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Abstract. Directable automata, known also as synchronizable, cofinal
and reset automata, are a significant type of automata with very interest-
ing algebraic properties and important applications in various branches of
Computer Science. They have been a subject of interest of many eminent
authors since 1964, when they were introduced by J. Cerny in [4], whereas
various specializations and generalizations of directable automata have ap-
peared recently, in a paper by T. Petkovi¢, M. Ciri¢ and S. Bogdanovi¢
[7].

The purpose of this paper is to study directable, monogenically and
generalized directable automata from another point of view, using the no-
tions of a neck and a local neck that we introduce here.
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1. Introduction and preliminaries

Directable automata, known also as synchronizable, cofinal and reset au-
tomata, are a significant type of automata with very interesting algebraic prop-
erties and important applications in various branches of Computer Science (syn-
chronization of binary messages, symbolic dynamics, verification of software,
etc.). They have been a subject of interest of many eminent authors since 1964,
when they were introduced by J. Cerny in [4], although some of their special
types were investigated even several years earlier.

Various specializations and generalizations of directable automata have ap-
peared recently. T. Petkovi¢, M. Ciri¢ and S. Bogdanovié in [7] introduced
and studied trap-directable, trapped, monogenically, locally and generalized di-
rectable automata, as well as other related kinds of automata. These automata
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have been also studied by Z. Popovi¢, S. Bogdanovié¢, T. Petkovié¢ and M. Ciri¢
in [8] and [9]. We also refer to the survey paper by S. Bogdanovié, B. Imreh, M.
Ciri¢ and T. Petkovi¢ [2], devoted to directable automata, their generalizations
and specializations.

The purpose of this paper is to study directable, monogenically and general-
ized directable automata from another point of view, using the notions of a neck
and a local neck that we introduce here. We describe basic properties of necks
and local necks of automata, introduce some new types of automata, such as
strongly directable and monogenically strongly directable automata, and give
new structural characterizations of directable, monogenically and generalized
directable automata.

Automata considered throughout this paper will be automata without out-
puts in the sense of the definition from the book [5] by F. Gécseg and I. Pedk. It
is well known that automata without outputs, with the input alphabet X, can
be considered as unary algebras of a type indexed by X, so the notions such as
a congruence, homomorphism, generating set etc., as well as subautomaton, will
have their usual algebraic meanings (see, for example, [3]). The state set and
the input set of an automaton are not necessarily finite. In order to simplify
notation, an automaton with the state set A is also denoted by the same letter
A. For any considered automaton A, its input alphabet is denoted by X, and
the free monoid over X, the input monoid of A, is denoted by X*. Under the
action of an input word u € X*, the automaton A goes from a state a into the
state denoted by au.

A state a € A is reversible if for every word v € X* there exists a word
u € X* such that avu = a, and the set of all reversible states of A, called the
reversible part of A, is denoted by R(A). If it is non-empty, R(A) is a subau-
tomaton of A. An automaton A is reversible if all of its states are reversible. If
for every a,b € A there exists u € X* such that b = au, then the automaton A
is strongly connected. Equivalently, A is strongly connected if it has no proper
subautomata. A state a € A is called a trap of A if au = a for every word
ue X*.

For any non-empty H C A, the subautomaton of A generated by H, i.e.,
the least subautomaton A containing H, is denoted by (H). In the case H =
{a}, (H) is called a monogenic subautomaton of A generated by a, and we
write just (a) instead of ({a}). If H = {a1,...,a,} is a finite set, then (H)
is a finitely generated subautomaton of A, and we write {a,...,a,) instead of
({a1,...,an}). It is obvious that (H) = {aw|a € Hyw € X*}, (a) = {au|u €
X*} and {(a1,...,an) = {a1) U...U (ay,). The least non-empty subautomaton
of an automaton A, if it exists, is called the kernel of A, and in this case, it is
the unique strongly connected subautomaton of A.

Let B be a subautomaton of an automaton A. The Rees congruence on A
determined by B is a congruence relation ¢, on A defined by: For a,b € A
we say that (a,b) € o if and only if either a = b or a,b € B holds. The
factor automaton A/ 05 is usually denoted by A/B, and it is called a Rees
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factor automaton of A with respect to B. We say that an automaton A is
an extension of an automaton B by an automaton C' (with a trap) if B is a
subautomaton of A and the Rees factor automaton A/B is isomorphic to C.
Clearly, the automaton C can be viewed as an automaton obtained from A by
contraction of B into a single state. An automaton A is a direct sum of its
subautomata Aq, o € Y, if A =J,cy Aa and AyNAg = @, for every o, 5 € Y
such that o # .

2. Directable automata and their necks

In this section we describe some elementary properties of directable au-
tomata and their necks. We start with definitions.

Let A be an automaton. A state a € A is called a neck of A if there exists
u € X* such that bu = a, for every b € A. In that case a is also said to be
a u-neck of A, the word wu is called a directing word of A, and A is called a
directable automaton. The set of all necks of A is denoted by N(A), and the set
of all directing words of A is denoted by DW(A). If A has a single neck, then
it is a trap of A and A is called a trap-directable automaton.

The next three lemmas describe basic properties of the sets of necks of
directable automata.

Lemma 1. Let A be an automaton. If N(A) # &, then N(A) is a subau-
tomaton of A.

Proof. Let a € N(A) and v € X*. Assume that a is a u-neck of A, for some
u € X*. Then for every b € A we have that buv = av, which means that av is
a uv-neck of A, and hence, av € N(A). Therefore, N(A) is a subautomaton of
A. d

Lemma 2. Let A be a directable automaton. Then N(A) is the kernel of A
and N(A) = R(A).

Proof. Let a € N(A) and b € A. Then a = bu, for every u € DW(A), and
hence a € (b). Therefore, N(A) C (b), for every b € A. This means that N(A)
is a subautomaton contained in every other subautomaton of A, that is, N(A)
is the kernel of A.

On the other hand, we have that R(A) is the union of all minimal sub-
automata of A, and since A has a unique minimal subautomaton N(A), we
conclude that R(A) = N(A). O

Lemma 3. Let B be a subautomaton of a directable automaton A. Then B
is also directable and N(B) = N(A).

Proof. By Theorem 9 of [7], the class of directable automata is closed under
subautomata. Further, by Lemma 2 we have that N(A) is the kernel of A, so
N(A) C N(B) C B. On the other hand, N(B) is the kernel of B, so N(A) C B
implies N(B) C N(A). Thus, N(B) = N(A). O
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We define an automaton A to be strongly directable if A = N(A). These
automata can be characterized as follows:

Theorem 1. An automaton A is strongly directable if and only if it is
strongly connected and directable.

Proof. Let A be a strongly directable automaton. It is clear that it is directable.
On the other hand, let a,b € A. Since b € N(A), it follows that there exists
u € X* such that au = b. Therefore, A is strongly connected.

Conversely, let A be strongly connected and directable. Then N(A) # @ and
by Lemma 1, N(A) is a subautomaton of A. But since A is strongly connected,
it follows that A = N(A). Thus, A is strongly directable. O

Now we can characterize directable automata in terms of strongly directable
and trap-directable automata.

Theorem 2. An automaton A is directable if and only if it is an extension
of a strongly directable automaton B by a trap-directable automaton C'.
In that case we have:

(a) N(A) = B;
(b) DW(C)- DW(B) C DW(A) C DW(C) N DW(B).

Proof. Let A be a directable automaton. Then N(A) is non-empty, and by
Lemma 1, it is a subautomaton of A. The Rees factor automaton A/N(A) is
also directable, since it is a homomorphic image of a directable automaton [7].
On the other hand, every Rees factor automaton has a trap. Therefore, A/N(A)
is a trap-directable automaton, and hence, A is an extension of a strongly direc-
table automaton N (A) by a trap-directable automaton A/N(A).

Conversely, let A be an extension of a strongly directable automaton B
by a trap-directable automaton C. Let u € DW(C) and v € DW(B). Then
for all a,b € A we have that au,bu € B, whence auv = buv. Thus, uwv €
DW (A), and hence, A is a directable automaton. We have also proved that
DW(C)- DW(B) C DW(A). It is clear that DW(A) C DW(C)n DW(B).
Thus, (b) holds.

By Lemma 2, N(A) is the kernel of A, so N(A) C B. Conversely, assume
that b € B. Bearing in mind that B is strongly directable, we conclude that
there exists v € DW (B) such that cv = b holds for each ¢ € B. Hence, for every
a € Aand u € DW(C), au € B and auv = (au)v = b. Therefore, b € N(A),
and hence, we have proved that N(4) = B. O

3. Local necks of automata

We define a state a of an automaton A to be a local neck of A if it is a neck
of some directable subautomaton of A. The set of all local necks of A is denoted
by LN(A).

The next three lemmas describe basic properties of local necks.
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Lemma 4. Let a be a state of an automaton A. Then the following condi-
tions are equivalent:

(i) a is a local neck;
(i) (a) is a strongly directable automaton;

(iii) there exists u € X* such that for every v € X*, avu = a.

Proof. (i)=(ii). Let a be a local neck of A. Then there exists a directable
subautomaton B of A such that a € N(B), and by the proof of Theorem 2,
N(B) is a strongly directable automaton. We also have that (a) C N(B), and
since N(B) is strongly connected, then (a) = N(B), so we have that (a) is a
strongly directable automaton.

(ii)=-(iii). Let {(a) be a strongly directable automaton. Then a is a u-neck of
(a) for some u € X*, and for every v € X* we have av € (a), implying avu = a.

(iii)=-(i). The condition (iii) clearly means that a is a u-neck of (a), and
hence, it is a local neck of A. O

Lemma 5. Let A be an automaton. If LN(A) # &, then LN(A) is a
subautomaton of A.

Proof. Let a € LN(A) and z € X. By Lemma 4, the monogenic subautomaton
(a) of A is strongly directable. Moreover, (az) C (a), and since (a) is strongly
connected, we have (azx) = (a), so az is also a local neck of A, i.e., ax € LN(A).
Hence, LN (A) is a subautomaton of A. O

Lemma 6. Let B be a subautomaton of an automaton A. Then
LN(B)=LN(A)NB.

Proof. Let a € LN(B). Then there exists a subautomaton B’ of B such that
a € N(B'). But B’ is also a subautomaton of A, so a € LN(A). Therefore,
LN(B) CLN(A)NB.

Conversely, let @ € LN(A) N B. Then a € N(A'), for some directable
subautomaton A’ of A. Let B = BN A’. Then B’ is a subautomaton of B,
and by Lemma 3 we have that B’ is directable and N(B’) = N(A'). By this it
follows that a € N(B’), which means that « € LN(B). Thus, we have proved
that LN(A)N B C LN(B). O

Following the terminology from [1] (which is slightly different from the one
used in [7], [2] and [9]), an automaton A is called monogenically directable if ev-
ery monogenic subautomaton of A is directable, and similarly, it is called mono-
genically strongly directable if every monogenic subautomaton of A is strongly
directable. On the other hand, A is defined to be locally directable if every
finitely generated subautomaton of A is directable.

Theorem 3. The following conditions on an automaton A are equivalent:
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(i) Every state of A is a local neck;

(ii) A is monogenically strongly directable;

)

)
(iii) A is monogenically directable and reversible;
(iv) A is a direct sum of strongly directable automata;
)

(v) (Va e A)(Bue X*)(Vv € X*) avu = a.

Proof. ()=(ii). If every state a € A is a local neck of A, then by Lemma 4
we have that for every a € A the monogenic subautomaton (a) of A is strongly
directable. Hence, A is monogenically strongly directable.

(ii)=-(iii). If A is monogenically strongly directable, then it is clear that it is
monogenically directable. On the other hand, every monogenic subautomaton
of A is strongly connected, whence it follows that A is reversible.

(iii)=-(iv). As was proved by Thierrin in [10], if A is reversible then it is
a direct sum of strongly connected automata A,, a € Y. Let « € Y and
a € A,. Then (a) = A,, since A, is strongly connected, and by the monogenic
directability of A we have that A, = (a) is directable. Therefore, A, is strongly
directable, for any o € Y.

(iv)=(i). Let A be a direct sum of strongly directable automata A,, a € Y.
Then for each state a € A there exists o € Y such that a € A,, that is
a € Ay = N(A,), so ais a local neck of A.

(i)<(v). This is an immediate consequence of Lemma 4. O

Let us observe that the word u appearing in (v) of Theorem 3, as well as in
(iii) of Lemma 4, is a directing word of the monogenic subautomaton (a), and
it depends on a. In the general case, different monogenic subautomata of A do
not necessarily have a common directing word. Now we will consider automata
whose all monogenic subautomata have common directing words.

Let A be an arbitrary automaton. We define a word u € X* to be a local
directing word of A if u is a directing word of every monogenic subautomaton
of A, i.e., if u € DW({(a)), for every a € A. The set of all local directing words
of A will be denoted by LDW (A). In other words,

(1) LDW(A) = (1) DW((a)).
a€A

If the set LDW (A) is non-empty, then A is said to be a uniformly monogeni-
cally directable automaton. Thus, A is a uniformly monogenically directable
automaton if all monogenic subautomata of A are directable and have at least
one common directing word. Similarly, A will be called a uniformly mono-
genically strongly directable automaton if all monogenic subautomata of A are
strongly directable and have at least one common directing word.

Uniformly monogenically directable automata will be considered in the next
section. Here we give a characterization of uniformly monogenically strongly
directable automata.
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Theorem 4. The following conditions on an automaton A are equivalent:

(i) A is uniformly monogenically strongly directable;
(ii) (Fu € X*)(Va € A)(Yv € X*) avu = a.

Proof. This is an immediate consequence of Theorem 3. O

Finally, note that in the case of finite automata there are no differences
between monogenically and uniformly monogenically strongly directable au-
tomata, as well as between monogenically and uniformly monogenically di-
rectable automata. This is an immediate consequence of (1) and the fact that
the intersection of every finite family of ideals of a semigroup is non-empty,
which does not hold for infinite families.

4. Monogenically and generalized directable automata

Let us introduce a relation 7 on an arbitrary automaton A as follows:
anb < N((a) = N((b).

This relation is clearly an equivalence relation. We prove the following result,
which describes its classes.

Theorem 5. Let B be an arbitrary n-class of an automaton A. Then one
of the following conditions hold:

(a) B={acA|N(w)=2};
(b) B is a locally directable subautomaton of A.

Proof. Suppose that (a) does not hold. Then there exists a strongly directable
subautomaton N of A such that N({a)) = N, for every a € B.

Consider an arbitrary a € B. Then N({(a)) # &, which means that (a) is
a directable automaton. Moreover, for every x € X, by Lemma 3 it follows
that (ax) is directable and N({az)) = N({a)), that is ax € B. Therefore, B
is a subautomaton of A. It remains to prove that B is a locally directable
automaton.

Let ay,as,...,a, € B and d € N. For every i € [1,n], N = N({(a;)), so
there exists w; € DW({a;)) such that aw; = d, for every a € (a;). Now set
w = wyws - - - wy, and consider arbitrary ¢ € [1,n] and a € (a;). Since DW ({a;))
is an ideal of X*, then w € DW ({a;)), so

aw = (aw1 - - Wi—1 )WiWi4p1 - Wy,
=dw;y1 - Wy since aw; -+ - w;—1 € {(a;) and w; € DW ({a;))
=d since d € N = N({aj+1)) = --- = N({an))-
Since (a1,as,...,a,) = Ui ,{(a;), we conclude that w € DW ({a1,...,an)).

Thus, (a1, a9, ...,a,) is a directable automaton with N({(a1,as,...,a,)) = N,
so we have proved that B is a locally directable automaton.
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Let A and B be automata. By a relation £ from A into B, denoted by
¢ : A — B, we mean a mapping from A into the power automaton P(B). The
graph of the relation £, in notation graph(), is a subset of A x B defined by
graph(§) = {(a7 b) | be af}. We say that £ is a relation from A onto B, or that
it is a surjective relation, if for every b € B there exists a € A such that b € af.
A relational morphism from A into B is defined to be a relation £ : A — B
having the following properties:

(i) a& # @, for every a € A;
(ii) (a&)z C (ax), for every a € A.

Now we are ready to state and prove a theorem which characterizes mono-
genicaly directable automata in a different way than it was done in [7].

Theorem 6. The following conditions on an automaton A are equivalent:

(i) A is a monogenically directable automaton;
(ii) A is a direct sum of locally directable automata;

(iii) the mapping £ : a — N({a)) is a relational morphism of A onto LN(A).

Proof. (i)=(ii). By the monogenic directability of A it follows that N({(a)) # @,
for every a € A, and by Theorem 5 we have that 7 is a direct sum congruence
on A and every n-class is a locally directable automaton.

(ii)=(i). This implication is obvious.

(i)=(iii). For an arbitrary a € A we have that (a) is a directable automaton,
s0 a€ # &. Moreover, if b € LN(A) then b € b€, so £ is a relation from A onto
LN(A).

Let a € A and x € X. Then (a) is directable, and by Lemma 3, (ax) is also
directable and N ({az)) = N({a)), so (az)¢ = a&. Furthermore,

(a§)z = N((a))x € N((a)) = N((az)) = (az)E,

so we have proved that & is a relational morphism of A onto B.

(iii)=(i). By the fact that a # @, for every a € A, it follows that any
monogenic subautomaton of A is directable, i.e., that A is monogenically di-
rectable. O

In the general case, we have that at most one n-class consists of all states
satisfying N ({a)) = @ (if such states exist at all), while all remaining classes (if
they exist) are subautomata of A and their union is the largest monogenically
directable subautomaton of A. Therefore, every automaton having at least
one local neck has a monogenically directable part. An interesting example
of automata having both of two types of 7-classes considered in Theorem 5
are generalized directable automata, which will be discussed at the end of this
section.
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In the previous section we defined uniformly monogenically directable au-
tomata as automata whose all monogenic subautomata are directable and have
the same directing word. These automata have been first studied and charac-
terized by T. Petkovi¢, M. Ciri¢ and S. Bogdanovi¢ in [7]. Here we characterize
them in another way.

Theorem 7. The following conditions on an automaton A are equivalent:

(i) A is uniformly monogenically directable;
(i1) A is a direct sum of directable automata with a common directing word;

(iii) A is an extension of a uniformly monogenically strongly directable au-
tomaton B by a trap-directable automaton C and there exists a relational
morphism & of A onto B such that

aw = bw,
for everya € A, b € a§ and w € DW(C) - LDW (B).

Proof. (i)« (ii). This was proved in [7].

(i)=(iii). Let A be a uniformly monogenically directable automaton, i.e.,
assume that there exists a word uw € X* such that for every state a € A,
the monogenic subautomaton (a) of A is directable with v € DW ({a)). Set
B = LN(A). Then B = LN(A) = |U{N({a))|a € A}, and by Lemma 1, B is
a subautomaton of A. On the other hand, by Lemma 4 and Theorem 3 we
have that B is monogenically strongly directable. Finally, it is clear that v is a
common directing word of all monogenic subautomata of B. Therefore, B is a
uniformly monogenically strongly directable automaton.

Next, consider an arbitrary state a € A. Then for every b € N({(a)) we have
that au = bu, since v € DW({a)), and b € B implies au = bu € B. Therefore,
C = A/B is a trap-directable automaton with v € DW(C).

Consider again the relational morphism ¢ defined by a{ = N({a)), for every
a € A. Let w € DW(C)- LDW(B), let a € A and b € a§ = N({(a)). Then
w = wuv, for some v € DW(C) and v € LDW(B), so it follows that au €
Bn{a) = N({(a)) and bu € N({(a)). Therefore, auv = buv, since v € LDW(B),
i.e., aw = bw, which was to be proved.

(iii)=-(ii). Suppose that (iii) holds. By Theorem 6, B is a direct sum of
locally directable automata B, a € Y. First we prove that for every a € A there
exists a unique o € Y such that a§ C B,. Let b,0' € a&, b # b, and let b € B,
and b € By, for some a, o’ € Y. For an arbitrary w € DW(C) - LDW(B),
by the hypothesis we have that bw = aw = b'w. But bw € B, and b'w € B,
whence it follows that o = o’. Thus, a§ C B,.

Fora €Y, set Ay, = {a € A|a& C B,}. Evidently, A, N Ag = &, whenever
a# B, and A = [J{Ax|a € Y}. Let @ € Y. First we prove that A, is a
subautomaton of A. Indeed, let a € A, and z € X. Suppose that axz € Ag, for
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some § €Y, ie., (ax)§ C Bg. Then (af)z C (ax)é C Bg and (af)z C Byx C
B, so we conclude that « = 8. Thus, ax € A,, so we have proved that A, is
a subautomaton of A.

Next we prove that for every w € DW(C) - LDW(B), A, is a directable
automaton with w € DW(A,). Let a,a’ € A,, b € a&, b € d'¢, and let
w = wv, where u € DW(C') and v € LDW (B). By the hypothesis we have that
aw = bw and a’w = bw. On the other hand, b, € B,, so bu,b'u € B,, and
since v € DW(B,,), then bw = (bu)v = (b'u)v = Y'w. Hence, aw = a’w, which
was to be proved. O

An automaton A is said to be generalized directable if there exists a word
u € X* such that auvu = au, for every state a € A and every word v € X*.
In this case w is called a generalized directing word of A, and the set of all
generalized directing words of A is denoted by GDW (A).

Generalized directable automata were introduced by T. Petkovié, M. Ciri¢
and S. Bogdanovié in [7], where it was proved that an automaton is generalized
directable if and only if it is an extension of a uniformly monogenically directable
automaton by a trap-directable automaton.

A more precise structural characterization of these automata is given by the
following theorem.

Theorem 8. An automaton A is generalized directable if and only if it is
an extension of a uniformly monogenically strongly directable automaton B by
a trap-directable automaton C.

In that case we have

(a) LN(A) = B;
(b) DW(C) - LDW(B) € GDW(A) C DW(C)n LDW (B).

Proof. Let A be a generalized directable automaton. Set
B={au|a € A, ue GDW(A)}.

We have that B is a subautomaton of A, since GDW (A) is an ideal of X*. We
shall prove that B is a uniformly monogenically strongly directable automaton.
Let b € B, i.e., assume that b = au, for some a € A and u € GDW(A). Then
for every v € X* we have that bvu = auvu = au = b, and by Lemma 4, (b) is a
strongly directable automaton and v € DW((b)). Therefore, B is a uniformly
monogenically strongly directable automaton and GDW(A) C LDW(B). On
the other hand, for each a € A we have that au € B, for every u € GDW (A),
which implies that C = A/B is a trap-directable automaton with GDW (A) C
DW (C). This fact, taken together with GDW (A) C LDW (B), proves (b).
Conversely, let A be an extension of a uniformly monogenically strongly
directable automaton B by a trap-directable automaton C. Let u € DW(C)
and v € LDW(B). For every a € A we have au € B, so {au) is a strongly
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directable automaton with v € DW ({(au)). Now, for an arbitrary w € X*,
au, auvwy € (au) and v € DW({au)) yield auv = auvwuv. Therefore, we
have proved that A is a generalized directable automaton with uv € GDW (4),
and hence, DW(C) - LDW(B) C GDW (A).

Further, B = LN(B) C LN(A), by Lemma 6. Conversely, if a € LN(A),
then by Lemma 4 it follows that there exists u € X* such that avu = a, for
every v € X*, and if we assume that v € DW(C'), then av € B, so a = avu € B.
Therefore, LN(A) C B, and hence, we have proved (a). O
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