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Abstract

Due to the complexity of Einstein’s equations, it is often natural to study a question of
interest in the framework of a restricted class of solutions. One way to impose a restriction is
to consider solutions satisfying a given symmetry condition. There are many possible choices,
but the present article is concerned with one particular choice, which we shall refer to as
Gowdy symmetry. We begin by explaining the origin and meaning of this symmetry type,
which has been used as a simplifying assumption in various contexts, some of which we shall
mention. Nevertheless, the subject of interest here is strong cosmic censorship. Consequently,
after having described what the Gowdy class of spacetimes is, we describe, as seen from the
perspective of a mathematician, what is meant by strong cosmic censorship. The existing
results on cosmic censorship are based on a detailed analysis of the asymptotic behavior of
solutions. This analysis is in part motivated by conjectures, such as the BKL conjecture, which
we shall therefore briefly describe. However, the emphasis of the article is on the mathematical
analysis of the asymptotics, due to its central importance in the proof and in the hope that it
might be of relevance more generally. The article ends with a description of the results that
have been obtained concerning strong cosmic censorship in the class of Gowdy spacetimes.
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Cosmic Censorship for Gowdy Spacetimes 7

1 Introduction and Outline

Gowdy spacetimes have been used as a toy model in the context of, e.g., gravitational waves,
quantum gravity, numerical relativity and mathematical cosmology. However, here we shall only
be concerned with the question of strong cosmic censorship. In other words, we are interested in
a mathematical problem. Nevertheless, numerical relativity has played an important role in the
development of the subject, and as a consequence, we shall mention some of the key numerical
observations.

1.1 Outline, basic material

Definition of the Gowdy class. Since the present article is concerned with cosmic censorship
in Gowdy spacetimes, a natural starting point is to define the Gowdy class. This is the subject
of Section 2. However, in order to obtain a good understanding, it is of interest to put this
symmetry class into perspective. Therefore, in Section 2.1, we discuss the role of symmetry in
cosmology. In particular, we mention different ways of imposing symmetry and describe the place
the Gowdy spacetimes occupy in the symmetry hierarchy. In Section 2.2, we then define the
Gowdy spacetimes. The essential condition is that there be a two-dimensional isometry group
with two-dimensional spacelike orbits. However, Gowdy makes some additional restrictions, which
we explain in Section 2.2.1. We end the section by defining an important subclass called polarized
Gowdy; see Section 2.4.

The existence of foliations. After the Gowdy class has been defined, a natural first question
to ask is if there are preferred foliations. For example, is there a CMC foliation, and, if so, does
it cover the maximal globally-hyperbolic development (MGHD)? We address such questions in
Section 3.

Formulation of the strong cosmic-censorship conjecture. In Section 4, we turn to the
formulation of the strong cosmic-censorship conjecture. We shall here phrase it in terms of the
initial value problem. Therefore, in Section 4.1, we define the initial value problem for Einstein’s
equations. First, we give an intuitive motivation for some aspects of the formulation. We then
provide a formal definition. After having phrased the problem, we mention the standard results
concerning the existence of developments. The emphasis is on the existence of the MGHD. In
Section 4.2, we then state the strong cosmic censorship conjecture. Two words that require a
detailed definition occur in the formulation: generic and inextendible. There are several possible
technical definitions of these concepts, and we provide some examples. We end the section by
formulating a related conjecture concerning curvature blow up in Section 4.3 and by mentioning
some pathologies that can occur in Gowdy in Section 4.4.

The BKL conjecture. The results that exist concerning strong cosmic censorship in Gowdy
spacetimes have been obtained through a detailed analysis of the asymptotic behavior of solutions.
One point of view that has played an important role in the analysis is the circle of ideas often
referred to as the “BKL conjecture” (after Belinskii, Khalatnikov, and Lifshitz). For this reason,
in Section 5, we give a brief description of these ideas as well as some recent developments. A
related topic is that of asymptotic expansions, which we discuss in Section 5.2. We also describe
the Fuchsian methods that can be used to prove that there are solutions with a prescribed type of
asymptotic behavior.

The equations. In Section 6, we write down Einstein’s equations in terms of the components
of a T 3-Gowdy metric. It is important to note that the essential equations have the structure of a
wave-map with hyperbolic space as a target. We describe this structure and mention some of its
consequences.
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8 Hans Ringström

1.2 Outline, the asymptotics in the direction towards the singularity

Asymptotic behavior in the direction of the singularity in the polarized case. The
two Gowdy cases in which results concerning strong cosmic censorship exist are the polarized case
and the general T 3-case. In Section 7, we focus on the polarized case. In particular, on finding
asymptotic expansions of the metric components in the direction towards the singularity. One
function appearing in the expansions has a special importance. From the wave-map point of view,
it has a natural interpretation as the rate at which the solution tends to the boundary of hyperbolic
space; see Section 7.4. As a consequence, it is referred to as the asymptotic velocity. Beyond having
a natural interpretation, the asymptotic velocity has an additional important property. In fact, it
can be used as a criterion for curvature blow up along causal curves going into the singularity; see
Section 7.5.

Existence of solutions with specified asymptotics, Fuchsian methods. Due to the
central importance of the asymptotic expansions in the polarized case, it is of interest to obtain
expansions in the general T 3-case. One way to proceed is to try to construct solutions with
prescribed asymptotics. This is the subject of Section 8. Again, it is possible to define the concept
of an asymptotic velocity. It has the same geometric interpretation and importance as in the
polarized case. The results on existence of expansions depend on a restriction of the asymptotic
velocity. We describe the results and motivate the restriction.

Spikes. The numerical studies indicate that for most spatial points, the asymptotic expansions
presented in Section 8 constitute a good description of the asymptotics. However, they also indicate
that there are spatial points where the behavior is very different. Due to the visual impression
of plots of the solutions in the neighborhood of the exceptional points, the corresponding features
have been referred to as “spikes”. In Section 9, we describe analytic constructions of solutions with
spikes.

Existence of an asymptotic velocity in the general T3-Gowdy case. The analysis
in the polarized case and the construction of solutions with prescribed asymptotics indicate the
importance of the asymptotic velocity. Consequently, it is of interest to prove that the asymptotic
velocity exists in general. This is the subject of Section 10. We also demonstrate that the asymp-
totic velocity can be viewed as a two-dimensional object in the disc model. Finally, we illustrate
that it can be used as a criterion for the existence of expansions.

Definition of the generic set in the general T3-Gowdy case. As a preparation for the
formulation of the theorem verifying that strong cosmic censorship holds in T 3-Gowdy, we define
the generic set of initial data in Section 11.

1.3 Outline, the expanding direction

The asymptotic behavior in the expanding direction of polarized Gowdy. Only in the
case of T 3-topology is there an expanding direction. Consequently, it is only necessary to discuss
the general T 3-case. However, there are some results of interest, which are only known in the
polarized case. Consequently, we devote Section 12 to a discussion of it. It is of particular interest
to note that the spatial variation of solutions dies out in the sense that the difference between the
solution and its average converges to zero. On the other hand, with respect to other measures, the
solution does not tend to spatial homogeneity.

The asymptotic behavior in the expanding direction of general T3-Gowdy. In the
general case, less detailed information is available. However, a clear picture of the asymptotics
exists and is described in Section 13. The first step of the analysis consists of proving that a
naturally defined energy converges to zero at a specific rate. This leads to the conclusion that the
distance from the solution to its average converges to zero. In order to analyze the asymptotics of
solutions, it is convenient to note that there are conserved quantities. When viewed in the right
way, these conserved quantities can be reinterpreted as ODEs for the averages, and this leads to
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Cosmic Censorship for Gowdy Spacetimes 9

detailed information concerning their asymptotics. Finally, results concerning the decay of the sup
norm of derivatives is derived. Such estimates are useful in order to prove future causal geodesic
completeness.

1.4 Strong cosmic censorship

Strong cosmic censorship. Finally, in Section 14, we phrase the existing results on strong cosmic
censorship in the class of Gowdy spacetimes. So far, the results are restricted to the polarized case
and the general T 3-case.
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10 Hans Ringström

2 Gowdy Spacetimes

In order to put the Gowdy class of spacetimes into context, it is natural to start by discussing the
role of symmetry in general relativity. We shall not discuss it here in all generality, but will restrict
our attention to the four-dimensional cosmological case.

2.1 Symmetry in cosmology

By a cosmological spacetime, we mean one that is foliated by compact spacelike hypersurfaces.
Moreover, we shall, most of the time, tacitly assume the spacelike hypersurfaces to be Cauchy
hypersurfaces; see Definition 2. Let us mention a few different ways of imposing symmetry condi-
tions.

2.1.1 Symmetry via the Lie algebra

In the physics literature, it is quite common to phrase the demands in terms of the Lie algebra of
Killing vector fields on the spacetime under consideration.

2.1.2 Symmetry via Lie group actions on the spacetime

Another possibility is to demand that there be a Lie group acting smoothly and effectively by
isometries on the spacetime. Recall that a Lie group action 𝐺×𝑀 →𝑀 is effective if 𝑔𝑝 = 𝑝 for
all 𝑝 ∈𝑀 implies 𝑔 = 𝑒.

2.1.3 Symmetry via the initial value formulation

A third option is provided by the formulation of Einstein’s equations of general relativity as an
initial value problem. We shall give a more complete presentation of the initial value formulation
in Section 4.1. However, let us briefly recall the main ingredients here. In the cosmological case,
the initial data consist of a three-dimensional compact manifold Σ on which a Riemannian metric,
a symmetric covariant two-tensor and suitable matter fields are specified. Assuming the matter
model to be of an appropriate type, there is a unique MGHD of the initial data; see Theorem 2.
One way to impose symmetries is to demand that there be a Lie group acting smoothly and
effectively by isometries on the initial data. In order for this perspective to be of any interest, such
a Lie group action should give rise to a smooth effective Lie group action, acting by isometries, on
the MGHD. That this is the case can be seen by the argument presented in [70, pp. 176–177]; see
also [17, 18].

2.1.4 Cosmological symmetry hierarchy

In the study of the initial value problem, it is of interest to analyze what combinations of compact
Lie groups and compact three-dimensional manifolds Σ are such that there is a smooth and effective
Lie group action of 𝐺 on Σ. It turns out that there are quite a limited number of possibilities. The
introduction of [17] contains a list. Readers interested in the underlying mathematics are referred
to [59]. Given a specific topic of interest, such as, the strong cosmic-censorship conjecture, this list
yields a hierarchy of classes of spacetimes in which one can study it in a simplified setting.

2.1.5 Limitations, different perspectives

It should be noted that requiring the existence of an effective Lie group action of the type described
above excludes large classes of cosmological spacetimes that are, in some respects, of a high degree
of symmetry. Most spatially locally-homogeneous cosmological models are excluded. A more
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Cosmic Censorship for Gowdy Spacetimes 11

natural perspective to take would perhaps be to demand that there be an appropriate Lie group
action on the universal covering space. Yet another perspective is provided by [87]. The central
assumption of [87] is the existence of two commuting local Killing vectors, and a larger class of
spatial topologies is thereby permitted, see also [67].

2.1.6 Present status, hierarchy

In the case of cosmology, the assumption of spatial local homogeneity is a natural starting point.
However, in this setting, the issue of strong cosmic censorship is quite well understood. Note that
this claim rests on our particular definition of a cosmological spacetime. In fact, most Bianchi class
B solutions are excluded by the condition that they should admit spatially compact quotients. On
the other hand, it should be pointed out that there are many fundamental problems that have not
been sorted out even in the spatially homogeneous setting; the detailed asymptotics of Bianchi IX
and the question of whether particle horizons form in Bianchi VIII and IX or not are but two
examples, see, for example, [72, 73, 45, 46] and references cited therein for partial results concerning
the asymptotics and [44] for a discussion of the issue of particle horizons.

When proceeding beyond spatial homogeneity, the natural next step is to consider the case of
a two-dimensional isometry group. This leads us to the Gowdy class of spacetimes.

2.2 Definition of the Gowdy class

Spacetimes admitting two-dimensional isometry groups had been studied prior to [39]. However,
the considerations had mainly been limited to the stationary axisymmetric case. To the best of our
knowledge, Gowdy was the first one to systematically analyze the consequences of imposing the
existence of a two-dimensional isometry group with spacelike orbits [39, 38, 37]. As a consequence,
a subclass of this family now bears his name. The main objective of the work presented in [39]
is to write down a convenient global form for metrics admitting this type of symmetry. However,
in the course of the discussion, Gowdy introduces assumptions that exclude a large family of
solutions admitting a two-dimensional isometry group. Let us introduce the terminology necessary
for describing the discarded class.

2.2.1 Twist constants, two-surface orthogonality

In order to be able to describe the class excluded by Gowdy’s assumptions, let us note some of the
consequences of the essential symmetry assumption – that there is a compact and connected two-
dimensional Lie group acting effectively on the initial hypersurface. Since the initial hypersurface is
a three-dimensional manifold, [59, Theorem 6, p. 453] implies that the Lie group has to be T 2; i.e.,
U (1) Ö U (1). In particular, there are initially two Killing fields that then extend to two spacelike
Killing fields on the development. We shall denote them by 𝑋𝑖, 𝑖 = 1, 2. As pointed out in [16,
p. 101], the symmetry assumptions imply that the topology of the initial hypersurface has to be
T 3, S 2

Ö S 1, S 3 or one of the Lens spaces. Since the Lens spaces have S 3 as a universal covering
space, we shall consider them to be subsumed under that case. It is also possible to describe how
the group acts on the manifold in some detail [16, p. 102]. In particular, there must be “axes” at
which one of the Killing fields vanish for all topologies except T 3. Returning to the discarded class
of solutions, let us define the functions

𝑐𝑎 = 𝜖𝛼𝛽𝛾𝛿𝑋
𝛼
1 𝑋

𝛽
2 ∇𝛾𝑋𝛿

𝑎 ,

𝑎 = 1, 2. They are constant on the spacetime (this statement is true in the vacuum case [16, p. 103]
but not necessarily in the presence of matter) and are referred to as the twist constants. Gowdy
assumes them to vanish [39, p. 211]. Note, however, that he calls this specialization two-surface
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orthogonality, since it implies [16, Theorem 4.2, p. 117] that the group orbits are orthogonal to
the vector field 𝜕𝑡, where 𝑡 is the areal time coordinate (i.e. the function that to each point of the
spacetime associates the area of the group orbit containing the point). In the case of S 2

Ö S 1,
S 3 and Lens space topology, the twist constants have to vanish due to the existence of the axes.
However, in the case of T 3 topology, there is a class of solutions with nonvanishing twist constants
called T 2-symmetric spacetimes. The behavior of solutions belonging to this class is much more
complicated than that of those belonging to the Gowdy class of spacetimes.

2.2.2 Essential characterizing conditions

To conclude, the essential assumptions characterizing the Gowdy class are that a member of it
should

� be a globally-hyperbolic cosmological spacetime,

� admit an effective action by isometries by a two-dimensional compact Lie group with spacelike
orbits,

� be such that the twist constants vanish.

2.2.3 Technical definition

Even though the above list gives the central assumptions, there are some subtleties that have been
sorted out in [16]. Thus, the formally inclined are recommended to use the assumptions of [16,
Theorem 4.2, p. 117] and of [16, Theorem 6.1, p. 128–129] as a definition of Gowdy initial data.
The Gowdy class of solutions is then defined as the MGHDs of Gowdy initial data.

2.3 Coordinate systems

In [16], special coordinate systems are constructed on part of the MGHD. Let us describe the
different cases.

2.3.1 Coordinate systems, T3-Gowdy

In the case of T 3-topology, there are coordinates such that the metric takes the form

𝑔𝑇 3 = 𝑒2𝐵(−𝑑𝑡2 + 𝑑𝜃2) + ℓ𝑡𝑛𝑎𝑏(𝑑𝑥
𝑎 + 𝑔𝑎𝑑𝜃)(𝑑𝑥𝑏 + 𝑔𝑏𝑑𝜃). (1)

Here 𝑡 ∈ (0,∞), 𝜃, 𝑥𝑎 ∈ [0, 2𝜋] mod 2𝜋, 𝐵 and 𝑛𝑎𝑏 are functions of 𝑡 and 𝜃, ℓ > 0 is a constant,
det𝑛𝑎𝑏 = 1 and the 𝑔𝑎 are constants. This is a special case of the form of the metric given in [16,
(4.9), p. 116]; see also [16, Theorem 4.2] and [16, (4.12), p. 117].

2.3.2 Working definition, T3-Gowdy

The values of the constants ℓ and 𝑔𝑎 in Equation (1) are of no importance in practice. Consequently,
ℓ can be taken to equal 1 and 𝑔𝑎 can be taken to equal 0. In order to arrive at the form of the
metric we shall actually be using, let us set ℓ = 1 and 𝑔𝑎 = 0. Furthermore, we define 𝑥1 =: 𝜎,
𝑥2 =: 𝛿, 𝑛11 =: 𝑒𝑃 , 𝑛12 = 𝑒𝑃𝑄, where we have used the fact that 𝑛𝑎𝑏 are the components of a
positive definite matrix. Since 𝑛𝑎𝑏 is also a symmetric matrix with unit determinant, we obtain

𝑔𝑇 3 = 𝑡−1/2𝑒𝜆/2(−𝑑𝑡2 + 𝑑𝜃2) + 𝑡[𝑒𝑃 𝑑𝜎2 + 2𝑒𝑃𝑄𝑑𝜎𝑑𝛿 + (𝑒𝑃𝑄2 + 𝑒−𝑃 )𝑑𝛿2], (2)

where we have defined 𝜆 by the relation 𝑡−1/2𝑒𝜆/2 = 𝑒2𝐵 . An alternate definition of a T 3-Gowdy
spacetime is a manifold of the form 𝐼 × 𝑇 3 with a metric of the form of Equation (2). Of course,
some form of Einstein’s equation should also be enforced.
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2.3.3 Coordinate system, S3 and S2
Ö S1

In the case of S 3 and S 2
Ö S 1 topology, the metric can be written

𝑔𝑆 = 𝑒2𝐵(−𝑑𝑇 2 + 𝑑𝜓2) + 𝜆𝑎𝑏𝑑𝑥
𝑎𝑑𝑥𝑏, (3)

where 𝑥𝑎 ∈ [0, 2𝜋] mod 2𝜋, 𝑇 ∈ (0, 𝜋), 𝜓 ∈ [0, 𝜋], det𝜆𝑎𝑏 = ℓ sin𝑇 sin𝜓, where ℓ > 0 is a constant,
and 𝐵 and 𝜆𝑎𝑏 are functions of 𝑇 and 𝜓. This is the form of the metric given in [16, Theorem
6.3, p. 133], though it should again be pointed out that it is not claimed that the coordinates with
respect to which the metric takes this form cover the entire MGHD.

2.4 The polarized subcase

The polarized Gowdy solutions constitute an interesting subclass. They are characterized by the
additional condition that the Killing vectors be mutually orthogonal. In the polarized T 3-Gowdy
case, the metric can be written

𝑔𝑃 = 𝑡−1/2𝑒𝜆/2(−𝑑𝑡2 + 𝑑𝜃2) + 𝑡(𝑒𝑃 𝑑𝜎2 + 𝑒−𝑃 𝑑𝛿2); (4)

i.e., it corresponds to setting 𝑄 = 0 in Equation (2). In the case of S 3 and S 2
Ö S 1, the metric

takes the form
𝑔𝑆,𝑃 = 𝑒2𝑎(−𝑑𝑡2 + 𝑑𝜃2) + sin 𝜃 sin 𝑡(𝑒𝑊 𝑑𝑥2 + 𝑒−𝑊 𝑑𝑦2);

see Equations (5) – (7) of [50]. Clearly, the connection between the coordinates, the metric com-
ponents and the topology is more complicated in the case of S 3 and S 2

Ö S 1 than in the case of
T 3. We shall not go into a detailed discussion of these issues here, but rather refer the interested
reader to [21] and [50] for a further discussion. A brief explanation of the origin of the name (in
terms of polarizations of gravitational waves) as well as a different characterization is provided at
the bottom of [70, p. 65].
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3 Foliations

The components of a Gowdy metric, see Equations (2) and (3), are not explicit functions of the
coordinates. However, imposing Einstein’s equations leads to a system of nonlinear wave equations
for the components. Consequently, it is useful to analyze the asymptotic behavior of the solutions
to this system in order to be able to draw conclusions concerning the global geometry of the
corresponding spacetimes. One natural first question to ask is if there are any preferred global
foliations. Is there, e.g., a constant mean curvature (CMC) foliation?

3.1 CMC foliations

Note that CMC foliations are unique in cosmological vacuum spacetimes. In the case of vacuum
T 3-Gowdy, there is a CMC foliation exhausting the interval (−∞, 0) [49]. However, in the case of
S 2

Ö S 1 and S 3 topology, the only general statements concerning foliations are, as far as we are
aware, the ones given in [16]. It is natural to conjecture that if there is a CMC Cauchy hypersurface
in the S 2

Ö S 1 or S 3 case, there is a CMC foliation exhausting the interval (−∞,∞) [66]. However,
to the best of our knowledge there are no results to this effect.

3.2 Areal foliation

In the case of T 3-Gowdy spacetimes, there is another natural foliation; considering Equation (2),
it is clear that the area of the symmetry orbits are proportional to the time coordinate 𝑡. Con-
sequently, such a time coordinate is referred to as an areal time coordinate. It is natural to ask
if the areal time coordinate exhausts the interval (0,∞). That the answer is yes in the case of
vacuum T 3-Gowdy was demonstrated by Moncrief [58]. Furthermore, he verified that the foliation
covers the entire MGHD. However, since the starting point of the argument in [58] is a constant-𝑡
hypersurface, it is of interest to note that the results of [16] yield the same conclusions starting
with a general Cauchy hypersurface.

3.3 Existence of foliations, related symmetry classes

Let us, for the sake of completeness, mention some results concerning spacetimes satisfying related
symmetry conditions, in particular T 2-symmetry; see Section 2.2. That the maximal globally-
hyperbolic vacuum development of T 2-symmetric initial data is covered by areal coordinates is
proven in [9]. The result states that the area of the symmetry orbits exhausts (𝑐,∞) for some
𝑐 ≥ 0; whether 𝑐 = 0 or not is left open. However, this question has been addressed and resolved
in [51] and [91], see also [85]. In the context of areal coordinates, there is a fundamental difference
between the Gowdy case and the general T 2-symmetric case. In the Gowdy case, the areal time
coordinate is such that the metric is conformal to the Minkowski metric in the 𝑡𝜃-direction; see
Equation (2). In the general T 2-symmetric case, this property is lost if one insists on an areal time
coordinate [9]. Results on the existence of areal coordinates covering the MGHD in the case of
solutions to the Einstein–Vlasov system with T 3-Gowdy symmetry are contained in [4], see also [5],
which treats solutions to the Einstein–Vlasov system in the general T 2-symmetric case (the latter
paper contains results concerning both areal and CMC foliations). Existence of a CMC foliation
under the assumption of the existence of two local Killing vectors was demonstrated in [67], a
paper, which generalizes, among other things, the results of [49].

3.4 Prescribed mean curvature

The above results concerning the existence of CMC foliations are based on the assumption of the
existence of one CMC hypersurface. There are ways to circumvent this condition. By proving
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the existence of a suitable prescribed mean curvature (PMC) foliation, it is sometimes possible to
construct barriers that imply the existence of one CMC hypersurface; see Section 3.6 of [69] and
references cited therein for more details.
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4 Strong Cosmic Censorship

The idea of cosmic censorship goes back to the work of Roger Penrose; see [62] (reprinted in [64])
and [63]. It comes in two forms: weak and strong. The weak cosmic-censorship conjecture is
concerned with isolated systems and essentially states that, generically, singularities should not be
visible to an observer at infinity; see [90] for a more precise and extensive discussion. The strong
cosmic censorship conjecture is a statement concerning the deterministic nature of the general
theory of relativity. This is the form we are interested in here, and we shall phrase it in terms
of initial data. Consequently, we need to formulate the initial value (or Cauchy) problem for
Einstein’s equations.

4.1 The initial value problem

How does one formulate an initial value problem for Einstein’s equations? What should the initial
data be? Is there uniqueness in any reasonable sense? These questions can be formulated in the
presence of various matter fields, but let us, for the sake of simplicity, restrict our attention to the
vacuum case here.

4.1.1 The vacuum equations

The vacuum equations are given by
𝐺 = 0,

where

𝐺 = Ric− 1

2
𝑆𝑔

is the Einstein tensor, Ric is the Ricci tensor and 𝑆 is the scalar curvature of a Lorentz manifold
(𝑀, 𝑔). Clearly, Einstein’s vacuum equations are equivalent to

Ric = 0. (5)

Note that Ric can be thought of as a differential operator acting on the metric. A thorough
discussion of the principal symbol of this operator, of the implications of the diffeomorphism
invariance of the equations etc. . . can be found in [35], see also [15]. However, here we shall take a
more pedestrian approach. Writing down Ric in local coordinates, we have

𝑅𝜇𝜈 = −1

2
𝑔𝛼𝛽𝜕𝛼𝜕𝛽𝑔𝜇𝜈 +∇(𝜇Γ𝜈) + 𝑔𝛼𝛽𝑔𝛾𝛿[Γ𝛼𝛾𝜇Γ𝛽𝛿𝜈 + Γ𝛼𝛾𝜇Γ𝛽𝜈𝛿 + Γ𝛼𝛾𝜈Γ𝛽𝜇𝛿], (6)

where

Γ𝛼𝛾𝛽 =
1

2
(𝜕𝛼𝑔𝛽𝛾 + 𝜕𝛽𝑔𝛼𝛾 − 𝜕𝛾𝑔𝛼𝛽), Γ𝛼 = 𝑔𝛼𝛽𝑔

𝜇𝜈Γ𝛽
𝜇𝜈 , ∇𝜇Γ𝜈 = 𝜕𝜇Γ𝜈 − Γ𝛼

𝜇𝜈Γ𝛼,

and a parenthesis denotes symmetrization, i.e.,

∇(𝜇Γ𝜈) =
1

2
(∇𝜇Γ𝜈 +∇𝜈Γ𝜇).

The notation ∇𝜇Γ𝜈 is questionable due to the fact that Γ𝜇 are not the components of a covector.
Nevertheless, we shall use it. The highest-order derivatives are contained in

− 1

2
𝑔𝛼𝛽𝜕𝛼𝜕𝛽𝑔𝜇𝜈 +∇(𝜇Γ𝜈). (7)
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4.1.2 Formulation, intuition

If the second term in Equation (7) were not there, Equation (5) would, in local coordinates, be a
nonlinear wave equation, and it would be straightforward to formulate an initial value problem.
Furthermore, given a solution to Equation (5), it is possible to choose local coordinates such that
Γ𝜇 vanishes and Equation (5) takes the form of a nonlinear wave equation. On the other hand,
if Equation (5) were a nonlinear wave equation when expressed with respect to arbitrary coordi-
nates, we would obtain uniqueness for the coordinate expression of the metric. This statement is
incompatible with diffeomorphism invariance. Thus, even though Equation (5) in some respects
can be viewed as a hyperbolic differential equation, the geometric aspect of the equation must not
be forgotten.

Due to the above observations, it seems natural to expect the right PDE problem to formulate
for Einstein’s equations to be the initial value problem. Furthermore, it seems clear that this
problem should be given a geometric formulation. Naively, one would expect it to be necessary to
specify the metric and the first time derivative of the metric at the initial hypersurface. However,
these quantities are not geometric. The induced metric and second fundamental form are, on
the other hand, geometric quantities and they contain part of the information one would naively
expect to need. Furthermore, they, in the end, turn out to constitute sufficient information. The
question arises of what should be required of the initial hypersurface? Since we wish to avoid issues
of consistency, we shall require the hypersurface to be such that it has no causal tangent vectors.
In other words, we require that it be spacelike (this is, strictly speaking, not necessary; there are
formulations in the null case as well; see, e.g., [65]).

4.1.3 Formulation, formal definition

The above discussion suggests the following. The initial data should, at the very minimum, consist
of a manifold, say Σ (which should be thought of as the initial hypersurface), a Riemannian metric
on Σ, say 𝜌 (which should be thought of as the induced metric on the initial hypersurface), and
a symmetric covariant two-tensor on Σ, say 𝜅 (which should be thought of as the induced second
fundamental form). On the other hand, if (Σ, 𝜌, 𝜅) is a hypersurface with induced metric and
second fundamental form in a Lorentz manifold solving Equation (5), then 𝜌 and 𝜅 have to satisfy
the constraint equations:

𝑟 − 𝜅𝑖𝑗𝜅
𝑖𝑗 + (tr𝜅)2 = 0, (8)

𝐷𝑗𝜅𝑗𝑖 −𝐷𝑖(tr𝜅) = 0. (9)

Here 𝑟 is the scalar curvature and𝐷 is the Levi–Civita connection associated with 𝜌, and indices are
raised and lowered with 𝜌. Equation (8), the Hamiltonian constraint, is equivalent to the equation
𝐺(𝑁,𝑁) = 0, where 𝐺 is the Einstein tensor and 𝑁 is a normal vector to the hypersurface.
Equation (9), the momentum constraint, is equivalent to the equation 𝐺(𝑁,𝑋) = 0, where 𝑋 is
any tangent vector to the hypersurface.

Definition 1 Initial data for Einstein’s vacuum equations consist of a three-dimensional manifold
Σ, a Riemannian metric 𝜌 and a covariant symmetric two-tensor 𝜅 on Σ, both assumed to be smooth
and to satisfy Equations (8) – (9). Given initial data, the initial value problem is that of finding a
four-dimensional manifold 𝑀 with a Lorentz metric 𝑔 such that Equation (5) is satisfied, and an
embedding 𝑖 : Σ →𝑀 such that 𝑖*𝑔 = 𝜌 and that if 𝑘 is the second fundamental form of 𝑖(Σ), then
𝑖*𝑘 = 𝜅. Such a Lorentz manifold (𝑀, 𝑔) is called a development of the data. Furthermore, if 𝑖(Σ)
is a Cauchy hypersurface in (𝑀, 𝑔), then (𝑀, 𝑔) is referred to as a globally-hyperbolic development
of the initial data. In both cases, the existence of an embedding 𝑖 is tacit.

Since the concepts Cauchy hypersurface and globally hyperbolic are referred to above, and will be
of some importance below, let us recall how they are defined.
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Definition 2 Let (𝑀, 𝑔) be a Lorentz manifold. A subset Σ of 𝑀 is said to be a Cauchy hyper-
surface if it is intersected exactly once by every inextendible timelike curve. A Lorentz manifold
that admits a Cauchy hypersurface is said to be globally hyperbolic.

Remark. Two basic examples of Cauchy hypersurfaces are the t = const. hypersurfaces in
Minkowski space and the hypersurfaces of spatial homogeneity in Robertson–Walker spacetimes.
The reader interested in the basic properties of globally-hyperbolic Lorentz manifolds and Cauchy
hypersurfaces is referred to [60], see also [82] and references cited therein. Cauchy hypersurfaces
need neither be smooth nor spacelike, but we shall tacitly assume them to be both. The reason
the concept of a Cauchy hypersurface is of such central importance is that it is the natural type
of surface on which to specify initial data.

4.1.4 Existence of a development

We are now in a position to ask: given initial data to Einstein’s vacuum equations, is there a
development? The answer to this question is yes, due to the seminal work of Choquet-Bruhat [34]
(a presentation in book form is also available in, e.g., [82]):

Theorem 1 Given initial data (Σ, 𝜌, 𝜅) to Einstein’s vacuum equations, there is a globally-hyperbolic
development.

Clearly, this is a fundamental result. In particular, this result is what justifies the terminology
“initial data to Einstein’s vacuum equations” as specified in Definition 1. On the other hand, the
issue of uniqueness is not addressed. Given initial data, there are infinitely many distinct globally-
hyperbolic developments. In order to obtain uniqueness, it is consequently necessary to require
some form of maximality.

4.1.5 Existence of a maximal globally-hyperbolic development

The central concept in the study of uniqueness is that of an MGHD:

Definition 3 Given initial data to Einstein’s vacuum equations (5), a MGHD of the data is a
globally hyperbolic development (𝑀, 𝑔), with embedding 𝑖 : Σ → 𝑀 , such that if (𝑀 ′, 𝑔′) is any
other globally hyperbolic development of the same data, with embedding 𝑖′ : Σ →𝑀 ′, then there is
a map 𝜓 :𝑀 ′ →𝑀 , which is a diffeomorphism onto its image, such that 𝜓*𝑔 = 𝑔′ and 𝜓 ∘ 𝑖′ = 𝑖.

Note that this definition differs from the standard notion of maximality used in set theory. The
standard notion would lead to the definition of a MGHD as a globally hyperbolic development,
which cannot be extended (note that this notion of maximality would not a priori rule out the
possibility of two maximal elements, neither of which can be embedded into the other, as opposed
to Definition 3).

Theorem 2 Given initial data to Equation (5), there is an MGHD of the data, which is unique
up to isometry.

Remark. Uniqueness of a development (𝑀, 𝑔) up to isometry is defined as follows: if (𝑀 ′, 𝑔′) is
another MGHD, then there is a diffeomorphism 𝜓 : 𝑀 → 𝑀 ′ such that 𝜓*𝑔′ = 𝑔 and 𝜓 ∘ 𝑖 = 𝑖′,
where 𝑖 and 𝑖′ are the embeddings of Σ into 𝑀 and 𝑀 ′ respectively.

Theorem 2 is due to the work of Choquet-Bruhat and Geroch; see [13] for the original paper
and [82] for a recent presentation. The proof relies, in part, on the local theory and on an argument
using what is often referred to as Zorn’s lemma. This leads to the existence of an MGHD in the
set theory sense of the word. However, it does not lead to the existence of an MGHD in the sense
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of Definition 3. In fact, the important part of the result is the uniqueness of the MGHD (in the
set theory sense of the word). This requires an additional argument.

Due to Theorem 2, the initial value formulation of Einstein’s equations is meaningful. However,
the MGHD might be extendible. In fact, it turns out that there are initial data such that this is
the case. If the extensions were unique in their turn, this would not be a serious problem, but it
turns out that there are MGHDs with inequivalent maximal extensions [20] (see also [82]). The
reason these examples are unfortunate is that they demonstrate that Einstein’s general theory of
relativity is not deterministic; given initial data, there is not necessarily a unique corresponding
universe. Nevertheless, the examples of this pathological behavior are very special, and there is
thus reason to hope that for generic initial data, the MGHD is inextendible. These speculations
naturally lead us to the strong cosmic-censorship conjecture.

4.2 Strong cosmic censorship

By the strong cosmic-censorship conjecture, we mean the following statement:

Conjecture 1 For generic asymptotically-flat and for generic spatially-compact initial data for
Einstein’s vacuum equations, the MGHD is inextendible.

Remark. We are only interested here in initial data specified on compact manifolds, a case to which
the conjecture applies. Readers interested in the asymptotically-flat case are referred to, e.g., [90]
and references cited therein.

In this form, the statement is due to Chruściel; see [17, Section 1.3], based on ideas due to
Eardley and Moncrief [32]. It is of course also possible to make the same (or similar) statements
in the presence of matter. However, there are some matter models, which exhibit pathologies, and
we do not wish to discuss such issues here. The formulation of Conjecture 1 is rather vague; the
words “generic” and “inextendible” occur without having been clearly defined. The reason for
this is partly that there is no a priori preferred definition of these concepts. Let us discuss them
separately.

4.2.1 Genericity

In the context of a finite-dimensional dynamic system, a generic subset could, e.g., be defined in
one of the following ways:

� a set whose complement has measure zero (with respect to the Lebesgue measure, say),

� a set that is open and dense,

� a dense 𝐺𝛿 set, i.e., a countable intersection of open sets, which is dense.

Other possibilities are conceivable; see, e.g., [14]. Regardless of the choice of definition, one
requirement appears to be quite clear: if a set is generic, then the complement should not be
generic. In the case of infinite-dimensional dynamic systems, the case we are interested in here,
the measure of the theoretic notion of genericity is not so natural. Consequently, we shall here,
unless otherwise stated, take generic to mean open and dense. Nevertheless, such a definition is
still not precise; it requires the prior definition of a topology on the set of initial data.

4.2.2 Inextendibility

Turning to the meaning of inextendibility, there are several possibilities. First, the inextendibility
should refer to a particular differentiability class; a solution could be extendible in one degree of
differentiability but inextendible in another (that such a situation can occur is illustrated by [23,
24]). Furthermore, one could say that a solution is extendible if
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� it is extendible as a Lorentz manifold, or

� it is extendible as a Lorentz manifold solving Einstein’s equations.

Here, we shall say that a solution is extendible if it is extendible as a Lorentz manifold. In other
words, we shall not require the extension to be a solution to Einstein’s equations. Furthermore, we
shall use the differentiability class C 2, since we wish the differentiability class to be strong enough
that curvature is still defined.

4.3 Curvature blow up

The strong cosmic-censorship conjecture is of fundamental importance since it expresses the expec-
tation that Einstein’s general theory of relativity is a deterministic theory (with some nongeneric
exceptions). On the other hand, it is of a somewhat philosophical nature. However, it is strongly
connected to a statement concerning the behavior of gravitational fields close to the singularity.
Here, the existence of a singularity is equated with the existence of an incomplete causal geodesic,
the motivation being the work of Hawking and Penrose resulting in the singularity theorems;
see [61, 41, 43] and [42, 89, 60]. Even though the commonplace existence of singularities is estab-
lished by the singularity theorems, their nature remains unclear; do, for example, the gravitational
fields become arbitrarily strong in the vicinity of a singularity? It is natural to state the following
conjecture:

Conjecture 2 For generic asymptotically-flat and generic spatially-compact initial data for Ein-
stein’s vacuum equations, curvature blows up in the incomplete directions of causal geodesics in the
MGHD.

In the statement of this conjecture, we shall in practice take curvature blow up to mean the
unboundedness of the Kretschmann scalar,

𝑅𝛼𝛽𝛾𝛿𝑅
𝛼𝛽𝛾𝛿.

Of course, in the presence of matter one could also consider the contraction of the Ricci tensor
with itself. Needless to say, there are many other possibilities. Again, the word “generic” has to
be included. The reason is that the canonical counterexample to inextendibility of the MGHD
in the cosmological vacuum case, Taub–NUT, is also a counterexample to curvature blow up in
the incomplete directions of causal geodesics. Taub–NUT is causally geodesically-incomplete both
to the future and to the past, but the spacetime can be extended and all curvature invariants
consequently remain bounded along all geodesics; see [20] or [82]. The reason for wanting to
prove Conjecture 2 is perhaps more clear than the reason for wanting to prove strong cosmic
censorship; it would demonstrate the generic occurrence of singularities, not only in the sense
of causal geodesic completeness, but in the sense of the gravitational fields becoming arbitrarily
strong. Furthermore, if Conjecture 2 holds, then strong cosmic censorship follows (with the C 2-
concept of inextendibility).

Since it is not clear how to address Conjectures 1 and 2 in all generality, the work that has
been carried out so far has been concerned with the analogous questions phrased in the context
of special classes of spacetimes. Here, we shall be concerned with these questions phrased in the
Gowdy class.

4.4 Pathological examples in the case of Gowdy

Before ending this section, let us record the existence of pathological behavior in the class of
Gowdy spacetimes. The most obvious example is provided by the flat Kasner solution; letting
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𝜆(𝑡, 𝜃) = 𝑃 (𝑡, 𝜃) = ln 𝑡 in Equation (4) leads to the metric

𝑔𝐹𝐾 = −𝑑𝑡2 + 𝑑𝜃2 + 𝑡2𝑑𝜎2 + 𝑑𝛿2.

Viewing this metric on (0,∞)× R3,

𝜑𝐾(𝑡, 𝜃, 𝜎, 𝛿) = (𝑡 cosh𝜎, 𝜃, 𝑡 sinh𝜎, 𝛿)

yields an isometry to a subset of Minkowski space. Consequently, 𝑔𝐹𝐾 is flat, and we shall refer to
[(0,∞)×R3, 𝑔𝐹𝐾 ] as the flat Kasner solution. This solution is past causally geodesically incomplete,
but the curvature is clearly bounded. Furthermore, it is extendible. Considering the same solution
on the torus, it is also possible to construct an extension; see, e.g., [82].

However, there are more sophisticated examples of pathologies. In [20], the authors demonstrate
that given any positive integer 𝑛, there is a polarized Gowdy vacuum spacetime with at least 𝑛
inequivalent maximal extensions.
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5 BKL, Fuchsian Methods and Asymptotic Expansions

The results on strong cosmic censorship in Gowdy vacuum spacetimes cover the polarized sub-case
as well as the general T 3-Gowdy case. However, to the best of our knowledge, there are no results
concerning strong cosmic censorship in the general S 3 and S 2

Ö S 1 cases. The method of proof,
in all the situations in which results exist, consists of a detailed analysis of the asymptotics of
solutions. As a consequence, we shall devote most of this review to a description of the analysis of
the asymptotic behavior. Note that it might be possible to prove strong cosmic censorship without
analyzing the asymptotics in detail. In fact, there are proofs under related symmetry assumptions,
which are not based on a detailed analysis of the asymptotics [25, 26, 27, 84].

The existence of asymptotic expansions in the direction towards the singularity has played a
central role in proving strong cosmic censorship for T 3 and polarized vacuum Gowdy spacetimes.
In the latter case, to take one example, there is a computation of asymptotic expansions due to
Isenberg and Moncrief [50]. This computation was then used in [21] in the proof of strong cosmic
censorship in the polarized case. In the general T 3-case, there is a large literature on asymptotic
expansions, which we shall return to in Section 8; the starting point being the work of Grubǐsić
and Moncrief [40]. It is worth noting that both in the case of [40] and [50], the ideas of Belinskii,
Khalatnikov, and Lifshitz [55, 6, 7] (henceforth BKL) played an important role. As a consequence,
we wish to give a brief description of the BKL perspective as well as of some related proposals.

5.1 The BKL picture

The ideas of BKL are often referred to as “the BKL conjecture”. This terminology is unfortunate,
since it would seem to indicate that there is a mathematically precise statement that can be proven
or disproven. In reality, the ideas are too vague to warrant the name “conjecture”. Nevertheless,
they have played an important role on an intuitive level, and therefore deserve to be mentioned.
The rough idea is as follows:

� given a spacetime (𝑀, 𝑔) such that all past-directed timelike geodesics are incomplete, there
is a spacelike hypersurface Σ such that the past of Σ is diffeomorphic to (0, 𝑡0]×Σ for some
𝑡0 > 0, where the first coordinate in the division (0, 𝑡0]× Σ defines a time function,

� as 𝑡 → 0+, different spatial points do not causally influence each other, i.e., if 𝑝, 𝑞 ∈ Σ and
𝑝 ̸= 𝑞, then, for 𝑡 small enough, the past of (𝑡, 𝑝) does not intersect the past of (𝑡, 𝑞),

� the matter content is of negligible importance for the dynamics as 𝑡→ 0+,

� “time derivatives” (or “kinetic terms”) dominate “spatial derivatives” (or “spatial curvature
coupling terms”) as 𝑡→ 0+,

� for a fixed 𝑝 ∈ Σ, the behavior of the solution along (𝑡, 𝑝) is well approximated by a spatially-
homogeneous vacuum solution, in particular by an oscillatory solution (Bianchi types VIII,
IX and VI−1/9).

There are some caveats. First, the statements concern generic spacetimes; there are exceptions;
see Taub–NUT. Second, the matter content might be important for special classes of matter models.
For instance, in the case of a stiff fluid or a scalar field, the matter should play a dominant role.
The statement that solutions should exhibit oscillatory behavior also depends on the matter model;
stiff fluids and scalar fields are expected to suppress it. Furthermore, symmetry might prevent the
appearance of oscillations.

The first statement on the list above can be ensured under general circumstances; a combination
of Hawking’s theorem [60, Theorem 55A, p. 431], an energy condition and the existence of a Cauchy
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hypersurface satisfying suitable assumptions concerning the mean curvature will do. The statement
of causal disconnectedness is, however, unsatisfactory in that it depends not only on the foliation,
but also on a choice of diffeomorphism. It would be preferable to have a geometric condition, which
is even independent of the foliation. However, to our knowledge there is no such definition; see the
introduction of [44] for a further discussion. The last three statements are clearly very vague.

The general framework has been developed significantly since the work of BKL; see [28, 30,
47, 88] and references cited therein. We shall not describe these developments in detail, but let us
mention that there are at least two somewhat different approaches. In the Hamiltonian approach,
taken in [28, 30], billiards describe the asymptotic behavior (see also the work of Misner and
Chitré; see [57, pp. 805–816] and references cited therein). In the dynamic systems approach,
described in [47, 88], the solution is approximated asymptotically by a family of solutions to
ordinary differential equations. In [3], the Gowdy spacetimes have been considered from this
perspective.

Even though the two perspectives have differences, they have an essential assumption in com-
mon: causal disconnectedness in the direction toward the singularity. Furthermore, in both cases,
the oscillatory spatially-homogeneous vacuum solution is of central importance. It is of interest to
note that these two aspects are potentially contradictory; Misner’s original motivation in studying
the Mixmaster Universe (Bianchi IX) [56] was the desire to demonstrate that there is no causal
disconnectedness in the direction towards the singularity. In order for the pictures suggested
in [28, 30] and [47, 88] to be consistent, causal disconnectedness should hold in the oscillatory
spatially-homogeneous vacuum solutions. It is far from clear that this is the case. The reader
interested in a discussion of the status of this question is referred to the introduction of [44].

Finally, let us mention that a different formulation of the BKL picture is given in [19, Conjecture
6.10, p. 58]; see also the references cited therein.

5.2 Asymptotic expansions, Fuchsian methods

It is interesting to note that, in spite of the fact that the BKL picture and related proposals
emphasize the importance of oscillatory behavior, the greatest successes of the BKL point of
view have been obtained in the nonoscillatory setting. The main reason is that in the absence of
oscillations, it is sometimes possible to characterize the asymptotic behavior in terms of asymptotic
data (of course, the lack of results in the presence of oscillations is largely due to the difficulty
in analyzing the asymptotic behavior in that case). In certain situations, this characterization is
strong enough that the asymptotic data are in one-to-one correspondence with the solutions. If
that is the case, the asymptotic data can be considered to be “initial data at the singularity”. The
results in the nonoscillatory case come in different forms.

5.2.1 From solutions to asymptotics

The type of result, that is of greatest immediate interest is the one that, given a solution to the
Einstein equations, provides asymptotic expansions. The means by which this is achieved vary.
One method is to devise a simplified system of equations, such that the solution to the Einstein
equations converges to a solution to the simplified system. In the spirit of the BKL picture, the
simplified system is often obtained by omitting some (if not all) spatial derivatives. One example
of a successful application is given by the analysis of Isenberg and Moncrief [50] in the polarized
Gowdy case (which in some respects follows the ideas of [31]). In [50], a simplified system consisting
of the Velocity Term Dominated (VTD) equations are introduced and solved, and the authors prove
that solutions to the Einstein equations converge to solutions to the VTD system. Furthermore, a
geometric definition for what the authors call Asymptotically Velocity-Term Dominated near the
Singularity (or AVTDS) is given; see [50, pp. 88–89]. We give a brief description of the analysis
of [50] in Section 7.
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5.2.2 From asymptotics to solutions

Another type of result starts by specifying the asymptotics at the singularity and then proceeds
to prove that there are solutions with these asymptotics. The analysis is based on reducing the
particular form of the Einstein equations under consideration to an equation in Fuchsian form:

𝑡𝜕𝑡𝑢+𝐴(𝑥)𝑢 = 𝑓(𝑡, 𝑥, 𝑢, 𝑢𝑥); (10)

see [29, (1.5), p. 1054]; see also [53]. There is a standard theory, which deals with equations of
the form of Equation (10), even with the nonregular problem of specifying initial data at 𝑡 = 0,
which is the case of interest in the present context. Consequently, the central problem is that of
reformulating Einstein’s equations to Fuchsian form. The general procedure is as follows:

� express Einstein’s equations with respect to a suitable gauge (in the case of T 3-Gowdy for
instance, the areal time coordinate has turned out to be a good candidate; see [54, 68], and
in the cases without symmetries concerning which results have been obtained, a Gaussian
time coordinate has proven useful [2, 29]),

� identify the leading-order asymptotic behavior, where the leading-order terms preferably
should correspond to as many free functions as are required to specify regular initial data
(in the case of T 3-Gowdy, formal expansions had been suggested in [40] prior to [54] and
in [2, 29], the expansions were obtained by considering “Velocity Term Dominated” systems
associated with the full system of Einstein’s equations),

� express the unknowns in terms of the leading-order terms plus a remainder, and write down
the equations in terms of the remainder (this equation should be of Fuchsian form),

� apply the Fuchsian theory.

The standard Fuchsian theory is applicable in the real analytic setting. As a consequence, most
of the results assume real analytic “data at the singularity” and lead to the conclusion that there
are real analytic solutions with the corresponding asymptotic behavior. Clearly, the procedure
is not always applicable. In particular, it is not expected to be applicable in the presence of
oscillations.

5.2.3 Overview of results

Let us mention some of the results that have been obtained using Fuchsian methods. In [54],
Fuchsian methods were applied to the T 3-Gowdy case in the real analytic setting. The assumption
of real analyticity was later relaxed to smoothness [68]. See also [86] for a similar analysis in the
S 2

Ö S 1 and S 3 cases (though there are some problems related to the symmetry axes in that case,
and as a consequence, the results are less complete). An analysis of the polarized T 2-symmetric
spacetimes in the real analytic setting was carried out in [48]. In all the examples mentioned so
far, the symmetry caused the suppression of oscillations. However, matter can also have the same
effect. This is illustrated by [2], which consists of a study of the Einstein equations coupled to
either a scalar field or a stiff fluid. The results are in the real analytic setting and associate a
solution to asymptotic initial data. Finally, in [29] large classes of matter models are considered
in various dimensions with similar results.
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6 Equations

In our presentation, we shall focus on T 3-Gowdy. Therefore, we will only write down here the
equations in that case. The reader interested in the equations for polarized S 2

Ö S 1 or S 3-Gowdy
is referred to [50, (12a) – (12c), p. 92].

6.1 Expanding direction

The starting point is the metric (2). For metrics of this form, Einstein’s vacuum equations are
equivalent to

𝑃𝑡𝑡 +
1

𝑡
𝑃𝑡 − 𝑃𝜃𝜃 − 𝑒2𝑃 (𝑄2

𝑡 −𝑄2
𝜃) = 0, (11)

𝑄𝑡𝑡 +
1

𝑡
𝑄𝑡 −𝑄𝜃𝜃 + 2(𝑃𝑡𝑄𝑡 − 𝑃𝜃𝑄𝜃) = 0, (12)

and

𝜆𝑡 = 𝑡[𝑃 2
𝑡 + 𝑃 2

𝜃 + 𝑒2𝑃 (𝑄2
𝑡 +𝑄2

𝜃)], (13)

𝜆𝜃 = 2𝑡(𝑃𝜃𝑃𝑡 + 𝑒2𝑃𝑄𝜃𝑄𝑡). (14)

Since the equations for 𝑃 and 𝑄 do not depend on 𝜆, it is possible to solve Equations (11) – (12)
first and then to calculate 𝜆 using Equation (14). In order for this procedure to be meaningful, it
is necessary to choose the initial data for 𝑃 and 𝑄 in such a way that the integral of the right-hand
side of Equation (14) vanishes. However, assuming that has been done, 𝜆 is determined up to a
constant given a solution to Equations (11) – (12).

6.2 The direction towards the singularity

In the study of the direction towards the singularity, it is convenient to change the time coordinate
to 𝑡 = 𝑒−𝜏 , so that the singularity corresponds to 𝜏 → ∞. The metric then becomes

𝑔𝑇 3 = 𝑒(𝜏−𝜆)/2(−𝑒−2𝜏𝑑𝜏2 + 𝑑𝜃2) + 𝑒−𝜏 [𝑒𝑃 𝑑𝜎2 + 2𝑒𝑃𝑄𝑑𝜎𝑑𝛿 + (𝑒𝑃𝑄2 + 𝑒−𝑃 )𝑑𝛿2]. (15)

Here, 𝜏 ∈ R and (𝜃, 𝜎, 𝛿) are coordinates on T 3. Einstein’s vacuum equations take the form

𝑃𝜏𝜏 − 𝑒−2𝜏𝑃𝜃𝜃 − 𝑒2𝑃 (𝑄2
𝜏 − 𝑒−2𝜏𝑄2

𝜃) = 0, (16)

𝑄𝜏𝜏 − 𝑒−2𝜏𝑄𝜃𝜃 + 2(𝑃𝜏𝑄𝜏 − 𝑒−2𝜏𝑃𝜃𝑄𝜃) = 0, (17)

and

𝜆𝜏 = 𝑃 2
𝜏 + 𝑒−2𝜏𝑃 2

𝜃 + 𝑒2𝑃 (𝑄2
𝜏 + 𝑒−2𝜏𝑄2

𝜃), (18)

𝜆𝜃 = 2(𝑃𝜃𝑃𝜏 + 𝑒2𝑃𝑄𝜃𝑄𝜏 ). (19)

6.3 Wave-map structure

It is of interest to note that Equations (16) – (17) are of wave-map type. The domain is given by
R× 𝑇 2 with the metric

𝑔0 = −𝑒−2𝜏𝑑𝜏2 + 𝑑𝜃2 + 𝑒−2𝜏𝑑𝜒2

and the target is R2 with the metric

𝑔𝑅 = 𝑑𝑃 2 + 𝑒2𝑃 𝑑𝑄2. (20)
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Equations (16) – (17) are the wave-map equations for a map from (R×𝑇 2, 𝑔0) to (R2, 𝑔𝑅), which is
independent of the 𝜒-coordinate. In other words, they coincide with the Euler–Lagrange equations
corresponding to the action∫︁ ∫︁

[−𝑃 2
𝜏 − 𝑒2𝑃𝑄2

𝜏 + 𝑒−2𝜏 (𝑃 2
𝜃 + 𝑒2𝑃𝑄2

𝜃)]𝑑𝜃𝑑𝜏.

6.3.1 Representations of hyperbolic space

It is of interest to note that (R2, 𝑔𝑅) is isometric to hyperbolic space. In fact,

𝜑𝑅𝐻(𝑄,𝑃 ) = (𝑄, 𝑒−𝑃 ) (21)

gives an isometry from (R2, 𝑔𝑅) to the upper half plane model of hyperbolic space, (𝐻, 𝑔𝐻), where
𝐻 = {(𝑥, 𝑦) ∈ R2 : 𝑦 > 0} and

𝑔𝐻 =
𝑑𝑥2 + 𝑑𝑦2

𝑦2
. (22)

For certain considerations, the upper half plane is an inappropriate model of hyperbolic space. The
reason is that the upper half plane has a preferred boundary point, namely infinity; see Section 9.3.
The disc model, given by the Riemannian metric

𝑔𝐷 =
4(𝑑𝑥2 + 𝑑𝑦2)

(1− 𝑥2 − 𝑦2)2
, (23)

on the open unit disc 𝐷 does not have preferred boundary points, and therefore is sometimes
preferable. Using complex notation,

𝜑𝐻𝐷 =
𝑧 − 𝑖

𝑧 + 𝑖

yields an isometry from the upper half plane to the disc model. By composing 𝜑𝐻𝐷 with 𝜑𝑅𝐻 , we
obtain an isometry from (R2, 𝑔𝑅) to (𝐷, 𝑔𝐷). The expression is given by

𝜑𝑅𝐷(𝑄,𝑃 ) =
𝑄+ 𝑖(𝑒−𝑃 − 1)

𝑄+ 𝑖(𝑒−𝑃 + 1)
. (24)

6.4 Conserved quantities, kinetic energy density

The fact that Equations (11) – (12) are wave-map equations has some important consequences. In
particular, since the target has a three-dimensional isometry group, there should be three conserved
quantities. In fact, there are constants 𝐴, 𝐵 and 𝐶 such that

𝐴 =

∫︁
𝑆1

{2𝑄(𝑡𝑄𝑡)𝑒
2𝑃 − 2(𝑡𝑃𝑡)}𝑑𝜃 (25)

𝐵 =

∫︁
𝑆1

𝑒2𝑃 (𝑡𝑄𝑡)𝑑𝜃 (26)

𝐶 =

∫︁
𝑆1

{(𝑡𝑄𝑡)(1− 𝑒2𝑃𝑄2) + 2𝑄(𝑡𝑃𝑡)}𝑑𝜃. (27)

That the derivatives of the right-hand sides of these expressions are zero can be verified using
Equations (11) – (12).

Another important consequence of the wave-map structure is the fact that isometries of hyper-
bolic space map solutions to solutions.
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Finally, it is convenient to introduce the kinetic energy density,

𝒦 = 𝑃 2
𝜏 + 𝑒2𝑃𝑄2

𝜏 . (28)

Note that this quantity is obtained by computing the time derivative of the wave map and then
taking the squared length of the resulting vector field using the target metric. As a consequence,
the kinetic energy is a geometric object. In other words, two solutions related by an isometry have
the same kinetic energy density.
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7 Singularity, Polarized Case

The proof of strong cosmic censorship, in the polarized as well as in the T 3-Gowdy case, proceeds
via Conjecture 2. In other words, it consists of a proof of the fact that, generically, the curvature
is unbounded in the incomplete directions of causal geodesics. In the polarized case with S 3 and
S 2

Ö S 1 topology, the causal geodesics can be proven to be incomplete both to the future and to
the past [21, p. 1673]. Thus, in those cases it is only necessary to analyze the singularities. In
the case of T 3-Gowdy, there is an expanding direction, and it is necessary to prove that causal
geodesics are complete in that direction. In general, it is thus necessary to analyze the behavior
in the direction towards the singularity and the behavior in the expanding direction. Since the
methods involved are very different, we shall consider the two cases separately. Furthermore, since
the analysis in the polarized and general cases are quite different, we shall begin by describing the
analysis in the direction towards the singularity in polarized Gowdy.

7.1 Equations, polarized T 3-Gowdy

In the case of polarized Gowdy, 𝑄 = 0, so that Equations (16) – (19) reduce to

𝑃𝜏𝜏 − 𝑒−2𝜏𝑃𝜃𝜃 = 0, (29)

𝜆𝜏 = 𝑃 2
𝜏 + 𝑒−2𝜏𝑃 2

𝜃 , (30)

𝜆𝜃 = 2𝑃𝜃𝑃𝜏 . (31)

As an aside, it is of interest to note that the set 𝑄 = 0 coincides with the image of a geodesic in
hyperbolic space (R2, 𝑔𝑅). This system of equations should be compared with (11a) – (11d) of [50]
(note, however, that the variables of [50] are somewhat different).

7.2 Associated Velocity Term Dominated system

Proceeding along the lines of [50], let us define the associated VTD system given by

𝑃VD,𝜏𝜏 = 0, (32)

𝜆VD,𝜏 = 𝑃 2
VD,𝜏 , (33)

𝜆VD,𝜃 = 2𝑃VD,𝜃𝑃VD,𝜏 ; (34)

see [50, (13a) – (13d), p. 92]. Clearly, this system can be integrated explicitly. In particular,

𝑃VD(𝜏, 𝜃) = 𝑣VD(𝜃)𝜏 + 𝜑VD(𝜃)

for some smooth functions 𝑣VD(𝜃) and 𝜑VD. Given this information, 𝜆VD can then be calculated.

7.3 Asymptotics of the solution to the polarized T 3-Gowdy equations

Let us briefly illustrate how one can obtain conclusions concerning solutions to Equations (29) – (31)
similar to those obtained for the VTD system. Define the energies as

𝐸𝑘 =
1

2

∑︁
𝑗≤𝑘−1

∫︁
𝑆1

[(𝜕𝑗𝜃𝜕𝜏𝑃 )
2 + 𝑒−2𝜏 (𝜕𝑗+1

𝜃 𝑃 )2]𝑑𝜃

for 𝑘 ≥ 1. Differentiating with respect to 𝜏 , integrating by parts and using Equation (29) leads
to the conclusion that the energies 𝐸𝑘 are decaying. Combining this observation with Sobolev
embedding leads to the conclusion that, regardless of the choice of 𝑗, 𝜕𝑗𝜃𝜕𝜏𝑃 is bounded to the
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future. Consequently, regardless of the choice of 𝑗, 𝜕𝑗𝜃𝑃 does not grow faster than linearly to the
future. Inserting this information into Equation (29) and integrating yields two smooth functions
𝑣 and 𝜑 such that

𝑃 (𝜏, 𝜃) = 𝑣(𝜃)𝜏 + 𝜑(𝜃) + 𝑢(𝜏, 𝜃), 𝑃𝜏 (𝜏, 𝜃) = 𝑣(𝜃) + 𝑤(𝜏, 𝜃), (35)

where 𝑢 and 𝑤 are functions such that they and all their spatial derivatives are 𝑂(𝜏𝑒−2𝜏 ). In other
words, the leading-order behavior is given by the solution to the VTD equations, and the VTD
equations, in their turn, are obtained by essentially dropping the spatial derivatives. The above
analysis should be compared with [50, Theorem III.5, pp. 102–103].

7.4 Curvature blow up, polarized T 3-case

From the point of view of proving strong cosmic censorship, the main reason for wanting to derive
expansions of the form of Equation (35) is that they can be used to prove curvature blow up. It
turns out that criteria for curvature blow up and the absence thereof can be formulated in terms
of 𝑣. Consider a past inextendible causal curve 𝛾. Due to the form of the metric (2), it is clear
that the 𝜃-coordinate of this curve has to converge in the direction towards the singularity. Call
the limiting value 𝜃0. Then, if

� 𝑣2(𝜃0) ̸= 1,

� 𝑣2(𝜃0) = 1 but 𝜕𝜃𝑣(𝜃0) ̸= 0, or

� 𝑣2(𝜃0) = 1, 𝜕𝜃𝑣(𝜃0) = 0, but 𝜕2𝜃𝑣(𝜃0) ̸= 0,

the Kretschmann scalar is unbounded along 𝛾 in the direction of the singularity. Otherwise, it is
bounded. This result, as well as quantitative estimates for the rate at which the curvature tends
to infinity, is contained in [50, Theorem IV.1, p. 105].

7.5 Asymptotic velocity, polarized T 3-case

It is of interest to note that the quantity 𝑣, or, more precisely, its absolute value, has a geometric
significance. Viewing Equations (16) – (17) as solutions to the wave-map equation, the kinetic
energy density 𝒦 is a geometric object; see Section 6.4. Furthermore, due to the asymptotics of
Equation (35), we have

𝑣2(𝜃) = lim
𝜏→∞

𝒦(𝜏, 𝜃).

Consequently, 𝑣2 is a geometric object. The quantity |𝑣| can also be characterized as the rate at
which solutions tend to the boundary of hyperbolic space; if 𝑥0 is a fixed point in hyperbolic space
and the solution is represented by 𝑥, then

|𝑣(𝜃)| = lim
𝜏→∞

𝑑𝐻(𝑥(𝜏, 𝜃), 𝑥0)

𝜏
, (36)

where 𝑑𝐻 is the topological metric induced on hyperbolic space by the hyperbolic metric. To
conclude, |𝑣(𝜃)| can be characterized geometrically when viewing Equations (16) – (17) as wave-
map equations. Furthermore, in the polarized setting, its properties can be used to characterize
curvature blow up. We shall loosely refer to 𝑣 as the velocity.

7.6 S2
Ö S1 and S3 cases

The S 3 and S 2
Ö S 1 cases are also treated in [50]. The results and the analysis are similar but

more technical due to the presence of the axes. Consequently, we refer the interested reader to [50]
for the details.
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8 Asymptotic Expansions Using Fuchsian Methods, Gen-
eral T 3-Case

The analysis in the polarized case, which we outlined above, illustrates the importance of being
able to compute asymptotic expansions. Thus, in analyzing the general case it is natural to begin
by trying to carry out a similar computation. As we observed in Section 5.2, there are two different
ways to proceed. One is to derive expansions given the solution. The other is to prove the existence
of solutions with specified asymptotics. In the present section, we are concerned with the latter
perspective.

The natural starting point for the exposition is the formal expansions in the general T 3-Gowdy
case, which were derived in [40]. In [54], Fuchsian methods were then used to prove their existence.
With respect to our parametrization of the metric, the expansions take the form

𝑃 (𝜏, 𝜃) = 𝑣𝑎(𝜃)𝜏 + 𝜑(𝜃) + 𝑢(𝜏, 𝜃) (37)

𝑄(𝜏, 𝜃) = 𝑞(𝜃) + 𝑒−2𝑣𝑎(𝜃)𝜏 [𝜓(𝜃) + 𝑤(𝜏, 𝜃)], (38)

where 𝑤, 𝑢→ 0 as 𝜏 → ∞ and 0 < 𝑣𝑎(𝜃) < 1. Let us comment on a few aspects of these expansions.

8.1 Geometric interpretation of va

Assuming that the derivatives of 𝑢 and 𝑤 with respect to time and space tend to zero, the expan-
sions (37) – (38) imply (recall that 𝑣𝑎 > 0)

𝑣𝑎(𝜃) = lim
𝜏→∞

𝒦1/2(𝜏, 𝜃), (39)

where the kinetic energy density 𝒦 is given by Equation (28). In other words, from a geometric
point of view, 𝑣𝑎 is the same object as in the polarized case. Furthermore, it is possible to
prove that if expansions of the form of Equations (37) – (38) hold with 0 < 𝑣𝑎(𝜃0) < 1, then the
Kretschmann scalar is unbounded along causal curves whose 𝜃-component converges to 𝜃0 in the
direction towards the singularity; see Section 7.4. As in the polarized case, we shall refer to 𝑣𝑎 as
the velocity. The condition 0 < 𝑣𝑎 < 1 will in the future be referred to as low velocity, whereas
𝑣𝑎 ≥ 1 will be referred to as high velocity.

8.2 Restriction on the velocity

Note that Equation (37) is, disregarding the difference in notation, identical to the first equation
in (35). However, in the present setting, there is a restriction on 𝑣𝑎, which did not appear in the
polarized case. The essential part of this restriction is the inequality 0 < |𝑣𝑎(𝜃)| < 1; the sign of
𝑣𝑎 is not of central importance. The restriction 𝑣𝑎 < 1 is due to the fact that there is a potential
inconsistency with Equation (16) if 𝑣𝑎 ≥ 1; assuming the derivatives of 𝑢 and 𝑤 with respect
to time and space to tend to zero, all the terms in Equation (16) tend to zero except, possibly,
𝑒2𝑃−2𝜏𝑄2

𝜃, which is roughly 𝑒2(𝑣𝑎(𝜃)−1)𝜏𝑞2𝜃(𝜃). In fact, if 𝑣𝑎(𝜃) ≥ 1 and 𝑞𝜃(𝜃) ̸= 0, the expansions
are clearly inconsistent. Furthermore, considering Equation (16), the term 𝑒2𝑃−2𝜏𝑄2

𝜃 would in that
case seem to have the effect of causing 𝑃𝜏 to decrease. For a further discussion, see [10].

8.3 Geodesic loop

Consider a solution with asymptotics of the form of Equations (37) – (38) and 𝑣𝑎(𝜃) > 0. Then
𝑄(𝜏, 𝜃) converges and 𝑃 (𝜏, 𝜃) tends to infinity as 𝜏 → ∞. In other words, for a fixed 𝜃, the solution
roughly speaking goes to the boundary along a geodesic in hyperbolic space; see Equation (21).
Since 𝑃 and 𝑄, for a fixed 𝜏 , define a loop in hyperbolic space, the solution is asymptotically
approximated by a “loop of geodesics”.
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8.4 Existence of expansions using Fuchsian methods, T 3-case

In [54], Kichenassamy and Rendall proved the existence of expansions in the real analytic setting.
In other words, they proved that, given real analytic 𝑣𝑎, 𝜑, 𝑞, 𝜓 with 0 < 𝑣𝑎 < 1, there is a unique
solution to Equations (16) – (17) with expansions of the form of Equations (37) – (38). Note that
the number of functions that are freely specifiable in the expansions coincides with the number of
functions that need to be specified in order to obtain a unique solution to the initial value problem
corresponding to Equations (16) – (17). For reasons mentioned in Section 8.2, the expansions suffer
from a potential consistency problem in the case of 𝑣𝑎 ≥ 1 and 𝑞𝜃 ̸= 0. However, in [54] it was
proven that if 𝑞 is constant, the condition on 𝑣𝑎 can be relaxed to 𝑣𝑎 > 0. The regularity condition
of [54] was relaxed to smoothness in [68].

8.5 Existence of expansions using Fuchsian methods, S2
Ö S1 and S3

cases

There are results concerning the existence of expansions in the S 2
Ö S 1 and S 3 cases as well [86].

However, the analysis is complicated by the presence of the axes; regularity conditions lead to
the requirement that the velocity has to be either –1 or 3 there. As a consequence, the result
is different, since such values of the velocity are inconsistent with expansions containing the full
number of free functions. We refer the reader interested in more details to [86].
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9 Spikes

Numerical studies of solutions to Equations (16) – (17) indicate that for most spatial points, be-
havior similar to that described by the asymptotic expansions (37) – (38) occurs [11, 10]. However,
the studies also indicate that there are exceptional spatial points at which the behavior is different.
Due to the appearance of the solutions in the neighborhood of the exceptional points, the corre-
sponding features have been referred to as “spiky features” or “spikes”. Their existence would seem
to necessitate an understanding of the “spikes” on an analytical level in order to be able to describe
the asymptotics of general T 3-Gowdy solutions. An important step in this direction was achieved
by demonstrating the existence of a large class of solutions to Equations (16) – (17) with spikes
[71]. In order to be able to describe these solutions, we need to introduce some transformations
taking solutions to solutions.

9.1 Inversion

As was explained in Section 6.3, Equations (16) – (17) can be viewed as wave-map equations with
hyperbolic space as a target. As a consequence, isometries of hyperbolic space map solutions to
solutions. In the context of spikes, one isometry of (R2, 𝑔𝑅), which is particularly important (as
was noted in [71]) is

Inv(𝑄0, 𝑃0) =

[︂
𝑄0

𝑄2
0 + 𝑒−2𝑃0

, 𝑃0 + ln(𝑄2
0 + 𝑒−2𝑃0)

]︂
. (40)

We shall refer to this isometry as an inversion; in the upper half plane, it corresponds to an
inversion in the unit circle with center at the origin.

9.2 Gowdy to Ernst transformation

In the construction of spikes, the Gowdy to Ernst transformation [71, p. 2963] will play an im-
portant role. Let (𝑄,𝑃 ) be a solution to Equations (16) – (17) with 𝜃 ∈ R. In other words, the
solution need not be periodic in the spatial variable. Then, up to a constant translation in 𝑄1,
two smooth functions 𝑄1 and 𝑃1 are defined by

𝑃1 = 𝜏 − 𝑃, 𝑄1𝜏 = −𝑒2(𝑃−𝜏)𝑄𝜃, 𝑄1𝜃 = −𝑒2𝑃𝑄𝜏 . (41)

Note that Equation (17) ensures that the definitions of 𝑄1𝜏 and 𝑄1𝜃 are compatible. Furthermore,
(𝑄1, 𝑃1) solve Equations (16) – (17). Assuming 𝑄1(𝜏0, 𝜃0) = 𝑞0, we shall denote the corresponding
transformation, defined by Equation (41), by GE𝑞0,𝜏0,𝜃0 :

(𝑄1, 𝑃1) = GE𝑞0,𝜏0,𝜃0(𝑄,𝑃 ).

We shall refer to this transformation as the Gowdy to Ernst transformation. Note that, even
if (𝑄,𝑃 ) is periodic in 𝜃, the same need not be true of (𝑄1, 𝑃1). However, here we are mainly
interested in local (in space) properties of the solutions, and, therefore, this aspect is not important.

9.3 False spikes

One way of constructing a spike is to start with a solution (𝑄,𝑃 ) with asymptotic expansions of
the form of Equations (37) – (38), where 0 < 𝑣𝑎 < 1 (due to [68], we know that such solutions exist
and that we are free to specify the functions 𝑣𝑎, 𝜑, 𝑞, 𝜓, assuming 0 < 𝑣𝑎 < 1). Assume that 𝑞 has
the properties that 𝑞(𝜃0) = 0 and that 𝑞 ̸= 0 in the punctured neighborhood of 𝜃0. Applying an
inversion to (𝑄,𝑃 ), we obtain

(𝑄1, 𝑃1) = Inv(𝑄,𝑃 ). (42)
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Figure 1: 𝑄1 in the neighborhood of a false spike for a fixed 𝜏 .
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Figure 2: 𝑃1 in the neighborhood of a false spike for a fixed 𝜏 .
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By combining the expansions (37) – (38) and (40), it is possible to conclude that if 𝑞(𝜃) ̸= 0,
there is the neighborhood of 𝜃 such that there are expansions for (𝑄1, 𝑃1) of the same form as the
ones for (𝑄,𝑃 ) in that neighborhood. However, at the point 𝜃0, the situation is different. In fact,
Equation (40) implies that

𝑃1(𝜏, 𝜃0) = −𝑃 (𝜏, 𝜃0) + ln[1 + 𝑒2𝑃 (𝜏,𝜃0)𝑄2(𝜏, 𝜃0)].

Furthermore, the last term converges to zero exponentially due to Equation (37), Equation (38)
and the fact that 𝑞(𝜃0) = 0. In particular,

lim
𝜏→∞

𝑃1𝜏 (𝜏, 𝜃0) = −𝑣𝑎(𝜃0). (43)

However, for 𝜃 in the punctured neighborhood of 𝜃0, we have

lim
𝜏→∞

𝑃1𝜏 (𝜏, 𝜃) = 𝑣𝑎(𝜃). (44)
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Figure 3: 𝑃1𝜏 in the neighborhood of a false spike for a fixed 𝜏 .

Due to the fact that the limit of 𝑃1𝜏 has a discontinuity at 𝜃0, the point 𝜃0 is called a spike for
the solution (𝑄1, 𝑃1).

In order to understand this phenomenon better, it is of interest to consider the asymptotic
behavior of (𝑄,𝑃 ) and (𝑄1, 𝑃1) in the upper half plane model. Since 𝑣𝑎(𝜃0) > 0 and 𝑞(𝜃0) = 0, we
have

lim
𝜏→∞

𝜑𝑅𝐻 [𝑄(𝜏, 𝜃0), 𝑃 (𝜏, 𝜃0)] = lim
𝜏→∞

[𝑄(𝜏, 𝜃0), 𝑒
−𝑃 (𝜏,𝜃0)] = (0, 0).

In other words, the solution, at 𝜃0, converges to the origin in the upper half plane. On the other
hand, in the punctured neighborhood of 𝜃0, the solution converges a to point on the real line
different from the origin. The inversion Inv maps the origin to infinity, but it maps the points
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on the real line different from the origin to points on the real line (different from the origin). In
other words, the appearance of the “spike” described above is a result of the fact that the upper
half plane model of hyperbolic space has a preferred boundary point, namely infinity. In the disc
model of hyperbolic space, it is not meaningful to speak of spikes of the above form. In particular,

lim
𝜏→∞

𝒦1(𝜏, 𝜃) = 𝑣2𝑎(𝜃)

for all 𝜃, where 𝒦1 is the kinetic energy density associated with the solution (𝑄1, 𝑃1). In other
words, this limit is smooth even though the limit of 𝑃1𝜏 is discontinuous. As a consequence of the
nongeometric nature of the above spikes, we shall refer to them as “false spikes”.

In Figures 1 and 2, we have plotted 𝑄1 and 𝑃1, respectively, in the neighborhood of a false
spike. The figures have been obtained by making a specific choice of 𝑣𝑎, 𝜑, 𝑞, 𝜓, ignoring 𝑢 and 𝑤
in Equations (37) – (38) and applying an inversion. They represent the solution at a fixed point in
time. We have also plotted 𝑃1𝜏 in the neighborhood of a spike in Figure 3.

9.3.1 True spikes

In order to give an example of a true spike, let (𝑄,𝑃 ) be a solution to (16) – (17) with asymptotic
expansions of the form of Equations (37) – (38), where 0 < 𝑣𝑎 < 1, 𝑞(𝜃0) = 0 and 𝑞(𝜃) ̸= 0
in some punctured neighborhood of 𝜃0. Applying an inversion, we obtain (𝑄1, 𝑃1) according to
Equation (42). Applying the Gowdy to Ernst transformation produces a true spike:

(𝑄2, 𝑃2) = GE𝑞0,𝜏0,𝜃0(𝑄1, 𝑃1).
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Figure 4: 𝑃2 in the neighborhood of a true spike for a fixed 𝜏 .

In Figure 4, we have plotted 𝑃2 in the neighborhood of a true spike; we have not plotted 𝑄2,
since it is regular in the neighborhood of the spike, even in the limit. The particular values of the
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constants (𝑞0, 𝜏0, 𝜃0) are not of importance. Since 𝑃2𝜏 = 1− 𝑃1𝜏 , we conclude that

lim
𝜏→∞

𝑃2𝜏 (𝜏, 𝜃0) = 1 + 𝑣𝑎(𝜃0),

due to Equation (43), and
lim
𝜏→∞

𝑃2𝜏 (𝜏, 𝜃) = 1− 𝑣𝑎(𝜃)
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Figure 5: 𝑃2𝜏 in the neighborhood of a true spike for a fixed 𝜏 .

for 𝜃 in the punctured neighborhood of 𝜃0, due to Equation (44). In Figure 5, we have plotted
𝑃2𝜏 in the neighborhood of a true spike. In the case of a true spike, the limit of 𝒦2, the kinetic
energy density associated with the solution (𝑄2, 𝑃2), is discontinuous at 𝜃0. Consequently, the
discontinuity is a geometric feature of the solution to the wave-map equations. Furthermore, the
Kretschmann scalar blows up at different rates at the tip of the spike than in the punctured
neighborhood; see the bottom of [71, p. 2966]. For these reasons, we shall refer to 𝜃0 as a true
spike associated with the solution (𝑄2, 𝑃2).

9.4 High velocity spikes

It is possible to iterate the procedure leading to a true spike. This leads to spikes with an arbitrary
high velocity; see [71, p. 2972]. In [36], numerical investigations of spikes of this type were carried
out.
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10 Asymptotic Velocity, General T 3-Gowdy

The results we described in Section 8 and 9 consisted of constructions of solutions with certain types
of asymptotics. However, considering the formulation of the strong cosmic-censorship conjecture,
it is of interest to obtain conclusions given assumptions, which are phrased in terms of the initial
data. The first question to ask is if there is a condition on initial data, which ensures the existence
of asymptotic expansions. In [76], such a condition was established. Being phrased in terms of L2-
based energies, the condition is rather technical. However, it does have the advantage of applying to
higher dimensional analogues of the equations (as opposed to much of the analysis to be described
below). Other, less technical, conditions were later established [12, 74]. Even though these results
are of interest, they still only describe a part of the dynamics (as the construction of spikes, see
Section 9, demonstrates). The question then arises concerning how to proceed. Considering the
analysis in the polarized case, the asymptotic expansions (37) – (38) and the spikes, it is clear that
the velocity 𝑣 plays a central role. Thus, it is natural to try to prove that it is possible to make
sense of the concept of a velocity under more general circumstances.

10.1 Existence of an asymptotic velocity

That it is possible to define an asymptotic velocity in all generality was demonstrated in [79] (see
also [12] for related results).

If there are expansions of the form (37) – (38), we have seen that 𝑣𝑎 can be computed according
to Equation (39). As a consequence, it is of interest to ask if the limit on the right-hand side of this
equation always exists. Due to [79, Corollary 6.9, p. 1009], the answer is yes. As a consequence,
we are naturally led to the following definition.

Definition 4 Let (𝑄,𝑃 ) be a solution to Equations (16) – (17) and let 𝜃0 ∈ 𝑆1. Then we define
the asymptotic velocity at 𝜃0 to be

𝑣∞(𝜃0) =
[︁
lim
𝜏→∞

𝒦(𝜏, 𝜃0)
]︁1/2

.

10.2 Relevance of the asymptotic velocity to the issue of curvature blow
up

Due to the definition, it is clear that 𝑣∞ is a geometric object from the wave-map perspective.
Furthermore, it is possible to prove that if 𝑣∞(𝜃0) ̸= 1, then the curvature blows up along any
causal curve ending at 𝜃0; see the proof of [79, Proposition 1.19, p. 989].

Note that the Gowdy metric corresponding to 𝑃 (𝜏, 𝜃) = 𝜏 , 𝑄 = 0 and 𝜆(𝜏, 𝜃) = 𝜏 is the flat
Kasner metric. Consequently, the curvature tensor is in that case identically zero. For this solution,
𝑣∞ = 1. In particular, if 𝑣∞(𝜃0) = 1, the Kretschmann scalar need not necessarily be unbounded
along a causal curve ending at 𝜃0.

10.3 Interpretation of the asymptotic velocity as a rate of convergence
to the boundary in hyperbolic space

Similarly to the discussion carried out in the polarized case, the asymptotic velocity 𝑣∞ can
be interpreted as the rate at which the solution goes to the boundary of hyperbolic space; see
Equation (36). Given a solution (𝑄,𝑃 ), we shall let 𝜌(𝜏, 𝜃) denote the hyperbolic distance from a
reference point to [𝑄(𝜏, 𝜃), 𝑃 (𝜏, 𝜃)] (the particular choice of reference point is not of importance).
Then

lim
𝜏→∞

𝜌(𝜏, 𝜃0)

𝜏
= 𝑣∞(𝜃0);
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see [79, Theorem 1.2, p. 982].

10.4 Two dimensional version of the asymptotic velocity

In the proof of strong cosmic censorship, it is of importance to note that it is meaningful to consider
the velocity to be a two-dimensional object. The two-dimensional character is most easily seen by
considering the solution in the disc model. Given a solution 𝑥 = (𝑄,𝑃 ) to Equations (16) – (17),
let 𝑧 = 𝜑𝑅𝐷 ∘ 𝑥, where 𝜑𝑅𝐷 is defined in Equation (24). Then the limit

lim
𝜏→∞

[︂
𝑧

|𝑧|
𝜌

𝜏

]︂
(𝜏, 𝜃)

always exists due to [79, Lemma 6.17, p. 1011] (as an aside, it is worth noting that 𝜌/|𝑧| is a real
analytic function from the open unit disc to the real numbers if 𝜌 is the hyperbolic distance from
the origin of the unit disc to 𝑧; see [79, Remark 6.18, p. 1011]). It would be reasonable to call this
limit, which we shall refer to as 𝑣(𝜃), the velocity, since it contains information not only concerning
size, but also concerning direction. However, the most important aspect of this construction is that
it is two-dimensional. An essential step of the proof of strong cosmic censorship is to perturb away
from zero velocity. In the case of polarized Gowdy, this is not possible. However, if the velocity is
a two-dimensional object, it is at least potentially possible.

10.5 Dominant contribution to the asymptotic velocity

It is important to note that, not only does the kinetic energy density converge pointwise, but in the
limit, the only term contributing is 𝑃 2

𝜏 . In fact, the following result holds (see [79, Proposition 1.3,
p. 983]):

Proposition 1 Consider a solution to Equations (16) – (17) and let 𝜃0 ∈ 𝑆1. Then, either
𝑃𝜏 (𝜏, 𝜃0) converges to 𝑣∞(𝜃0) or to −𝑣∞(𝜃0). If 𝑃𝜏 (𝜏, 𝜃0) → −𝑣∞(𝜃0), then (𝑄1, 𝑃1) = Inv(𝑄,𝑃 )
has the property that 𝑃1𝜏 (𝜏, 𝜃0) → 𝑣∞(𝜃0). Furthermore, if 𝑣∞(𝜃0) > 0, then 𝑄1(𝜏, 𝜃0) converges
to 0.

Similar to what we have already seen for false spikes, see Section 9.3, we see that by applying an
inversion we can always obtain a non-negative limit for 𝑃𝜏 .

10.6 Value of the asymptotic velocity as a criterion for the existence of
expansions

Not only is the asymptotic velocity a geometric quantity (from the wave-map perspective), not
only can it be used as an indicator for curvature blow up, it can also be used as a criterion to
determine whether asymptotic expansions exist or not. There are many results of this form, see,
e.g., [12, 76, 83]. However, we shall only describe some of them, beginning with [79, Proposition 1.5,
p. 984] (note that this result was essentially obtained in a previous paper [74]):

Proposition 2 Let (𝑄,𝑃 ) be a solution to Equations (16) – (17) and assume 0 < 𝑣∞(𝜃0) < 1. If
𝑃𝜏 (𝜏, 𝜃0) converges to 𝑣∞(𝜃0), then there is an open interval 𝐼 containing 𝜃0, 𝑣𝑎, 𝜑, 𝑞, 𝑟 ∈ 𝐶∞(𝐼,R),
0 < 𝑣𝑎 < 1, polynomials Ξ𝑘 for all 𝑘 ∈ N and a 𝑇 such that for all 𝜏 ≥ 𝑇

‖𝑃𝜏 (𝜏, ·)− 𝑣𝑎‖𝐶𝑘(𝐼,R) ≤ Ξ𝑘(𝜏)𝑒
−𝛼𝜏 , (45)

‖𝑃 (𝜏, ·)− 𝑝(𝜏, ·)‖𝐶𝑘(𝐼,R) ≤ Ξ𝑘(𝜏)𝑒
−𝛼𝜏 , (46)⃦⃦⃦

𝑒2𝑝(𝜏,·)𝑄𝜏 (𝜏, ·)− 𝑟
⃦⃦⃦
𝐶𝑘(𝐼,R)

≤ Ξ𝑘(𝜏)𝑒
−𝛼𝜏 , (47)
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⃦⃦⃦⃦
𝑒2𝑝(𝜏,·)[𝑄(𝜏, ·)− 𝑞] +

𝑟

2𝑣𝑎

⃦⃦⃦⃦
𝐶𝑘(𝐼,R)

≤ Ξ𝑘(𝜏)𝑒
−𝛼𝜏 (48)

where 𝑝(𝜏, ·) = 𝑣𝑎 · 𝜏 + 𝜑 and 𝛼 > 0. If 𝑃𝜏 (𝜏, 𝜃0) converges to −𝑣∞(𝜃0), then Inv(𝑄,𝑃 ) has
expansions of the above form in the neighborhood of 𝜃0.

It is worth noting that the above proposition proves that if 0 < 𝑣∞(𝜃0) < 1, then 𝑣∞ is smooth
in the neighborhood of 𝜃0. In other words, knowledge concerning 𝑣∞ at one point can sometimes
yield conclusions in the neighborhood of that point; see [79, Remark 1.6, p. 985].

Equation (48) essentially has the same content as Equation (38). In order to see this, define
the object inside the norm on the left-hand side of Equation (48) to be �̃�. Then

𝑄 = 𝑞 + 𝑒−2𝑝

[︂
− 𝑟

2𝑣𝑎
+ �̃�

]︂
.

Using the above expansions and equations, expressions for the higher-order time derivatives can
be derived.
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11 The Generic Set, General T 3-Gowdy

There are general results concerning the asymptotic behavior in the direction of the singularity
for T 3-Gowdy spacetimes; there is, e.g., an open and dense subset ℰ of the circle such that there
are smooth expansions on ℰ ; see [12, Theorem 1.3, p. 1018] and [79, Proposition 1.9, p. 985].
However, the results of [54, 68, 71] show that the asymptotic behavior of solutions is in general
very complicated; there are, e.g., solutions with an infinite number of true spikes. On the other
hand, much of the complicated behavior can be expected to be unstable, i.e., nongeneric. Thus,
since the strong cosmic-censorship conjecture is only a statement concerning generic solutions, it
is natural to try to find a set of solutions whose asymptotics are generic but less complicated than
those of general solutions. The purpose of the present section is to define one generic set of initial
data. Since the concepts nondegenerate true and false spikes play a central role, let us begin by
defining them.

11.1 Nondegenerate true spikes

The definition of a nondegenerate true spike proceeds by running the construction of a true spike
backwards. In other words, we start with a solution (𝑄,𝑃 ) such that 1 < 𝑣∞(𝜃0) < 2 and
such that 𝑃𝜏 (𝜏, 𝜃0) → 𝑣∞(𝜃0). Letting (𝑄1, 𝑃1) = GE𝑞0,𝜏0,𝜃0(𝑄,𝑃 ), we see, by Equation (41),
that 𝑃1𝜏 (𝜏, 𝜃0) → 1 − 𝑣∞(𝜃0) < 0. Let (𝑄2, 𝑃2) = Inv(𝑄1, 𝑃1). Then, due to Proposition 1,
𝑃2𝜏 (𝜏, 𝜃0) → 𝑣∞(𝜃0)−1 and 𝑄2(𝜏, 𝜃0) → 0. Finally, Proposition 2 applies to (𝑄2, 𝑃2) so that there
are smooth expansions in the neighborhood 𝐼 of 𝜃0. In particular, there is a smooth function 𝑞2
such that 𝑄2 converges to 𝑞2 with respect to any 𝐶𝑘-norm. Moreover, it is important to note that
𝑞2(𝜃0) = 0. We are naturally led to [79, Definition 1.12, p. 987]:

Definition 5 Consider a solution (𝑄,𝑃 ) to Equations (16) – (17). Assume 1 < 𝑣∞(𝜃0) < 2 for
some 𝜃0 ∈ 𝑆1 and that

lim
𝜏→∞

𝑃𝜏 (𝜏, 𝜃0) = 𝑣∞(𝜃0).

Let (𝑄2, 𝑃2) = Inv ∘ GE𝑞0,𝜏0,𝜃0(𝑄,𝑃 ). By the observations made prior to the definition, (𝑄2, 𝑃2)
has smooth expansions in the neighborhood 𝐼 of 𝜃0. In particular 𝑄2 converges to a smooth function
𝑞2 in 𝐼 and the convergence is exponential in any 𝐶𝑘-norm. We call 𝜃0 a non-degenerate true spike
if 𝜕𝜃𝑞2(𝜃0) ̸= 0.

The choice of 𝑞0, 𝜏0, 𝜃0 is unimportant. Note that nondegenerate true spikes have punctured neigh-
borhoods with normal expansions.

11.2 Nondegenerate false spikes

Let us recall the definition of a nondegenerate false spike, [79, Definition 1.11, p. 986]:

Definition 6 Consider a solution (𝑄,𝑃 ) to Equations (16) – (17). Assume 0 < 𝑣∞(𝜃0) < 1 for
some 𝜃0 ∈ 𝑆1 and that

lim
𝜏→∞

𝑃𝜏 (𝜏, 𝜃0) = −𝑣∞(𝜃0).

Let (𝑄1, 𝑃1) = Inv(𝑄,𝑃 ). By Proposition 2, we get the conclusion that (𝑄1, 𝑃1) has smooth
expansions in a neighborhood 𝐼 of 𝜃0. In particular, 𝑄1 converges to a smooth function 𝑞1 in 𝐼,
and the convergence is exponential in any 𝐶𝑘-norm. By Proposition 1, 𝑞1(𝜃0) = 0. We call 𝜃0 a
nondegenerate false spike if 𝜕𝜃𝑞1(𝜃0) ̸= 0.

Note that nondegenerate false spikes have punctured neighborhoods with normal expansions.
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11.3 The generic set, definition

We are now in a position to give the definition of what, in the end, will turn out to be the generic
set, [79, Definition 1.14, p. 988]:

Definition 7 Let 𝒢𝑙,𝑚 be the set of smooth solutions (𝑄,𝑃 ) to Equations (16) – (17) on R × 𝑆1

with 𝑙 nondegenerate true spikes 𝜃1, ..., 𝜃𝑙 and 𝑚 nondegenerate false spikes 𝜃′1, ..., 𝜃
′
𝑚 such that

lim
𝜏→∞

𝑃𝜏 (𝜏, 𝜃) = 𝑣∞(𝜃),

for all 𝜃 /∈ {𝜃′1, ..., 𝜃′𝑚} and 0 < 𝑣∞(𝜃) < 1 for all 𝜃 /∈ {𝜃1, ..., 𝜃𝑙}. Let 𝒢𝑙,𝑚,𝑐 be the set of
(𝑄,𝑃 ) ∈ 𝒢𝑙,𝑚 such that ∫︁

𝑆1

(𝑃𝜏𝑃𝜃 + 𝑒2𝑃𝑄𝜏𝑄𝜃)𝑑𝜃 = 0. (49)

Finally

𝒢 =

∞⋃︁
𝑙=0

∞⋃︁
𝑚=0

𝒢𝑙,𝑚, 𝒢𝑐 =

∞⋃︁
𝑙=0

∞⋃︁
𝑚=0

𝒢𝑙,𝑚,𝑐.

11.4 Verification of genericity, openness

If it is possible to prove that 𝒢 is open and dense, it is justified to call it a generic set. A first step
in this direction is given by [79, Proposition 1.15, p. 988]:

Proposition 3 𝒢𝑙,𝑚 is open in the C2
Ö C1-topology on initial data and 𝒢𝑙,𝑚,𝑐 is open in the

C2
Ö C1-topology on the subset of initial data satisfying Equation (49).

It is of interest to note that the topology can be weakened somewhat if the only information of
interest concerning the asymptotics is that the asymptotic velocity is different from 1. In fact, [79,
Proposition 1.16, p. 988] states:

Proposition 4 Given 𝑧 ∈ 𝒢𝑙,𝑚, there is an open neighborhood of the initial data for 𝑧 in the
C1

Ö C0 topology such that for each corresponding solution 𝑧, 𝑣∞[𝑧](𝜃) ∈ (0, 1) ∪ (1, 2) for all
𝜃 ∈ 𝑆1.

Recall that an asymptotic velocity different from 1 implies curvature blow up.

11.5 Verification of genericity, density

Finally, [83, Theorem 2, p. 1190] yields the conclusion that 𝒢 is dense:

Theorem 3 𝒢 and 𝒢𝑐 are dense in 𝒮𝑝 and 𝒮𝑝,𝑐, respectively, with respect to the 𝐶∞-topology on
initial data.

Here 𝒮𝑝 and 𝒮𝑝,𝑐 are defined in [83, Definition 1, p. 1188]:

Definition 8 Let 𝒮𝑝 denote the set of smooth solutions to Equations (16) – (17) on R × 𝑆1, and
let 𝒮𝑝,𝑐 denote the subset of 𝒮𝑝 obeying∫︁

𝑆1

(𝑃𝜏𝑃𝜃 + 𝑒2𝑃𝑄𝜏𝑄𝜃)𝑑𝜃 = 0. (50)
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12 Expanding Direction, Polarized Gowdy

Since there is only an expanding direction in the case when spatial topology is T 3, the current
section is restricted to considerations of that case. For our purposes, it would be sufficient to
describe the results in the general case, since that would yield all the information needed concerning
the polarized case as well. However, for historical reasons, and since results have been obtained in
the polarized case that are as yet unavailable in the general case, we shall describe both.

Even though it is of no immediate relevance to the question of strong cosmic censorship, let us
note that there is a general picture concerning the future asymptotic behavior of vacuum solutions
to Einstein’s equations; see [1, 33] and references cited therein. In particular, a strong connection
between the future asymptotics and spatial topology is conjectured to exist. In [80] it was confirmed
that vacuum T 3-Gowdy fits into the general picture.

12.1 Asymptotic behavior

That the polarized vacuum T 3-Gowdy spacetimes are future causally geodesically complete was
announced in [21]; see [21, Step 3, p. 1677]. However, we shall here follow the presentation of [52].
The relevant equation to study is Equation (29). However, in the study of the expanding direction,
it is convenient to change the time coordinate to the original areal time 𝑡. The equation then
becomes

𝑃𝑡𝑡 +
1

𝑡
𝑃𝑡 − 𝑃𝜃𝜃 = 0. (51)

Since the equation is linear and the coefficients do not depend on the spatial coordinate, it is clear
that the spatial average of 𝑃 ,

⟨𝑃 ⟩ = 1

2𝜋

∫︁
𝑆1

𝑃 (·, 𝜃)𝑑𝜃,

solves the same equation. Furthermore, it is clear that there are constants 𝑎 and 𝑏 such that

⟨𝑃 ⟩ = 𝑎 ln 𝑡+ 𝑏.

It is of interest to know what the asymptotic behavior of the remainder is. It turns out that there
is a solution 𝜈 to the ordinary wave equation, i.e.,

𝜈𝑡𝑡 − 𝜈𝜃𝜃 = 0,

with zero average, i.e., ∫︁
𝑆1

𝜈(𝑡, 𝜃) = 0

for all 𝑡 > 0, and a function 𝜓, the average of which is also zero, such that

𝑃 (𝑡, 𝜃) = 𝑎 ln 𝑡+ 𝑏+ 𝑡−1/2𝜈(𝑡, 𝜃) + 𝜓(𝑡, 𝜃). (52)

Furthermore, 𝜓 and its first derivatives decay as 𝑡−3/2 and the division of Equation (52) is unique;
see [52, Corollary 11, p. 183] (note that the statement of this result is also to be found in [21,
(7a), p. 1675]). In short, given a solution 𝑃 , there are 𝑎, 𝑏 and 𝜈 as above (and then 𝜓 is uniquely
determined). It is of interest to ask if it is possible to go in the other direction. In other words,
given 𝑎, 𝑏 and 𝜈 as above, is there a solution with the above form of asymptotics. The answer to this
question is yes; see [78, Proposition 1, p. 1649]. In other words, 𝑎, 𝑏 and 𝜈, with properties as above
can be considered to be data at the moment of infinite expansion. Using the above information, it
is possible to prove that polarized vacuum T 3-Gowdy spacetimes are future causally-geodesically
complete; see [52, Corollary 21, p. 190].
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12.2 Comparison with spatially homogeneous solutions

Due to Equation (52), it seems natural to say that the solution tends to a spatially homogeneous
solution to the equations. However, this conclusion is strongly dependent on the norm chosen for
measuring deviations from spatial homogeneity. In fact, when comparing the time derivatives, the
situation is completely different;

𝑃𝑡 − ⟨𝑃𝑡⟩
⟨𝑃𝑡⟩

is generically unbounded to the future. In other words, with respect to this measure, the solution
is far from being spatially homogeneous.
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13 Expanding Direction, The General Case

Clearly, the situation is more complicated in the nonpolarized case. Consequently, it is natural to
start by asking questions concerning the rough behavior of solutions. It is also natural to carry
out numerical simulations. This was done in [8], a paper, which played an important role in the
further development of the subject. In the polarized case, the difference between the solution and
its spatial average converges to zero. Does the same phenomenon occur in the general case? This
is perhaps too complicated a question to start with, but it is of interest to know how the spatial
variation of the solution evolves with time. In order to define what is meant by the spatial variation,
recall that Equations (11) – (12) can be viewed as wave-map equations in which the metric of the
target is given by Equation (20). Furthermore, at each point in time, the solution defines a loop
in hyperbolic space. The natural definition of the spatial variation of the solution at one point in
time is the length of this loop with respect to the hyperbolic metric (20). In other words, it is
natural to ask how

ℓ =

∫︁
𝑆1

√︁
𝑃 2
𝜃 + 𝑒2𝑃𝑄2

𝜃𝑑𝜃

evolves with time. In the case of polarized Gowdy, we know that

𝑃𝜃 = 𝑡−1/2𝜈𝜃 +𝑂(𝑡−1)

asymptotically; see Equation (52) and the adjacent text. Consequently, ℓ = 𝑂(𝑡−1/2) in that case,
but there is no better estimate.

13.1 Energy decay

In order to analyze the general case, it is of interest to consider the energy

𝐻 =
1

2

∫︁
𝑆1

[𝑃 2
𝑡 + 𝑃 2

𝜃 + 𝑒2𝑃 (𝑄2
𝑡 +𝑄2

𝜃)]𝑑𝜃. (53)

The numerical studies of Berger and Moncrief [8] indicate that this quantity should decay as 1/𝑡.
Using Hölder’s inequality, this would imply that ℓ = 𝑂(𝑡−1/2). That this is the behavior, which
actually occurs was later established in [75, Theorem 1.1, p. 660]:

Theorem 4 Consider a solution to Equations (11) – (12). Then there is a 𝑇 ≥ 1 and a 𝐾 such
that for all 𝑡 ≥ 𝑇 , the energy 𝐻 defined by Equation (53) satisfies

𝐻(𝑡) ≤ 𝐾

𝑡
. (54)

In fact, this result can be improved somewhat to [75, Theorem 1.6, p. 664]:

Theorem 5 Consider a solution to Equations (11) – (12). Then if 𝐻 is given by Equation (53),
there is a 𝐾, a 𝑇 > 0 and a constant 𝑐𝐻 such that

|𝑡𝐻(𝑡)− 𝑐𝐻 | ≤ 𝐾

𝑡
(55)

for all 𝑡 ≥ 𝑇 . Furthermore, if 𝑐𝐻 is zero, the solution is independent of 𝜃, and in that case, 𝑡2𝐻(𝑡)
is constant.

Note that, in some respects, this result leads to conclusions that, on an intuitive level, are somewhat
contradictory. First, since 𝐻 converges to zero, it is clear that the spatial variation of the solution,
i.e., ℓ, converges to zero. Consequently, it seems natural to expect the solution to behave as a
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spatially homogeneous solution to the equations. Thus, consider a non–spatially-homogeneous
solution and a spatially homogeneous solution, which is supposed to approximate it, and let 𝐻sol

and 𝐻hom denote the corresponding energies. Then, due to Theorem 5,

lim
𝑡→∞

𝐻sol −𝐻hom

𝐻hom
= ∞, lim

𝑡→∞

𝐻sol −𝐻hom

𝐻sol
= 1,

even though both limits should be zero if the solution is well approximated by a spatially homo-
geneous solution.

13.2 Proof of decay of the energy

Let us briefly review the idea behind the proof of Theorem 4 [75, Section 4, pp. 668–670]. We
shall do so by considering a simple example. Consider, in the polarized case, a solution of the form
𝑃 (𝑡, 𝜃) = 𝑥(𝑡) cos 𝜃. With this ansatz, Equation (51) is equivalent to

�̈�+
1

𝑡
�̇�+ 𝑥 = 0.

13.2.1 Toy model

Let us simplify the above equation further and consider

�̈�+ 2𝑎�̇�+ 𝑏2𝑥 = 0,

where 𝑎 and 𝑏 are constants and 𝑎 > 0 and 𝑏2 > 𝑎2. Clearly, this equation is of no interest in itself;
there is no need to develop methods for analyzing an equation, which can be solved explicitly.
However, considering this equation from a different perspective might lead to the development of
methods that can be used in a more general situation. Since energies have turned out to be very
useful in the analysis of systems of nonlinear wave equations, let us consider

𝐻 =
1

2
(�̇�2 + 𝑏2𝑥2).

We know that this quantity decreases exponentially as 𝑒−2𝑎𝑡. Let us try to prove this statement
without explicitly solving the equation. A natural first step is to differentiate:

𝑑𝐻

𝑑𝑡
= −2𝑎�̇�2.

Clearly, 𝐻 decreases. However, this is only a qualitative statement. In order to obtain a quantita-
tive statement, let us introduce

Γ = 𝑎𝑥�̇�.

We shall refer to this quantity as a correction term. It is important to note that this object has
the following two properties. First

|Γ| =
⃒⃒⃒𝑎
𝑏

⃒⃒⃒
|𝑏𝑥�̇�| ≤

⃒⃒⃒𝑎
𝑏

⃒⃒⃒ 1
2
(�̇�2 + 𝑏2𝑥2) =

⃒⃒⃒𝑎
𝑏

⃒⃒⃒
𝐻.

As a consequence, there are constants 𝑐1, 𝑐2 > 0 such that

𝑐1𝐻 ≤ 𝐻 + Γ ≤ 𝑐2𝐻;

recall that |𝑎/𝑏| < 1. Second,
𝑑(𝐻 + Γ)

𝑑𝑡
= −2𝑎(𝐻 + Γ).

Combining these two properties, we obtain 𝐻 ≤ 𝐾 exp(−2𝑎𝑡). This estimate is optimal.
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13.2.2 Polarized case

In the case of the polarized Gowdy equation (51) it is possible to carry out a similar argument. In
fact, the correction

Γ =
1

2𝑡

∫︁
𝑆1

(𝑃 − ⟨𝑃 ⟩)𝑃𝑡𝑑𝜃

can be used to prove that 𝐻 ≤ 𝐾/𝑡 [75, Section 4, pp. 668–670] for the details.

13.2.3 General case

Ideas similar to the above can be used in the general Gowdy case, though there are additional
complications. Due to the nonlinear character of the problem, it is necessary to divide the proof
of the decay of the energy into two parts. The first part involves proving that if the energy is
small initially, then the energy decays as 1/𝑡. The second step consists of proving that the energy
converges to zero. The small data result is, just as above, based on the introduction of a certain
correction Γ with the properties that

|Γ| ≤ 𝐾

𝑡
𝐻

and that
𝑑(𝐻 + Γ)

𝑑𝑡
≤ −1

𝑡
(𝐻 + Γ)− 1

𝑡
Γ +

𝐾

𝑡
𝐻3/2. (56)

Combining these two inequalities, it is possible to conclude that 𝐻 = 𝑂(𝑡−1), assuming 𝐻 to be
small enough initially.

One way to take the step from small data to large data is to prove that 𝐻 converges to zero.
What is known a priori is that

𝑑𝐻

𝑑𝑡
= −1

𝑡

∫︁
𝑆1

(𝑃 2
𝑡 + 𝑒2𝑃𝑄2

𝑡 )𝑑𝜃. (57)

Just as before, this implies that 𝐻 decays, but not that 𝐻 converges to zero. However, it does
prove that the right-hand side of Equation (57) is integrable. This information might not seem so
useful. However, if it were possible to prove the integrability of 𝐻/𝑡 to the future, we would be
allowed to conclude that 𝐻 converges to zero (recall that 𝐻 is monotonically decreasing). This
would then finish the result. In order to take the step from integrability of the right-hand side of
(57) to the integrability of 𝐻/𝑡, we need to prove that∫︁ 𝑡

𝑡0

1

𝑠

∫︁
𝑆1

(𝑃 2
𝑡 − 𝑃 2

𝜃 )𝑑𝜃𝑑𝑠,

∫︁ 𝑡

𝑡0

1

𝑠

∫︁
𝑆1

𝑒2𝑃 (𝑄2
𝑡 −𝑄2

𝜃)𝑑𝜃𝑑𝑠

are bounded to the future. Note that these expressions are far from arbitrary. It is natural to
integrate by parts twice and to use the equations (it is of some interest to note that the order
in which one considers the two expressions is very important). Doing so leads to the desired
conclusion; see [75] for the details.

It is of interest to note that the results concerning the decay rate can be generalized to a larger
class of spacetimes [81].

13.3 Asymptotic ODE behavior

In the case of polarized Gowdy, the solution asymptotically behaves like a spatially homogeneous
solution to the same equation (at least in some respects). Is it possible to prove something similar
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in the general case? In the polarized case, the averaged equation is equivalent to the statement
that an integral is conserved; there is a constant 𝐾 such that∫︁

𝑆1

𝑡𝑃𝑡𝑑𝜃 = 𝐾. (58)

Furthermore, this equation can be interpreted as an ODE for ⟨𝑃 ⟩. Are there analogous conserved
quantities in the general case?

13.3.1 Conserved quantities

As has been noted before, we have the conserved quantities 𝐴, 𝐵 and 𝐶 given by Equations(25) –
(27). We shall also use the notation 𝛼 = 𝐴/2𝜋, 𝛽 = 𝐵/2𝜋, 𝛾 = 𝐶/2𝜋 and

𝛿 =

√︀
|𝛼2 + 4𝛽𝛾|

2
. (59)

As was mentioned in Section 6.4, applying an isometry of hyperbolic space to a solution yields a
new solution. It is of interest to know what the corresponding change in the conserved quantities
𝐴, 𝐵 and 𝐶 is. It turns out that the quantity 𝐴2 + 4𝐵𝐶 remains unchanged; see the proof of [75,
Lemma 8.2, p. 681]. Note that in the spatially homogeneous case,

𝛼2 + 4𝛽𝛾 = 4𝑡2(𝑃 2
𝑡 + 𝑒2𝑃𝑄2

𝑡 ). (60)

In other words, 𝐴2+4𝐵𝐶 ≥ 0 for spatially homogeneous solutions. However, in the inhomogeneous
case, 𝐴2 + 4𝐵𝐶 can take any value; see [75, (6.9) – (6.10), p. 676] as well as the adjacent text.
Consequently, it seems unlikely that it should be possible to approximate solutions such that
𝐴2 + 4𝐵𝐶 is negative by spatially homogeneous solutions.

In practice, it is often convenient to apply an isometry to a solution so that the conserved
quantities become as simple as possible. This is achieved in [75, Lemma 8.2, p. 681]:

Lemma 1 Consider a solution to Equations (11) – (12). If 𝐴2 + 4𝐵𝐶 > 0, there is an isometry
such that if 𝐴1, 𝐵1 and 𝐶1 are the constants of the transformed solution, then 𝐴1 = −

√
𝐴2 + 4𝐵𝐶

and 𝐵1 = 𝐶1 = 0. If 𝐴2+4𝐵𝐶 = 0, there is an isometry such that the constants of the transformed
solution are 𝐴1 = 𝐵1 = 0 and 𝐶1 = 4𝜋 or 𝐶1 = 0.

Analyzing the asymptotic behavior of the transformed solution and then transforming back is often
more convenient than analyzing the original solution.

13.3.2 Interpreting the conserved quantities as ODEs for the averages

Returning to the question of the asymptotics, we wish to interpret the conserved quantities as
ODEs for ⟨𝑃 ⟩ and ⟨𝑄⟩. Due to [75, Lemma 8.1, p. 680], we have the following result:

Lemma 2 Consider a solution to Equations (11) – (12). Then

𝑡⟨𝑃𝑡⟩ = 𝛽⟨𝑄⟩ − 𝛼

2
+

1

2𝜋

∫︁
𝑆1

𝑡𝑒2𝑃 (𝑄− ⟨𝑄⟩)𝑄𝑡𝑑𝜃, (61)

𝑡𝑒⟨𝑃 ⟩⟨𝑄𝑡⟩ = 𝛽𝑒−⟨𝑃 ⟩ − 1

2𝜋
𝑒⟨𝑃 ⟩

∫︁
𝑆1

(𝑒2𝑃−2⟨𝑃 ⟩ − 1)𝑡𝑄𝑡𝑑𝜃, (62)

𝑡⟨𝑄𝑡⟩ = 𝛾 + 𝛼⟨𝑄⟩ − 𝛽⟨𝑄⟩2 + 𝑡

𝜋

∫︁
𝑆1

(⟨𝑄⟩ −𝑄)𝑃𝑡𝑑𝜃 +
𝑡

2𝜋

∫︁
𝑆1

𝑒2𝑃𝑄𝑡(𝑄− ⟨𝑄⟩)2𝑑𝜃. (63)
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Naively, it would seem natural to consider the integral expressions to be error terms and to interpret
what remains as ODEs for the averages. On the other hand, it would then seem that we have too
many equations. In the end, the situation turns out to be somewhat more complicated; see below.

Among other things, Equations (61) – (63) imply the existence of a constant 𝐾 such that

⟨𝑃𝑡⟩2 + 𝑒2⟨𝑃 ⟩⟨𝑄𝑡⟩2 ≤ 𝐾

𝑡2
. (64)

Note that this result is similar to the one obtained in the polarized case. Moreover, just as in the
polarized case, it is a rather surprising result. Due to Theorem 5 and 57, the best estimate that
can be obtained for ∫︁

𝑆1

(𝑃 2
𝑡 + 𝑒2𝑃𝑄2

𝑡 )𝑑𝜃

is that it decays as 𝑡−1. In other words, first taking the average and then taking the square leads
to decay of the form 𝑡−2. First taking the square and then taking the average leads to decay
of the form 𝑡−1. This behavior reflects the same sort of asymptotics as those characterized by
Equation (52).

Naively estimating the integral on the right-hand side of Equation (61) leads to the conclusion
that it is bounded but no more. Consequently, it seems unreasonable to think of this term as an
error term. On the other hand, integrating with respect to time might lead to an improvement.
In fact, since ⟨𝑄𝑡⟩ decays very quickly, see Equation (64), replacing 𝑄𝑡 with ⟨𝑄𝑡⟩ in Equation (61)
leads to a term, which tends to zero. Consequently, we can replace 𝑄𝑡 by 𝑄𝑡 − ⟨𝑄𝑡⟩ in (61) with
a small error. Integrating Equation (61) and using such ideas leads to [75, Lemma 8.9, p. 685]:

Lemma 3 Consider a solution to Equations (11) – (12). Then if 𝑡 > 𝑡0 ≥ 1∫︁ 𝑡

𝑡0

[︂
⟨𝑃𝑡⟩ −

𝛽

𝑠
⟨𝑄⟩+ 𝛼

2𝑠

]︂
𝑑𝑠 = 𝑂(𝑡

−1/2
0 ). (65)

Note that in the case of 𝐵 = 0, this result gives detailed information concerning the asymptotics
of ⟨𝑃 ⟩; see [75, Corollary 8.10, p. 685]:

Corollary 1 Consider a solution to Equations (11)-(12). If 𝐵 = 0 there is a constant 𝑐𝑃 and a
𝑇 > 0 such that

⟨𝑃 ⟩+ 𝛼

2
ln 𝑡− 𝑐𝑃 = 𝑂(𝑡−1/2)

for all 𝑡 ≥ 𝑇 .

Clearly, Lemma 3 yields important information concerning the asymptotics. Is it possible to apply
similar ideas to Equations (62) and (63)? It turns out to be necessary to combine both equations
in order to obtain a single equation for ⟨𝑄⟩. The problem is the last term in Equation (62) and the
second to last term in Equation (63). However, combining partial integrations, Taylor expansions
in the last term in Equation (62) with various estimates, such as Equation (64), leads to [75,
Lemma 8.8, p. 684]:

Lemma 4 Consider a solution to Equations (11) – (12) and let 𝑓 ∈ 𝐶∞(R+,R) satisfy

|𝑒−⟨𝑃 ⟩𝑓 | ≤ 𝐾 and |𝑒−⟨𝑃 ⟩𝑓𝑡| ≤
𝐾

𝑡1/2
(66)

for 𝑡 ≥ 𝑇 . Then, if 𝑡 ≥ 𝑡0 ≥ 𝑇 ,∫︁ 𝑡

𝑡0

𝑓

[︂
2⟨𝑄𝑡⟩ −

𝛾

𝑠
− 𝛼

𝑠
⟨𝑄⟩+ 𝛽

𝑠
⟨𝑄⟩2 − 𝛽

𝑠
𝑒−2⟨𝑃 ⟩

]︂
𝑑𝑠 = 𝑂(𝑡

−1/2
0 ). (67)
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In the case of 𝐵 = 0 it is convenient to apply this result with 𝑓 = 𝑡−𝛼/2. This leads to [75,
Proposition 8.11, p. 685]:

Proposition 5 Consider a solution to Equations (11) – (12). If 𝐵 = 0, then there is a constant
𝑐𝑄 and a 𝑇 > 0 such that for 𝑡 ≥ 𝑇 ,⃒⃒⃒

𝑒⟨𝑃 ⟩
(︁
⟨𝑄⟩+ 𝛾

𝛼

)︁
− 𝑐𝑄

⃒⃒⃒
≤ 𝐾𝑡−1/2 (68)

if 𝛼 ̸= 0 and ⃒⃒⃒
⟨𝑄⟩ − 𝛾

2
ln 𝑡− 𝑐𝑄

⃒⃒⃒
≤ 𝐾𝑡−1/2 (69)

if 𝛼 = 0.

In case of 𝐵 = 0, we consequently have detailed information concerning the asymptotic behavior
of ⟨𝑄⟩ as well. Furthermore, as was observed earlier, given a solution with the property that
𝐴2 + 4𝐵𝐶 ≥ 0, there is an isometry of hyperbolic space such that the transformed solution is
such that the corresponding 𝐵 equals zero. Thus, the only case that remains to be analyzed is
𝐴2 + 4𝐵𝐶 < 0. This case is more complicated (but more interesting). We shall therefore omit a
description of the analysis.

13.4 Geometric interpretation of the asymptotics

The analysis of the asymptotics in the various cases leads to the following conclusion [75, Theorem
1.2, p. 661]:

Theorem 6 Consider a solution to Equations (11) – (12). Let x = (𝑥, 𝑦) = (𝑄, 𝑒−𝑃 ) and let 𝑑𝐻
be the metric induced by the Riemannian metric 𝑔𝐻 given by Equation (22). Then there is a 𝐾, a
𝑇 > 0 and a curve Γ such that

𝑑𝐻(x(𝑡, 𝜃),Γ) ≤ 𝐾𝑡−1/2

for all 𝑡 ≥ 𝑇 . The possibilities for Γ are as follows.

� If all the constants 𝐴, 𝐵 and 𝐶 are zero, Γ is a point.

� If 𝐴2 + 4𝐵𝐶 = 0, but the constants are not all zero, Γ is either a horocycle (i.e., a circle
touching the boundary) or a curve 𝑦 = constant.

� If 𝐴2 + 4𝐵𝐶 > 0, Γ is either a circle intersecting the boundary transversally or a straight
line intersecting the boundary transversally.

� If 𝐴2 + 4𝐵𝐶 < 0, Γ is a circle inside the upper half plane.

Furthermore, it is possible to describe in detail the behavior of the solutions along the circles;
see [75, Theorem 1.3–1.5, pp. 662–664] as well as [75, Figure 1.1–1.3, pp. 663–664]. In fact, the
solution tends to the boundary along the circle when 𝐴2 + 4𝐵𝐶 ≥ 0 and 𝐴, 𝐵 and 𝐶 are not all
equal to zero. In the case of 𝐴2 + 4𝐵𝐶 < 0, the solution oscillates around the circle forever and is
asymptotically periodic with respect to a logarithmic time coordinate.
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13.5 Concluding remarks

It is of interest to note that in the case of 𝐴2 + 4𝐵𝐶 < 0, the spatial variation dies out and the
solution behaves like a solution to an ODE asymptotically. On the other hand, the ODE of which
it is approximately a solution is not the ODE, which is obtained by dropping the spatial derivatives
in the original equation.

Furthermore, in the polarized case, the integrand appearing on the left-hand side of Equa-
tion (58) is unbounded as 𝑡 → ∞. In fact, the best bound for the integrand is 𝐶𝑡1/2 due to
Equation (52). On the other hand, the integral is conserved. Moreover, since this conserved quan-
tity determines the overall behavior of the solution, it is clear that the problem of analyzing the
asymptotics numerically is not trivial. The same phenomenon appears in the nonpolarized case.
However, it is of interest to note that the reason why the mathematical analysis is possible is in
part due to the difference in decay rates between ⟨𝑃𝑡⟩2 and∫︁

𝑆1

𝑃 2
𝑡 𝑑𝜃.

13.6 Geodesic completeness

The analysis described above concerned only the functions and their averages. In particular, no
estimates for the derivatives in the sup norm were derived. However, in order to prove future causal
geodesic completeness, it is of interest to have such estimates. According to [75, Proposition 1.8,
p. 665]:

Proposition 6 Consider a solution to Equations (11) – (12). Then

‖𝑃𝑡‖𝐶(𝑆1,R) + ‖𝑃𝜃‖𝐶(𝑆1,R) + ‖𝑒𝑃𝑄𝑡‖𝐶(𝑆1,R) + ‖𝑒𝑃𝑄𝜃‖𝐶(𝑆1,R) ≤ 𝐾𝑡−1/2.

Using this estimate, it is then possible to prove future causal geodesic completeness; see [75,
Theorem 1.9, p. 665].
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14 Strong Cosmic Censorship in Gowdy Spacetimes

The results concerning strong cosmic censorship that exist concern the polarized case as well as
the general T 3-case. Since the methods in the two cases are different, it is natural to divide the
exposition accordingly.

14.1 The polarized case

As has already been mentioned, the proof of strong cosmic censorship in the polarized Gowdy case
proceeds via Conjecture 2. In other words, via a proof of the fact that for generic initial data, the
Kretschmann scalar is unbounded in the incomplete directions of causal geodesics. Future causal
geodesic completeness in the polarized T 3-Gowdy case was announced in [21] and proven in [52,
Corollary 21, p. 190]. Thus the main problem is that of proving that the curvature blows up at the
singularities. This is achieved in two steps in [21]. First, the existence of a diffeomorphism between
asymptotic data (i.e., 𝑣 and 𝜑 in Equation (35)) and ordinary initial data is demonstrated; see [21,
p. 1675]. Second, using the observations made concerning curvature blow up in Section 7.4, it
can be shown that there is an open and dense subset of the set of asymptotic data such that the
curvature of the corresponding solutions blows up everywhere on the singularity. Let us state the
result as given in [21, p. 1673]:

Theorem 7 (Strong cosmic censorship for polarized Gowdy spacetimes) Let Σ3 = T3,
S3, or S2 Ö S1, and let 𝒫(Σ3) be the space of initial data for the polarized Gowdy spacetimes
(with 𝐶∞ topology). There exists an open dense subset 𝒫(Σ3) ⊂ 𝒫(Σ3) such that the maximal
development of any set of data in 𝒫(Σ3) is inextendible.

14.2 General T 3-case

In the general T 3-case, the result is an immediate consequence of Proposition 3, Theorem 3 and the
fact that solutions are future causally-geodesically complete. Let us quote the exact statement [83,
Corollary 1, p. 1190–1191]:

Theorem 8 Consider the set of smooth, periodic initial data 𝒮𝑖,𝑝,𝑐 to Equations (16) – (17) satis-
fying Equation (50). There is a subset 𝒢𝑖,𝑐 of 𝒮𝑖,𝑝,𝑐 with the following properties

� 𝒢𝑖,𝑐 is open with respect to the C1
Ö C0-topology on 𝒮𝑖,𝑝,𝑐,

� 𝒢𝑖,𝑐 is dense with respect to the 𝐶∞-topology on 𝒮𝑖,𝑝,𝑐,

� every spacetime corresponding to initial data in 𝒢𝑖,𝑐 has the property that in one time direc-
tion, it is causally geodesically complete, and in the opposite time direction, the Kretschmann
scalar 𝑅𝛼𝛽𝛾𝛿𝑅

𝛼𝛽𝛾𝛿 is unbounded along every inextendible causal curve,

� for every spacetime corresponding to initial data in 𝒢𝑖,𝑐, the MGHD is C2-inextendible.

For the sake of completeness, let us also recall the definition of C 2-inextendibility.

Definition 9 Let (𝑀, 𝑔) be a connected Lorentz manifold, which is at least C2. Assume there is
a connected C2 Lorentz manifold (�̂�, 𝑔) of the same dimension as 𝑀 and an isometric embedding
𝑖 : 𝑀 → �̂� such that 𝑖(𝑀) ̸= �̂� . Then 𝑀 is said to be C2-extendible. If (𝑀, 𝑔) is not C2-
extendible, it is said to be C2-inextendible.
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It might be possible to obtain this result using different methods. In fact, let 𝒢 be the set of
initial data such that the corresponding solutions have an asymptotic velocity, which is different
from one on a dense subset of the singularity. Endowing the initial data with the 𝐶∞-topology,
it is possible to show that 𝒢 is a dense 𝐺𝛿 set [77]. Due to its definition, it is clear that solutions
corresponding to initial data in 𝒢 have the property that the curvature blows up on a dense subset
of the singularity. It would be natural to expect the corresponding solutions to be inextendible,
but providing a proof is nontrivial. Important steps in the direction of proving this statement were
taken in [22]. However, to the best of our knowledge, there is, as yet, no result to this effect.
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