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Characterization of matrix types of ultramatricial
algebras

Gábor Braun

Abstract. For any equivalence relation ≡ on positive integers such that
nk ≡ mk if and only if n ≡ m, there is an abelian group G such that the
endomorphism ring of Gn and Gm are isomorphic if and only if n ≡ m. How-
ever, Gn and Gm are not isomorphic if n �= m.
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1. Introduction

We construct partially ordered abelian groups such that the orbit of a distin-
guished element under the automorphism group is prescribed; the precise statement
is Theorem 1.1 in Subsection 1.1. The prescribed orbit controls the matrix type of a
ring, i.e., which matrix algebras over the ring are isomorphic, hence we can charac-
terize the matrix types of ultramatricial algebras over any principal ideal domain,
see Theorem 1.2 in Subsection 1.2. If the ground ring is Z then these algebras
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are realizable as endomorphism rings of torsion-free abelian groups, which groups
therefore have the property stated in the abstract, see Corollary 1.3.

We are indebted to Péter Vámos who draw our attention to this wonderful
problem.

1.1. Dimension groups. An order unit in a partially ordered abelian group is a
positive element u such that for every element x there is a positive integer n such
that nu ≥ x. A dimension group (D,≤, u) is a countable partially ordered abelian
group (D,≤) with order unit u such that every finite subset of D is contained in a
subgroup, which is isomorphic to a direct product of finitely many copies of (Z,≤)
as a partially ordered abelian group.

Our main result, which will be proven from Section 3 on, is:

Theorem 1.1. Let H ≤ Q×
+ be a subgroup of the multiplicative group of the pos-

itive rational numbers. Then there is a dimension group (D,≤, u) whose group of
order-preserving automorphisms is isomorphic to H. Furthermore, under this iso-
morphism every element of H acts on u by multiplication by itself as a rational
number.

In the special case when H is generated by a set S of prime numbers, one may
choose D to be the ring Z[S−1] and u = 1, see [7, Proposition 4.2].

1.2. Ultramatricial algebras. An ultramatricial algebra over a field or principal
ideal domain F is an F -algebra which is a union of an upward directed countable
set of F -subalgebras, which are direct products of finitely many matrix algebras
over F .

1.2.1. Matrix types of rings. Let Mn(R) denote the ring of n×n matrices over
the ring R. Obviously, Mn(R) is ultramatricial if R is ultramatricial. The matrix
type of a ring R is the equivalence on positive integers describing which matrix
algebras over R are isomorphic:

mt(R) := {(n, m) | Mn(R) ∼= Mm(R)}.(1)

Clearly, if (n, m) ∈ mt(R) then (mk, nk) ∈ mt(R) for all positive integers m, n, k.
The converse also holds for ultramatricial algebras but probably not for all rings.

The next theorem states that all such equivalences indeed arise as matrix types
of ultramatricial algebras:

Theorem 1.2. Let F be a field or principal ideal domain and ≡ be an equivalence
relation on the set of positive integers. Then the following are equivalent:

(i) For all positive integers n, m and k

n ≡ m ⇐⇒ nk ≡ mk.(2)

(ii) There is a (unique) subgroup H of the multiplicative group Q×
+ of positive

rational numbers such that for all positive integers n and m:

n ≡ m ⇐⇒ n

m
∈ H.(3)

(iii) There exists an ultramatricial F -algebra with matrix type ≡.
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The second statement is clearly a reformulation of the first one, which is useful
for explicit construction of equivalences, as pointed out by the referee.

The equivalence of the second and third statements is a simple consequence of
our main result, Theorem 1.1, as we will explain in the next section.

1.2.2. Basis types of rings. In a similar vein, the basis type of a ring R charac-
terizes which finite rank free modules are isomorphic:

bt(R) := {(n, m)|Rn ∼= Rm}.(4)

The analogue of Theorem 1.2 for basis types is Theorem 1 of [3]: every equivalence
relation with the property n ≡ m if and only if n + k ≡ m + k is the basis type of
a ring of infinite matrices.

Clearly, if Rn ∼= Rm then Rn+k ∼= Rm+k. All equivalence relation with this
property arise as basis type of a ring: see [6].

The basis type is obviously smaller than the matrix type. It seems plausible
that this is the only relation between the two types. For example, ultramatricial
algebras have trivial basis type i.e., free modules of different finite rank are not
isomorphic.

Every ultramatricial algebra R over F = Z is a countable reduced torsion-free
ring, and hence is the endomorphism ring of a torsion-free abelian group G by [1,
Theorem A]. Then Mn(R) is the endomorphism ring of Gn. Obviously Gn and
Gm are not isomorphic if n 	= m since there is no invertible n × m matrix over R.
Hence we have the statement in the abstract as an immediate corollary to the last
theorem:

Corollary 1.3. Let ≡ be an equivalence relation on positive integers with the prop-
erty that n ≡ m if and only if nk ≡ mk for all positive integers n, m and k. Then
there is a torsion-free abelian group G such that the endomorphism ring of Gn and
Gm are isomorphic if and only if n ≡ m. Moreover, Gn and Gm are isomorphic if
and only if n = m.

2. Equivalence of dimension groups and ultramatricial
algebras

Dimension groups and ultramatricial algebras over a fixed field or principal ideal
domain are essentially the same. In this section, we recall this equivalence, which
shows that Theorem 1.2 follows from Theorem 1.1. For more details and proofs see
[7, Proposition 4.1] or [5, Chapter 15, Lemma 15.23, Theorems 15.24 and 15.25],
which assume that the ground ring is a field, but the arguments also work when it
is a principal ideal domain.

First we define the functor K0 from the category of rings to the category of pre-
ordered abelian groups with a distinguished order unit. The isomorphism classes of
finitely generated projective left modules over a ring R form a commutative monoid
where the binary operation is the direct sum. The quotient group of the monoid is
denoted by K0(R). Declaring the isomorphism classes of projective modules to be
nonnegative, K0(R) becomes a preordered group. The isomorphism class u of R,
the free module of rank 1, is an order unit of K0(R).



24 Gábor Braun

If f : R → S is a ring homomorphism then let K0(f) map the isomorphism
class of a projective module P to that of S ⊗R P . So K0(f) is a homomorphism
preserving both the order and the order unit.

If R is an ultramatricial algebra then K0(R) is a dimension group. Conversely,
every dimension group is isomorphic to the K0 of an ultramatricial algebra. If R
and S are ultramatricial algebras then every morphism between K0(R) and K0(S)
is of the form K0(f) for some algebra homomorphism f : R → S. However, f is
not unique in general. Nevertheless, every isomorphism between K0(R) and K0(S)
comes from an isomorphism between R and S.

Thus, by restriction, K0 is essentially an equivalence between the category of
ultramatricial algebras over a given field and the category of dimension groups with
morphisms the group homomorphisms preserving both the order and the order unit.

Now we examine how the matrix type of an ultramatricial algebra can be recov-
ered from its dimension group. The standard Morita equivalence between R and
Mn(R) induces an isomorphism between the K0 groups. However, this isomorphism
does not preserve the order unit, in fact K0(Mn(R)) is (K0(R),≤, nu) where u is
the order unit of K0(R).

So if R is an ultramatricial algebra, then the dimension groups K0(Mn(R))
and K0(Mm(R)) (and hence the algebras Mn(R) and Mm(R)) are isomorphic if
and only if there is an order-preserving automorphism of K0(R) sending nu to
mu. Obviously, for any dimension group (D,≤, u) whether an order-preserving
automorphism maps nu to mu, depends only on the factor m/n. Such factors m/n
form a subgroup of the multiplicative group Q×

+ of the positive rationals.
So the classification of matrix types of ultramatricial algebras is equivalent to the

classification of subgroups of Q×
+ which arise from dimension groups in the above

construction. Theorem 1.1 states that all subgroups arise, and Theorem 1.2 is just
the translation of it to the language of matrix types of ultramatricial algebras.

3. Overview of the construction

In the rest of the paper we prove Theorem 1.1. In this section we outline the
main ideas of the proof and leave the details for the following sections. The next
section fixes notations used frequently in the rest of the paper. Section 5 recalls
a construction of abelian groups. The actual proof is contained in the rest of
the sections, which are organized so that they can be read independently. At the
beginning of every section, we shall refer to its main proposition, which will be the
only statement used in other sections. The same is true for subsections.

To prove Theorem 1.1, we fix a subgroup H of the positive rationals and construct
a dimension group D for it. We search for D (as an abelian group without any order)
in the form D := Qu⊕G where H acts on the direct sum componentwise. We let H
act on Qu by multiplication as required to act on the order unit. A key observation
(Proposition 7.1) is that if the only automorphisms of G are the elements of H and
their negatives, then for any partial order ≤ on D, which is preserved by H and
makes (D,≤, u) a dimension group, the order-preserving automorphism group of D
is only H. So (D,≤, u) satisfies the theorem.

Therefore, all we have to do is to find such a G and ≤. Actually, G is already
constructed by A. L. S. Corner in [1]. Since we shall use the structure of G to define
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the partial order ≤, we recall a special case of the construction in Section 5, which
is enough for our purposes. See also [4] for the general statement.

Finally, we define a partial order ≤ on D making it a dimension group in Subsec-
tion 6.2. The basic idea is to explicitly make some subgroups of D order-isomorphic
to Zn and show that these partial orders on the subgroups are compatible. This
will be based on a description of G (Proposition 6.1): we define elements of G,
which will be bases of order-subgroups Zn of D and state relations between them
implying the compatibility of partial orders.

4. Notation

Let xh denote the element of the group ring ZH corresponding to h ∈ H. This
is to distinguish xha the value of xh at a from ha the element a multiplied by the
rational number h.

If the automorphism group of an abelian group is the direct product of a group
H and the two element group generated by −1 then we say that the automorphism
group is ±H.

5. Abelian groups with prescribed endomorphisms

We revise a special case of A. L. S. Corner’s construction of abelian groups with
prescribed endomorphism rings. I am grateful to Rüdiger Göbel and his group for
teaching me this method.

Let M̂ denote the Z-adic completion of the abelian group M . The following
result is is a special case of Theorem 1.1 from [2] by taking A = R and Nk = 0:

Proposition 5.1. Let R be a ring with free additive group. Let B be a free R-
module of rank at least 2 and {wb : b ∈ B \ {0}} a collection of elements of Ẑ

algebraically independent over Z. Let the R-module G be

G := 〈B, Rbwb : b ∈ B \ {0}〉∗ ⊆ B̂.(5)

Then G is a reduced abelian group with endomorphism ring R.

Here ∗ means purification: i.e., we add all the elements x of B̂ to

E := B ⊕b∈B\{0} Rbwb

for which nx ∈ E for some nonzero integer n. The usual down-to-earth description
of G is the following, which we shall use in Subsection 6.1: we select positive
integers mn such that every integer divides m1 . . . mn for n large enough. We
choose elements w

(n)
b of Ẑ for all nonzero elements b of B and natural numbers n

such that w
(0)
b = wb and w

(n)
b −mnw

(n+1)
b is an integer. Then G is generated by the

submodules B and Rbw
(n)
b . Obviously, Gn := B ⊕b∈B\{0} Rbw

(n)
b is a submodule

of G and these modules Gn form an increasing chain whose union is the whole G.

Remark 5.2. Note that the automorphism group of G is the group of units of R,
which is just ±H if R = ZH and H is an orderable group. (It is a famous conjecture
that the group of units of ZH is ±H for all torsion-free groups H.)

We will be interested in the case when H ≤ Q×
+ and R = ZH is a group ring.

The free module B will have countable rank. Recall that there are continuum many
elements of Ẑ algebraically independent over Z, so the construction works in this
case, and we will get a reduced abelian group G with automorphism group ±H.
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6. Construction of the dimension group

We now construct our dimension group D = Qu ⊕ G starting from a subgroup
H ≤ Q×

+ of the positive rationals. The main result of the section is Proposition 6.2.
The proposition in Subsection 6.1 defines G and summarizes the (technical)

properties of G used in Subsection 6.2 to put the partial order on D.
Let n2 denote the set of sequences of length n whose elements are 0 or 1. If

y is a finite sequence of 0 and 1 then let y0 denote the sequence obtained from y
by adding an additional element 0 to the end. Similarly, we can define y1. These
sequences will be identified with elements of G.

6.1. The abelian group under the dimension group. In this subsection we
construct an abelian group G satisfying the following properties. Essentially, G will
be the underlying abelian group of our dimension group.

Proposition 6.1. Let H ≤ Q×
+ be a subgroup of the multiplicative group of the

positive rational numbers. Let R := ZH denote its group ring. Then there exist:
• an R-module G, which is also a reduced abelian group,
• a finite subset Fn ⊆ H for all positive integer n,
• positive integers sn, tn, kn and ln for n ≥ 0,

subject to the following conditions:
(i) AutG = ±H.
(ii) Structure of G:

(a) G is a union of an increasing sequence of free submodules Gn.
(b) Gn has base n2 ∪ {c(n)

i : i = 1, . . . , n
}
.

(iii) Relations describing the inclusion Gn ⊆ Gn+1:
(a) y = y0 + s2

n · y1 for all y ∈ n2.
(b) There are integers n

(i)
h,y for all i ≤ n, h ∈ H and y ∈ n2 such that

c
(n)
i − sntnc

(n+1)
i =

∑
h∈Fi
y∈n2

n
(i)
h,yxh · y0, 0 ≤ n

(i)
h,y < sntn.(6)

(iv) Properties of sn, tn, kn and ln:
(a)

k0 = 1, kn+1 = snkn,

l0 = 1, ln+1 = tnln.

(b) Every positive integer divides kn and ln for n large enough.
(c) kn(s2

n − 1) ≥ lnsntn
∑n

i=1

∑
h∈Fi

h.

Proof. The construction of the items is easy. One has to take care to define them
in the correct order.

Let B be a countable-rank free module over the group ring R := ZH i.e., B =
ZH ⊗ A where A is a free abelian group of countably infinite rank. Using this
group we define G by Equation (5) as in Proposition 5.1. (The Z-adic integers wb

can be arbitrary.) The proposition tells us that G is a reduced abelian group and
AutG = ±H so (i) is satisfied.

We identify a base of A with the finite sequences of 0 and 1 not ending with 0
(so with the sequences ending with 1 and the empty sequence). In this base, the
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sequences of length at most n is a basis of a free subgroup An of A and the free
R-module Bn = R ⊗ An.

Let us enumerate the elements of B \ {0} into a sequence b1, b2, . . . such that
bn ∈ Bn. Every element of B can be written uniquely as

∑
h∈H xhbh where bh ∈ A

and only finitely many of the bh are nonzero. We define the support of an element
of B as the finite set[∑

h∈H

xhbh

]
:= {h ∈ H | bh 	= 0} (bh ∈ A).(7)

Let Fi := [bi] be the support of bi.
Now we are ready to define our positive integers sn, tn, kn and ln. Let us impose

the following additional condition on them:

(∗) tn is divisible by n, and tn divides sn.

Now the integers can be defined recursively such that (iv)(a), (iv)(c) and (∗) hold.
These automatically imply the truth of (iv)(b).

Now we identify the sequences of 0 and 1 with elements of A. We have already
done this for the sequences not ending with zero: they form a basis of A. As
dictated by (iii)(a), we set

y0 := y − s2
n · y1 y ∈ n2.(8)

(This is in fact a recursive definition on the length of y since y may also end with
zero.) Thus the sequences of finite length are identified with elements of A such
that (iii)(a) holds and the sequences of length n form a basis of An as can be easily
seen by induction on n.

We turn to the definition of the Gn. Let us choose Z-adic integers w
(n)
i for

1 ≤ i ≤ n such that

w
(0)
i := wbi

, w
(n)
i − sntnw

(n+1)
i ∈ Z, w

(n)
i ∈ Ẑ.(9)

We let Gn be the free submodule

Gn := Bn ⊕
n⊕

i=1

Rbiw
(n)
i .(10)

It follows from the definition of G (Equation (5)) that the groups Gn form an
increasing sequence of submodules whose union is G.

The only missing entities are the elements c
(n)
i . We could set c

(n)
i = biw

(n)
i to

satisfy (ii)(b) but this may not be appropriate for (iii)(b). Therefore we shall set

c
(n)
i := biw

(n)
i + b

(n)
i b

(n)
i ∈ Bn, i ≤ n(11)

for some b
(n)
i , which will also satisfy (ii)(b). For i fixed, we are going to define the

b
(n)
i recursively for n ≥ i subject to:

(A) b
(n)
i ∈ Bn.

(B) [b(n)
i ] ⊆ [bi] = Fi.
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(C) For suitable integers n
(i)
h,y:

bi

(
w

(n)
i − sntnw

(n+1)
i

)
+ b

(n)
i = sntnb

(n+1)
i +

∑
h∈F,y∈n2

n
(i)
h,yxh · y0,(12)

0 ≤ n
(i)
h,y < sntn.

Note that the last equation is just a reformulation of (iii)(b) in terms of the b
(n)
i .

Now we carry out the recursive definition. We can start with b
(i)
i := 0. Observe

that (C) determines how to define b
(n+1)
i : the left-hand side is an element of Bn+1,

a free abelian group with basis xhy for h ∈ H and y a sequence of 0 and 1 of
length n + 1. We divide the coefficient of every xhy by sntn. The quotient gives
the coefficient of xhy in b

(n+1)
i and the remainder is a coefficient of the big sum on

the right. Since the support of the left-hand side is contained in Fi by induction,
the same is true for b

(n+1)
i and the sum on the right-hand side. The left-hand side

is actually contained in Bn not only Bn+1. This means that the coefficients of
sequences of length n + 1 ending with 1 are divisible by s2

n by (iii)(a) and hence
by sntn since tn divides sn. So in the sum on the right-hand side, the coefficient
of sequences ending with 1 is zero. Thus we have defined b

(n+1)
i according to the

requirements. �

6.2. The partial order. In this subsection we define a partial order on D which
will make it a dimension group.

Proposition 6.2. Let H ≤ Q×
+ be a subgroup of the multiplicative group of the

positive rational numbers acting on Qu by multiplication. Suppose G is a group
satisfying the conditions of Proposition 6.1. Let H act on D := Qu ⊕ G compo-
nentwise. Then there is a partial order ≤ on D such that (D,≤, u) is a dimension
group on which H acts by order-preserving automorphisms.

The dimension group D in the proposition satisfies all requirements of The-
orem 1.1. We shall see in the next section that the group of order-preserving
automorphisms of D is exactly H. The other requirements are obviously satisfied.

Proof. We define the partial order on a larger group, the divisible hull QD of D.
For all natural number n and finite subset F of H we define a subgroup of D:

Dn,F := Z
u

kn
⊕
⊕
h∈F
y∈n2

Zxhy ⊕
n⊕

i=1
h∈F

Zxhc
(n)
i .(13)

We define the partial order on QDn,F as the product order

(QDn,F ,≤) := (Qvn,F ,≤) ×
∏
h∈F
y∈n2

(Qxhy,≤) ×
n∏

i=1
h∈F

(Qxhc
(n)
i ,≤)(14)

where

vn,F :=
u

kn
−
∑
h∈F

h−1xh

(
kn

∑
y∈n2

y + ln

n∑
i=1

c
(n)
i

)
.(15)

Note that u is an order unit of QDn,F .
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The subgroups Dn,F form a directed system whose union is the whole D. It
follows that the subgroups QDn,F form a directed system whose union is QD.

We are in a position now to reduce the proof to two lemmas stated below.
The first one states that the inclusions between the QDn,F are order-embeddings.
It follows that QD has a unique partial order which extends the partial order of
all the QDn,F . Under this partial order u is clearly an order-unit. The partial
order is preserved by H since any h ∈ H maps QDn,F bijectively onto QDn,hF and
this bijection is an order-isomorphism of the two subgroups. (Note that xhvn,F =
hvn,hF .) The second lemma claims that a cofinal set of the Dn,F is order-isomorphic
to a direct product of finitely many copies of (Z,≤), and thus (D,≤, u) have all the
properties claimed.

All in all, the proposition is proved modulo the following two lemmas. �

Lemma 6.3. The inclusions between the subgroups QDn,F are order-embeddings.

Lemma 6.4. A cofinal set of the groups Dn,F is order-isomorphic to a finite direct
power of (Z,≤).

We consider first the inclusions.

Proof of Lemma 6.3. We claim it is enough to prove that QDn,F is an order-
subgroup of QDn+1,F ′ if F ′ contains F and FFi for i ≤ n. Because it will follow
by induction on m − n that for every n and F and m > n there is a finite subset
S of H such that QDn,F is an order-subgroup of QDm,F ′ if F ′ contains S. Hence,
if QDn,F is a subgroup of QDk,C then both are order-subgroups of QDm,F ′ for
suitable m and F ′, hence QDn,F must be an order-subgroup of QDk,C .

Now we prove the claim that QDn,F is an order-subgroup of QDn+1,F ′ if F ′

contains F and FFi for all i ≤ n. For this, it is good to have the following general
example of an order-embedding of (Q,≤)m into (Q,≤)m+k given by a matrix:

⎛
⎜⎜⎜⎜⎝

> 0 0 . . . 0 ≥ 0 . . . ≥ 0

0 > 0 0
... ≥ 0 . . . ≥ 0

...
. . .

...
...

...
...

0 . . . 0 > 0 ≥ 0 . . . ≥ 0

⎞
⎟⎟⎟⎟⎠ .(16)

On the first m coordinates this is an order-isomorphism: every coordinate is mul-
tiplied by a positive number. On the last k coordinates the map is an arbitrary
order-preserving map. By permutating the coordinates, we may complicate the
map.

All in all, we see that a homomorphism (Q,≤)m → (Q,≤)M is an order-embed-
ding if the canonical basis elements of the domain have only nonnegative coordinates
in the codomain and every basis element has a positive coordinate, which coordinate
is zero for the other basis elements.

We show that the inclusion of QDn,F into QDn+1,F ′ is an order-embedding of the
above type using the direct product decomposition (14). To this end, we express the
generators of QDn,F as linear combination of the generators of QDn+1,F ′ (which
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in particular shows that QDn,F is really a subgroup of QDn+1,F ′):

xhy = xh · y0 + s2
nxh · y1 y ∈ n2, h ∈ F(17)

xhc
(n)
i = sntnxhc

(n+1)
i +

∑
t∈Fi
y∈n2

n
(i)
t,yxht · y0 i ≤ n, h ∈ F(18)

vn,F = snvn+1,F ′ +
∑
h∈F ′

snln+1h
−1xhc

(n+1)
n+1 +

∑
h∈F ′\F

i≤n

snln+1h
−1xhc

(n+1)
i(19)

+
∑
h∈F
y∈n2

kn(s2
n − 1)h−1xh · y0 +

∑
h∈F ′\F

y∈n+12

kns2
nh−1xhy

−
∑

h∈F,i≤n
t∈Fi,y∈n2

lnn
(i)
t,yh−1xht · y0.

These are easy consequences of the formulas under (iii) of Proposition 6.1 and the
definition (15) of vn,F . All the coordinates of the above generators are obviously
nonnegative except for the coefficient of xhy0 of vn,F for y ∈ n2 and h ∈ F ′. So
let us consider the coefficient of h−1xhy0 in Equation (19): from the second row
comes kn(s2

n − 1) or kns2
n depending on whether h is contained in F . From the last

row −lnn
(i)
t,yt comes for all t ∈ Fi and i ≤ n for which ht−1 lies in F . All in all, the

coefficient is at least

kn(s2
n − 1) −

∑
t∈Fi,i≤n

lnn
(i)
t,yt ≥ kn(s2

n − 1) −
∑

t∈Fi,i≤n

lnsntnt ≥ 0(20)

by (iv)(c) from Proposition 6.1.
Now we check that each of the above generators of QDn,F has a positive coordi-

nate in QDn+1,F ′ which coordinate is zero for the other generators. This coordinate
is xhy1 for xhy where h ∈ F and y ∈ n2; it is xhc

(n+1)
i for xhc

(n)
i where h ∈ F and

i ≤ n; finally, it is vn+1,F ′ for vn,F .
Thus we have proved that the inclusions between the QDn,F are order-embed-

dings. �
Now we return to our second lemma, namely that a cofinal subset of the Dn,F

are order-isomorphic to a finite power of Z.

Proof of Lemma 6.4. If n is a natural number and F is a finite subset of H such
that for all h ∈ H the rational numbers knh−1 and lnh−1 are actually integers then
the coefficients of the xhy in (15) are integers and hence

(Dn,F ,≤) := (Zvn,F ,≤) ×
∏
h∈F
y∈n2

(Zxhy,≤) ×
n∏

i=1
h∈F

(Zxhc
(n)
i ,≤).(21)

We show that such Dn,F form a cofinal system i.e., every Dn,F is contained in
a Dm,F ′ which has the above property. This is easy once we know that Dn,F is
contained in Dm,F ′ if m ≥ n and F ′ contains F and FFi for i ≤ n. This last
statement follows form the fact that xhc

(n)
i is contained in Dm,F if m ≥ n and h

and hFi are contained in F . This fact can be proved by induction on m − n: the
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case m = n is obvious because h ∈ F . If m > n then xhc
(n+1)
i is contained in Dm,F

by induction and xh(c(n)
i − sntnc

(n+1)
i ) is also contained in Dm,F by Equation (6)

since hFi is contained in F . �

7. Automorphisms of dimension groups

In this section we prove that H is the full group of order-preserving automor-
phisms of D constructed in Proposition 6.2, which finishes the proof of our main
theorem. This is a special case of the following proposition, which we are going to
prove in this section. Note that D/Qu = G has the required automorphism group.

Proposition 7.1. Let (D,≤, u) be a dimension group of rank at least 3 on which
a group H acts by order-preserving automorphisms (the order unit need not be
preserved). Let us suppose that the maximal divisible subgroup of D is Qu. Fur-
thermore, let us assume that

Aut(D/Qu) = ±H = Z/2Z(−1) × H,(22)

i.e., the automorphisms of D/Qu are those induced by H and their negatives. Then
Aut(D,≤) = H. In other words, all the order-preserving automorphisms of D are
those coming from H.

We base our proof on the comparison of multiples of u with elements of D. This
can be described by some rational numbers:

Definition 7.2. Let (D,≤, u) be a dimension group. Then for every element d
of D we denote by r(d) the least rational number q such that qu ≥ d. Similarly,
let l(d) denote the greatest rational number q with the property qu ≤ d. In other
words, for all rational numbers q:

qu ≥ d ⇐⇒ q ≥ r(d),(23)

qu ≤ d ⇐⇒ q ≤ l(d).(24)

We collect the main (and mostly obvious) properties of the functions r and l in
the following lemma:

Lemma 7.3. Let (D,≤, u) be a dimension group and d and element of it. Then
the following hold:

(a) The numbers r(d) and l(d) exist.
(b) We have l(d) = r(d) = 0 if and only if d = 0.
(c) r(−d) = −l(d) and l(−d) = −r(d).
(d) For all rational numbers s,

r(d + su) = r(d) + s,(25)

l(d + su) = l(d) + s.(26)

(e) If Φ is an order-preserving automorphism of D and Φ(u) = qu then

l(Φ(d)) = ql(d),(27)

r(Φ(d)) = qr(d).(28)

(f) If D has rank at least 3, the function d �→ l(d) + r(d) from D to the additive
group of rational numbers is not additive. (It is additive if the rank of D is
at most 2.)
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Proof. To prove the existence of l(d) and r(d), we may restrict ourselves to an
order-subgroup (Z,≤)k containing d and u. Such a subgroup exists by the definition
of dimension group. Clearly, u = (n1, . . . , nk) remains an order unit in the subgroup
i.e., its coordinates ni are positive. For every element (m1, . . . , mk) of (Z,≤)k the
functions r and l are clearly well-defined and have the values

r(m1, . . . , mk) = max
1≤i≤k

mi

ni
,(29)

l(m1, . . . , mk) = min
1≤i≤k

mi

ni
.(30)

These formulas also show that r(d) = l(d) = 0 if and only if d = 0. If D has rank at
least 3 then there is an order-subgroup (Z,≤)k of D containing u with k ≥ 3. We
can deduce from the above formulas that r + l is not additive even when restricted
to such a subgroup. For example, for the elements ei whose ith coordinate is 1 and
all the other coordinates 0, we have r(e1) = r(e2) = r(e1 + e2) = 1 and l(e1) =
l(e2) = l(e1 + e2) = 0, and so r(e1 + e2) + l(e1 + e2) 	= r(e1) + l(e1) + r(e2) + l(e2).

The remaining items (c), (d) and (e) are obvious. �

Now we start proving the proposition. First we split the order-preserving auto-
morphism group of D.

Lemma 7.4. With the hypothesis of Proposition 7.1, let

Γ: Aut(D,≤) → Aut(D/Qu)

be the canonical map, i.e., Γ(f) is the automorphism induced by f on the quotient.
Then there is a semidirect product

Aut(D,≤) = Γ−1(Z/2Z) � H,(31)

where Z/2Z is generated by −1.

Proof. Note that Qu is invariant under automorphisms since it is the largest di-
visible subgroup so Γ is well-defined. Note that the composition

H −→ Aut(D,≤) Γ−→ Aut(D/Qu) = Z/2Z × H −→ H(32)

is the identity, which implies the claimed decomposition as a semidirect product.
Here the first arrow is the inclusion of H given by the H-action on D and the last
arrow is projection onto the second coordinate. �

Now we show that the first term of the semidirect product is trivial, which
finishes the proof.

To this end, we choose an order-preserving automorphism Φ ∈ Γ−1(Z/2Z) and
show that it is the identity. By the choice of Φ, there is a number ε = ±1 such that
the image of Φ − ε is contained in Qu. Moreover, since Qu is invariant there is a
positive rational number q such that Φ(u) = qu.

Our first task is to show that q = 1. Therefore we select a nonzero element d
in the kernel of Φ − ε. Since Φ − ε maps to a 1-rank group Qu and the rank of D
is greater than 1, such an element d exists. Now we use Lemma 7.3 (e). If ε = 1,
we obtain r(d) = qr(d) and l(d) = ql(d) and thus q = 1 since r(d) and l(d) are not
both zero. If ε = −1 then r(d) = −ql(d) and l(d) = −qr(d). Again, since at least
one of r(d) and l(d) is not zero and q is positive, q must be 1.
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So far we know that Φ(u) = u. Let d be an arbitrary element of D. Then there
is a rational number s depending on d such that Φ(d) = εd + su. Our next task is
to determine s.

We apply Lemma 7.3 again, but this time item (d) of it. If ε = 1 then r(d) =
r(d) + s and l(d) = l(d) + s. We conclude that s = 0 for all d. In other words, Φ
is the identity. If ε = −1 then we have r(d) = s − l(d) and l(d) = s − r(d). Thus
s = r(d) + l(d) for all d, which means that Φ(d) = d− (r(d) + l(d))u. So r + l is an
additive function contradicting Lemma 7.3 (f).

Hence we have proved that Φ = 1 and this finishes the proof.
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