

s′

Th

(( ��
��

�
��

��
� ν

))
��

��
��

��
��

��

ν′ ))
��

��
�

��
��

�

h(( ��
��

��
��

��
��


 -*�
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satisfying the following two equations:

s Ts Ts′

s s′

ηs �� Th ��

1
�����������

���������

ν

��
ν′
��

h
��




�&& ��
���

�
��

�
ψ�&& ���������

=

s Ts

s′ Ts′

s′

ηs ��

h
��

Th
��ηs′ ��

1 ����������

��������

ν′
��

ηh

�&& ��
���

�
��

�

ψ′0(+ 00
000

0
00
0

(1)

T 2s T 2s′

Ts Ts′

Ts

s s′

T 2h ��

µs

��

Tν

��
..

..
..

..
..

..

Th
��

ν

��

Tν′

��
..

..
..

..
..

..

ν
��

..
..

..
.

..
..

..
. ν′

��

h
��

T
 +*  
     

χ
/,� /////////




�&& ��
���

�
��

�
=

s′s

Ts′Ts

Ts′

T 2s′T 2s

h
��

ν′

��ν′ ��
..

..
..

..
..

..
Th ��

µs′

��

ν
��

..
..

..
.

..
..

..
.

Tν′

��
..

..
..

..
..

..

µs

��

T 2h ��



 +*  

     

χ′/,� /////////

µ−1
h

�&& ��
���

�
��

�

(2)

A 2-morphism ξ: (h, 
) ⇒ (h′, 
′): (ψ, χ) → (ψ′, χ′) in T-AlgA is a 3-morphisms ξ: h �
h′ such that the following condition is satisfied:

Ts Ts′

s s′

Th
-,

Th′
.-

ν

��

ν′

��

h′
��

Tξ ���


′ ���

=

Ts Ts′

s s′
h

-,

h′

.-

ν

��

ν′

��

Th ��

ξ ���


 ��� (3)

Marmolejo has shown that given a morphism K: A′ → A in K, one can define a change
of base 2-functor K̂: T-AlgA → T-AlgA′ . If ξ: (h, 
) ⇒ (h′, 
′): (s, ν, ψ, χ) → (s′, ν ′, ψ′, χ′)
is in T-AlgA, then its image under K̂ is ξK: (hK, 
K) ⇒ (h′K, 
′K): (sK, νK, ψK, χK) →
(s′K, ν ′K,ψ′K,χ′K). If k: K ⇒ K ′ in K then we get a pseudo natural transformation
k̂: K̂ ⇒ K̂ ′ such that k̂(s,ν,ψ,χ) = (sk, ν−1

k ) and k̂(h,
) = h−1
k . If κ: k � k′: K ⇒ K ′, then

κ(s,ν,ψ,χ) = sκ defines a modification κ̂: k̂ � k̂. In fact, this shows that the construction
of T-pseudoalgebras defines a Gray-functor T-Alg:Kop → Gray.

For every object A in K there is a forgetful 2-functor UT

A: T-AlgA → K(A,B)

UT

A: T-AlgA → K(A,B)

(s, ν, ψ, χ) 
→ s

(h, 
) 
→ h

ξ: h � h′ 
→ ξ.



110 AARON D. LAUDA

This assignment extends to a Gray-natural transformation UT: T-Alg → K(−, B). In
Proposition 3.15 we will define a left pseudoadjoint F T

A to the 2-functor UT

A, see also [29].
In Theorem 3.16 we will show that this left pseudoadjoint F T

A extends to Gray-natural
transformation F T:K(−, B) → T-Alg left pseudoadjoint to UT in the Gray-category
[Kop,Gray] described below.

Recall that Gray is the symmetric monoidal closed category whose closed structure is
given by the internal hom in Gray. Hence, for Gray-functors F,G:K → L the internal
hom Gray(F,G) in Gray is the 2-category consisting of 2-functors, pseudo natural trans-
formations, and modifications. It is a standard result from enriched category theory that
Gray-categories, Gray-functors, and Gray-natural transformations form a 2-category
written Gray-Cat [6, 19]. Furthermore, since Gray is a complete symmetric monoidal
closed category, if K is small, then the category of Gray-functors and Gray-natural
transformations can be provided with the structure of a Gray-category, written [K,L].

The objects of [K,L] are the Gray-functors F,G:K → L, and the morphisms are
the Gray-natural transformations between them. The 2-category Gray-Nat(F,G) of
Gray-natural transformations is given by the following equalizer:

Gray-Nat(F,G)
∏

A∈K L(FA,GA)
∏

A′,A′′∈K[K(A′, A′′),L(FA′, GA′′)]�� ��

u ��

v
��

where u and v are the morphisms corresponding via adjunction and symmetry to the
morphisms3:

( ∏
A L(FA,GA)

) ⊗K(A′, A′′)

L(FA′, GA′) ⊗ L(GA′, GA′′)

L(FA′, GA′′)

pA′⊗GA′A′′
��

cFA′,GA′,GA′′

��

K(A′, A′′) ⊗ ( ∏
A L(FA,GA)

)

L(FA′, FA′′) ⊗ L(FA′′, GA′′)

L(FA′, GA′′)

FA′A′′⊗pA′′
��

cFA′,FA′′,GA′′

��

We will refer to the morphisms and 2-morphisms of the 2-category Gray-Nat(F,G) as
Gray-modifications and Gray-perturbations respectively. This terminology should not
be interpreted to mean some sort of ‘Gray enriched modification’ or ‘Gray enriched
perturbation’ since there is no such notion as a V-modification or V-perturbation for
arbitrary enriching category V .

Let α, β: F ⇒ G:K → Gray be Gray-natural transformations with K a small Gray-
category. A Gray-modification θ: α ⇒ β assigns to each object A of K a pseudo natural
transformation θA: αA → βA such that if k: K ⇒ K ′: A′ → A′′ in K, then the following

3Here we are using the notation for V-functors and V-natural transformations given in [6].
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equality holds:

αA′′FK αA′′FK ′

βA′′FK βA′′FK ′

αA′′Fk ��

θA′′FK

��

θA′′FK′

��

βA′′Fk
��

∼
1/. 111111
111111
111111

=

GKαA′ GK ′αA′

GKβA′ GK ′βA′

GkαA′ ��

GKθA′

��

GK′θA′

��

GkβA′
��

∼
1/. 111111
111111
111111

If Ω: θ, ϕ: α ⇒ β: F → G:K → Gray are Gray-modifications, a Gray-perturbation
assigns to each object A ∈ K a modification ΩA: θA → ϕA such that if κ: k � k′: K ⇒
K ′: A′ → A′′ in K, then the following equality holds:

αA′′FK αA′′FK ′

βA′′FK βA′′FK ′

αA′′Fk

��

αA′′Fk′

��

ϕA′′FK

0/

θA′′FK

10

θA′′FK′

��

βA′′Fk′
��

∼
�21 ��

��
��

��
��

��

��
��

��

αA′′Fκ ���

ΩA′′FK
-32 =

GKαA′ GK ′αA′

GKβA′ GK ′βA′

GkαA′ ��

GKϕA′

��

GK′θA′

10

GK′ϕA′

0/

GkβA′

-,

Gk′βA′

.-

∼
�21 ��

��
��

��
��

��

��
��

��

GκβA′ ���

GK′ΩA′-32

3.15. Proposition. (see [23]) Let T be a pseudomonad in the Gray-category K. Then
the forgetful 2-functor UT

A: T-AlgA → K(A,B) has a left pseudoadjoint F T

A :K(A,B) →
T-AlgA in the Gray-category Gray given by sending each object r of K(A,B) to the
corresponding free pseudoalgebra (Tr, µr, λr, αr), each morphism h: r → r′ to (Th, µ−1

h ),
and each 2-morphism ξ: h � h′ to Tξ: Th � Th′.

3.16. Theorem. (see [23]) The collection of pseudoadjunctions:

IT
A , ET

A, iTA, eT
A: F T

A �p UT
A : T-AlgA → K(A,B)

defined for each A in Proposition 3.15 extend to a pseudoadjunction

IT, ET, iT, eT: F T �p UT: T-Alg → K(−, B)

in the Gray-category [Kop,Gray]. In particular, F T is a Gray-natural transformation,
iT, eT are Gray-modifications, and IT, ET are Gray-perturbations.

Note that the previous theorem can also be adapted to the context of a pseudocomonad
G on B. In this case, one obtains a Gray-functor G-CoAlg:Kop → Gray. As before
there exists a forgetful Gray-natural transformation UG: G-CoAlg → K(−, B). However,
in this case, UG has a right pseudoadjoint F G.
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3.17. Pseudoadjoint pseudomonads. In Section 2.16 it was explained how thinking of
an Eilenberg-Moore object as a weighted limit can be used to construct the free completion
of a 2-category under Eilenberg-Moore objects. In this section we will need to generalize
the notion of an Eilenberg-Moore object for a monad to an Eilenberg-Moore object for a
pseudomonad. It turns out that thinking of an Eilenberg-Moore object as weighted limit
will prove useful for this task as well.

Denote the ‘free living monad’ or ‘walking monad’ as mnd, meaning that a monad in a
2-category K is a 2-functor mnd → K. Street has constructed a 2-functor J :mnd → Cat
with the property that the Eilenberg-Moore object of a monad T:mnd → K is the
J-weighted limit of the 2-functor T [34]. This idea was used by Lack to construct a
Gray-category psm — the ‘free living pseudomonad’ — such that a pseudomonad T

in the Gray-category K is a Gray-functor T:psm → K [23]. Lack also constructs a
Gray-functor P :psm → Gray with the property that the Eilenberg-Moore object of
the pseudomonad T is the P -weighted limit of the Gray-functor T:psm → K, denoted
{P, T}.

This limit does not always exist in K, but K can always be embedded via the Yoneda
embedding Y :K → [Kop,Gray] where the P -weighted limit of Y T can be formed. Then
the Eilenberg-Moore object of T will exist in K if and only if {P, Y T} is representable since
the Yoneda embedding must preserve any limits which exist. The Gray-functor {P, Y T}
is just the Gray-functor T-Alg constructed in the previous section. Thus, an Eilenberg-
Moore object for the pseudomonad T is just a choice of representation for T-Alg.

If T-Alg is representable, then in our previous notation, it will correspond to the
Gray-functor K(−, BT) where BT is an Eilenberg-Moore object for the pseudomonad T. If
an Eilenberg-Moore object for T does exist then the pseudoadjunction IT, ET, iT, eT: F T �p

UT: T-Alg → K(−, B) of Theorem 3.16 corresponds via the enriched Yoneda lemma to a
pseudoadjunction I, E, i, e: F �p U : B → BT in K.

The limit description of an Eilenberg-Moore object in a Gray-category also facili-
tates the free completion of an arbitrary Gray-category to one that has Eilenberg-Moore
objects. Indeed, because a Gray-category is just a Gray-enriched category, the free-
completion is achieved using the theory of enriched category theory [19]. With all of the
abstract theory in place, we begin by proving the pointwise version of the categorified
adjoint monad theorem. In Theorem 3.19 we will prove the full result.

3.18. Lemma. If Σ, Υ, ι, σ: T �p G, then the 2-category T-AlgA of pseudoalgebras based
at A is 2-equivalent to the 2-category G-CoAlgA of pseudocoalgebras based at A for the
pseudocomonad G. Furthermore, this 2-equivalence commutes with the forgetful 2-functors
UT

A: T-AlgA → K(A,B) and UG

A : G-CoAlgA → K(A,B).

Proof. This lemma is essentially due to the properties of pseudomates under pseudoad-
junction and the fact that this association preserves composites up to natural isomor-
phism. With Θ and Φ as in Proposition 3.4, define the 2-functor:

MA: T-AlgA → G-CoAlgA
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(s, ν, ψ, χ) 
→ (
s, Φ(ν), Φ(η)s.Φ(ν) Φ(ν.ηs) Φ(s) = s

Φ(ψ)-*�Y - *� ,

GΦ(ν).Φ(ν) Φ(ν.Tν) Φ(ν.µs) Φ(ν)s.Φ(ν)
Φ(χ)-*� Y −1

- *�X-*�
)

(h, 
) 
→ (h, Φ(ν ′).Φ(h) Φ(ν ′.Th) Φ(h.ν) Gh.Φ(ν)
Φ(
)- *� X−1

-*�X -*� )

ξ: (h, 
) ⇒ (h′, 
′) 
→ ξ: (h,X−1 ◦ Φ(
) ◦ X) ⇒ (h′, X−1 ◦ Φ(
′) ◦ X)

This data defines a pseudocoalgebra, morphism of pseudocoalgebras, and 2-morphism of
pseudocoalgebras because ξ: (h, 
) ⇒ (h′, 
′): (s, ν, ψ, χ) → (s′, ν ′, ψ′, χ′) is a 2-morphism
of pseudoalgebras, and mateship under pseudoadjunction preserves all composites up to
natural isomorphism.

Since MA: h: s ⇒ s′ 
→ h: s ⇒ s′ it is clear that MA preserves 1-morphism identities
and to see that MA preserves composites of 1-morphisms all we must check is its behavior
on 
. For this purpose it will be helpful to have the specific form of MA(h, 
). By plugging
in the relevant pseudoadjunctions, one can check that MA(h, 
) =

(
h, Φ(
) ◦ Gν ′.(ιh)

)
.

Hence, using the definition of Φ(
) and the Gray axioms it is easy to verify the following
chain of equalities:

MA(h′, 
′).MA(h, 
) =
(
h′.h,Gh′.G
.ιs ◦ Gh′.Gν ′.ιh ◦ G
′.ιs′.h ◦ Gν ′′.ιh′ .h

)
=

(
h′.h,Gh′.G
.ιs ◦ G
′.GTh.ιs ◦ Gν ′′.ιh′.h

)
= MA(h′.h, 
′.Th ◦ h′.
).

Since MA maps 2-morphisms to themselves, it is clear that MA preserves composition
of 2-morphisms on the nose as well. Hence, MA: T-AlgA → G-CoAlgA is a 2-functor.
Now we define the other 2-functor taking part in the equivalence:

MA: G-CoAlgA → T-AlgA

(s, ν̄, ψ̄, χ̄) 
→ (
s, Θ(ν̄), Θ(ν̄).Θ(ε)s Θ(εs.ν̄) Θ(s) = s

Θ(ψ̄)- *�W - *� ,

Θ(ν̄).TΘ(ν̄) Θ(Gν̄.ν̄) Θ(δs.ν̄) Θ(ν̄).Θ(δ)s
Θ(χ̄)- *� W−1

-*�V- *� )

(h, 
̄) 
→ (h, Θ(ν̄ ′).Th Θ(ν̄.h) Θ(Gh.ν̄) Θ(h).Θ(ν̄) = h.Θ(ν̄)
Θ(
̄)-*� V −1

-*�V - *� )

ξ: (h, 
̄) ⇒ (h′, 
̄′) 
→ ξ: (h, V −1 ◦ Θ(
̄) ◦ V ) ⇒ (h′, V −1 ◦ Θ(
̄′) ◦ V )

This will define a 2-functor, again by the functoriality of mateship under pseudoadjunction
and the axioms of Gray-category. It will be helpful to have the explicit formula for
MA(h, 
̄). By plugging in the relevant pseudoadjunctions one can check that

MA(h, 
̄) = (h, σh.T ν̄ ◦ Θ(
̄)).

We now show that MA and MA define a 2-equivalence of 2-categories. Define the
2-natural isomorphism ΓA: 1T-AlgA

⇒ MAMA as follows: Denote MAMA

(
(s, ν, ψ, χ)

)
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as (s, ν̃, ψ̃, χ̃). Define the morphism of pseudoalgebras Γ(s,ν,ψ,χ): (s, ν, ψ, χ) → (s, ν̃, ψ̃, χ̃)
by letting h: s ⇒ s be the identity, so that 
 is just a map ν̃ ⇒ ν. From the definition
of MA and MA we know that ν̃ = ΘΦ(ν). Hence we can choose 
 to be the isomor-
phism γ̄−1

ν : ΘΦ(ν) ⇒ ν defined in Proposition 3.4. The pair (1s, γ̄
−1
ν ) is a morphism of

pseudoalgebras by the naturality of the isomorphism γ̄ of Proposition 3.4 applied to the
3-morphisms ψ and χ. The explicit form of the isomorphism γ̄−1

ν is ν.Υs ◦ σ−1
ν .T ιs.

To see that ΓA is natural in the one dimensional sense, suppose that (h, 
): (ψ, χ) →
(ψ′, χ′) is an arbitrary 1-cell in T-AlgA. Consider the following diagram:

(s, ν, ψ, χ)
(h,
)

��

(1,γ̄−1
ν )

��

(s′, ν ′, ψ′, χ′)

(1,γ̄−1
ν′ )

��

(s, ν̃, ψ̃, χ̃) MAMA(h,
)

�� (s′, ν̃ ′, ψ̃′, χ̃′)

Note that since h: s ⇒ s′ for some s′: A → B, the pseudoadjunction determining the mate
of h is the identity adjunction so that h is its own mate under pseudoadjunction. Thus,
this diagram of pseudoalgebra maps commutes if and only if

h.γν ◦ 
̃ = 
 ◦ γν′ .Th. (4)

Using the explicit formulas given above we have that

MAMA(h, 
) = (h, σ−1
h .TGν.T ιs ◦ σs′.TG
.T ιs ◦ σs′.TGν ′.T ι−1

h ).

In order to prove the naturality of ΓA we will need the following equalities that all follow
directly from the axioms of a Gray-category:

h.σ−1
ν ◦ σ−1

h .TGν = σ−1
h.ν

σ−1
h.ν ◦ σs′.TG
 = 
.σTs ◦ σ−1

ν′.Th

σ−1
ν′.Th = ν ′.σ−1

Th ◦ σ−1
ν′ .TGTh

σ−1
Th.T ιs ◦ σTs′.T ι−1

h = (σ.T ι)−1
h

Th.Υs ◦ (σ.T ι)−1
h = Ths ◦ Υs′.Th = Υs′.Th

The proof of equation 4 above is as follows:

h.γν ◦ 
̃ = h.ν.Υs ◦ h.σ−1
ν .T ιs ◦ σ−1

h .TGν.T ιs ◦ σs′.TG
.T ιs ◦ σs′.TGν ′.T ι−1
h

= h.ν.Υs ◦ σ−1
h.ν .T ιs ◦ σs′.TG
.T ιs ◦ σs′.TGν ′.T ι−1

h

= h.ν.Υs ◦ 
.σTs.T ιs ◦ σ−1
ν′.Th.T ιs ◦ σs′.TGν ′.T ι1

h

= h.ν.Υs ◦ 
.σTs.T ιs ◦ ν ′.σTs′.T ι−1
h ◦ σ−1

ν′ .T ιs′.Th (Interchange)

= h.ν.Υs ◦ 
.σTs.T ιs ◦ ν ′.(σ.T ι)−1
h ◦ σ−1

ν′ .T ιs′.Th

= 
 ◦ ν ′.Th.Υs ◦ ν ′.(σ.T ι)−1
h ◦ σ−1

ν′ .T ιs′.Th (Interchange)

= 
 ◦ ν ′.Υs′.Th ◦ σ−1
ν′ .T ιs′.Th

= 
 ◦ γν′ .Th
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To see the 2-naturality of ΓA let ξ: (h, ρ) ⇒ (h′, 
′), then the equality:

(ψ, χ) (ψ′, χ′) (ψ̃, χ̃)

(h,
)





(h′,
′)

��

(1,γ̄−1
ν′ )

��ξ
��

=

(ψ, χ) (ψ′, χ′) (ψ̃, χ̃).

MAMA(h,
)

��

MAMA(h′,
′)





(1,γ̄−1
ν )

�� MAMAξ
��

follows from the fact that MAMA(ξ) = ξ and the naturality of γ̄ applied to the 3-
morphism ξ in K. A 2-natural isomorphism ΓA:MAMA ⇒ 1G-CoAlgA

can be defined

in a similar way.
To see that this 2-equivalence of 2-categories commutes with the forgetful 2-functors,

note that in the above proof we have shown that the 2-equivalence is the identity on the
base map s of the pseudoalgebra. Furthermore, in the discussion of naturality we have
shown that for any map (h, 
) of pseudoalgebras MA is the identity on h and MA also
acts as the identity on every 3-cell defining a 2-morphism of pseudoalgebras. Thus, by
the definition of the forgetful 2-functors UT

A and UG

A it is clear that the equivalence MA

commutes with the forgetful 2-functors.

3.19. Theorem. [The categorified adjoint monad theorem] If Σ, Υ, ι, σ: T �p G in K,
then the Gray-functors T-Alg and G-Alg are Gray-equivalent in the Gray-category
[Kop,Gray]. This means that there exists Gray-natural transformations M: T-Alg →
G-CoAlg, M: G-CoAlg → T-Alg and invertible Gray-modifications Γ: 1T-Alg ⇒
MM, Γ:MM ⇒ 1G-CoAlg. Furthermore, this Gray-equivalence commutes with the

forgetful Gray-natural transformations UT and UG.

Proof. Define a Gray-natural transformation M: T-Alg → G-CoAlg which assigns
to each object in Kop the 2-functor MA defined in the preceding lemma. To see the
naturality of M let K: A′ → A in K and note that Φ(fK) = Φ(f)K for f = ν, ψ, χ so
that:

K̂MA(s, ν, ψ, χ) =
(
sK, Φ(ν)K, Φ(ψ)K ◦ Y K, Y −1K ◦ Φ(χ)K ◦ XK

)
=

(
sK, Φ(νK), Φ(ψK) ◦ Y, Y −1 ◦ Φ(χK) ◦ X

)
= MA′K̂(s, ν, ψ, χ).

A similar check shows that the collection of 2-functors MA: G-CoAlgA → T-AlgA defines
a Gray-natural transformation M: G-CoAlg → T-Alg.

Define an invertible Gray-modification Γ: 1T-Alg → MM which assigns to each

object in Kop the 2-natural isomorphism ΓA defined in the preceding lemma. To see that
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this data defines a Gray-modification first note that the following diagrams commute:

K̂ K̂ ′

MA′MA′K̂ MA′MA′K̂ ′

k̂ ��

ΓA′K̂

��

ΓA′K̂′

��

MA′MA′ k̂
��

K̂ K̂ ′

K̂MAMA K̂ ′MAMA

k̂ ��

K̂ΓA

��

K̂′ΓA

��

k̂MAMA

��

In the first case we must show that the composites of pseudoalgebra homomorphisms
(sK ′, γ̄1

νK′).(sk, ν−1
k ) and (sk, ΘΦ(ν)−1

k ).(sK, γ̄−1
νK) are equal. In the second diagram we

must show that (sK ′, γ̄−1
ν K ′).(sK, ν−1

k ) = (sK ′, ΘΦ(ν)−1
k ).(sK, γ̄−1

ν K). These equalities
follow from the fact that ΘΦ(νK ′) = ΘΦ(ν)K ′, ΘΦ(νK) = ΘΦ(ν)K and the Gray
axioms. Finally, Γ is a Gray-modification since γ̄−1

ν K ′ = γ̄−1
νK′ and γ̄−1

ν K = γ̄−1
νK .

In a similar fashion one can define an invertible Gray-modification Γ:MM ⇒ 1G-CoAlg.

Hence, we have shown that the Gray-functors T-Alg and G-CoAlg are Gray-equivalent
in the Gray-category [Kop,Gray]. Lemma 3.18 shows that this Gray-equivalence com-
mutes with the forgetful functors.

3.20. Theorem. Let T = (T, µ, η, λ, ρ, α, ε) be a Frobenius pseudomonad on the object
B of the Gray-category K with Σ, Υ, ι, ε.µ: T �p T . Denote the induced pseudocomonad
structure on T by G. Then there exists an invertible Gray-modification Ξ:MF T → F G.

Proof. We begin by defining a 2-natural isomorphism ΞA:MAF T

A ⇒ F G

A :K(A,B) →
G-CoAlgA. Recall that F T

A(s) = (Ts, µs, λs, αs) and that F G

A (s) = (Ts, δs, ρ̄−1s, ᾱs)
with δ, ρ̄, ᾱ of the form given in Proposition 3.11. Hence,

MAF T

A(s) =
(
Ts, Φ ((µs)) , Φ ((λs)) , Φ ((αs))

)
=

(
Ts, Tµs.ιs, Φ

(
(λs)

)
, Φ ((αs))

)
F G

A (s) =
(
Gs, δs, ρ̄−1s, ᾱs

)
=

(
Ts, T 2(ε.µ)s.T 2µTs.T ιT 2s.ιTs, ρ̄−1s, ᾱs

)
.

The double parenthesis are used in order to distinguish which pseudoadjunction is in-
tended. For example, Φ(µs) is determined by the pseudoadjunctions with F = T, U =
T, F ′ = T 2, U ′ = G2 and morphisms a = b = s. While Φ ((µs)) is given by the pseudoad-
junctions with F = U = 1B, F ′ = T, U ′ = T and morphisms a = b = Ts.

We define the isomorphism of pseudocoalgebras (h, 
̄s):MAF T

A(s) → F G

A (s) by taking
h = 1Ts, and 
̄s given by the following diagram:

Ts

T 3s

T 3s

T 2s

T 5s

T 4s

T 4s

T 2s

T 3s

ιTs
��11111111

11111111

ιTs ��22222222

22222222

Tµs ��

TιT 2s
��

TιTs

��2222222

2222222

T 3µTs ��1111111
1111111

T 2µTs ��2222222

2222222

T 2s ��

T 2µs

��2222222

2222222

T 2µs

��1111111
1111111

T 2εs

		������������

������������

TΣs���

T 2αs���

Tι−1
µ s���
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One can verify using the definitions of MA, ψ̄, and χ̄ that this map is indeed a morphism
of pseudocoalgebras.

Let h: s ⇒ s′ in K(A,B). To establish the 1-naturality of ΞA we must show that:

(Ts, δs, ρ̄−1s, ᾱs)

MA(Ts, µs, λs, αs) MA(Ts′, µs′, λs′, αs′)

(Ts′, δs′, ρ̄−1s′, ᾱs′)

(Ts,
̄s)

��

MA(Th,µ−1
h )

��

(Th,δ−1
h )

��

(Ts′,
̄s′)

��

commutes where

MA(Th, µ−1
h ) = Φ((µ−1

h )) ◦ Tµs′.(ι−1
Th)

= Tµ−1
Th.ιT s ◦ Tµs′.(ι−1

Th).

This amounts to the equality of the following diagrams:

Ts′ T 3s′

T 3s′

T 2s′

T 5s′

T 4s′

T 4s′

T 2s′

T 3s′

T 3s T 2sTs

ιTs′ ��

ιTs′




��

��
��

��
��

��

��
��

��
��

��
��

Tµs′ ��

TιT 2s′
��

TιTs′




���
�

���
�

T 3µTs′ ��1111111
1111111

T 2µTs′ ��2222222

2222222

T 2h

��

T 2µs′

��2222222

2222222

T 2µs′

��1111111
1111111

T 2εs′

		������������

������������

T 3h

��

Tµs ��

Th

��

ιTs ��

TΣs′���

T 2αs′���

Tι−1
µ s′���

ιTh���
Tµ−1

Th���

Ts

T 3s

T 3s

T 2s

T 5s

T 4s

T 4s

T 2sT 3s

Ts′ T 2s′T 3s′ T 5s′

T 4s′

T 3s′

ιTs

		������������

������������

ιTs
��

Tµs ��

TιT 2s
��

TιTs

��2222222

2222222

T 3µTs ��1111111
1111111

T 2µTs ��2222222

2222222

T 2s

43
T 2µs

��2222222

2222222

T 2µs

��1111111
1111111

T 2εs
��

Th

��

T 2h

��

ιTs′
��

TιT 2s′
��

T 2µTs′ ��2222222

2222222

T 2µs′

��1111111
1111111

T 2εs′
��

TΣs���

T 2αs���

Tι−1
µ s���

δ−1
h���

which are equal by a routine verification using the Gray-category axioms. The 2-
naturality of ΞA follows from the fact that both F T

A and F G

A map the 2-morphism ξ: h ⇒
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h′: s → s′ to Tξ, and the fact that the 2-functor MA is the identity on 2-morphisms of
pseudocoalgebras.

The collection of ΞA define a Gray-modification by the commutativity of the following
diagrams:

MA′F T

A′K(K,B) MA′F T

A′K(K ′, B)

F G

A′K(K,B) F G

A′K(K ′, B)

MA′F T

A′K(k,B)
��

ΞA′K(K,B)

��

ΞA′K(K′,B)

��

F G

A′K(k,B)
��

K̂MAF T

A K̂ ′MAF T

A

K̂F G

A K̂ ′F G

A

k̂MAF T

A ��

K̂ΞA

��

K̂′ΞA

��

k̂F G

A

��

which are both equal to

(
TsK, Φ

(
(µsK)

))

(TsK, µsK) (TsK ′, µsK ′)

(TsK ′, ΘΦ(µ)sK ′)

(
Tsk,Φ

(
(µs−1

k )
))

��

(TsK,
̄sK)

��

(TsK′,
̄sK′)

��(
Tsk,Φ(µ)sk

) ��

3.21. Proposition. Let B
L1 ��⊥p C
R

�� and B
L2 ���p C
R

�� be pseudoadjunctions in the Gray-

category K. Also, let T1 be the pseudomonad on B induced by the composite RL1, and T2

be the endomorphism on B induced by the composite RL2. Then T1 �p T2 are pseudoad-
joint morphisms, hence T2 is with the pseudocomonad structure induced via mateship is a
right pseudoadjoint pseudocomonad for the pseudomonad T.

Proof . The composites RL1 and RL2 of pseudoadjoints are pseudoadjoint by Propo-
sition 3.3. Thus, if we let T2 be the pseudocomonad on B determined via mateship from
the pseudomonad T1 then it is clear that T1 �p T2.

3.22. Theorem. If I, E, J,K, i, e, j, k: F �p U �p F : A → B is a pseudo ambijunction in
the Gray-category K, then the induced pseudomonad UF on B is Frobenius with ε = k.

Proof. All we must show is that UF �p UF with counit k.UiF . Define the unit of the
pseudo adjunction to be UjF.i. Then UF �p UF follows by Proposition 3.3.

We now make use of the fact that every Gray-category K can be freely completed to
a Gray-category EM(K) where an Eilenberg-Moore object exists for every pseudomonad
in K.
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3.23. Theorem. Given a Frobenius pseudomonad (T, ε) on an object B in the Gray-
category K, then in EM(K) the left pseudoadjoint F T: B → BT to the forgetful Gray-
functor UT: BT → B is also right pseudoadjoint to UTwith counit ε. Hence, the Frobenius
pseudomonad T is generated by an ambidextrous pseudo adjunction in EM(K).

Proof. In EM(K) an Eilenberg-Moore object exists for the pseudomonad T. In particu-
lar, this means that the Gray-functor T-Alg is represented by K(−, BT) for some BT in
EM(K). Hence, the pseudoadjunction

IT, ET, iT, eT: F T �p UT: T-Alg → K(−, B)

of Theorem 3.16 arises via the enriched Yoneda lemma from a pseudoadjunction

IT, ET, iT, eT: F T �p UT: B → BT

in EM(K). Furthermore, since T is a Frobenius pseudomonad we can equip the endo-
morphism T with the induced pseudocomonad structure of Proposition 3.11. We denote
this pseudocomonad as G. Then the pseudoadjunction:

IG, EG, iG, eG:MF G �p UGM: T-Alg → K(−, B)

given by the construction of pseudocoalgebras composed with the Gray-equivalence T-Alg �
G-CoAlg must also arise via the enriched Yoneda lemma from a pseudoadjunction:

IG, EG, iG, eG: UGM �p MF G: B → BT

in EM(K). Since this pseudoadjunction generates the pseudocomonad G, and G is defined
by mateship under the self pseudoadjunction determined by ε, we have that eG = ε.

By Theorem 3.19 we have that UGM = UT. Since T-Alg is representable in EM(K)
the isomorphism MF T ∼= F G of Proposition 3.20 arises via the enriched Yoneda lemma
from an isomorphism between the morphisms MF T and F G in EM(K). Hence, F T: B →
BT is both a left and right pseudoadjoint to UT, so that the Frobenius pseudomonad T is
induced from an ambidextrous pseudoadjunction.

3.24. Corollary. A Frobenius pseudomonoid in a semistrict monoidal 2-category M
(or Gray-monoid) yields a pseudo ambijunction in EM(Σ(M)), where Σ(M) is the
Gray-category obtained from the suspension of M.

Proof. Recall that a Frobenius pseudomonoid in the Gray-monoid M is just a Frobenius
pseudomonad in the Gray-category Σ(M). The result follows by Theorem 3.23.

3.25. Corollary. If B
F ���p ⊥p C
U

�� is a pseudo ambijunction in the Gray-category K, then

UF is a Frobenius pseudomonoid in the semistrict monoidal 2-category K(B,B).

Proof. By Theorem 3.22, UF is a Frobenius pseudomonad on B in K. By definition this
is a Frobenius pseudomonoid in K(B,B).
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