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email: kozameh@famaf.unc.edu.ar

Ezra T. Newman
Department of Physics and Astronomy,

University of Pittsburgh, U.S.A.
email: newman@pitt.edu

Accepted on 5 August 2009
Published on 11 September 2009

(Revised on 25 June 2010)

Abstract

A priori, there is nothing very special about shear-free or asymptotically shear-free null
geodesic congruences. Surprisingly, however, they turn out to possess a large number of
fascinating geometric properties and to be closely related, in the context of general relativity,
to a variety of physically significant effects. It is the purpose of this paper to try to fully
develop these issues.

This work starts with a detailed exposition of the theory of shear-free and asymptotically
shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future con-
formal null infinity. A major portion of the exposition lies in the analysis of the space of regular
shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the
space of complex analytic curves in an auxiliary four-complex dimensional space, ℋ-space.
They in turn play a dominant role in the applications.

The applications center around the problem of extracting interior physical properties of an
asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell) field
itself, in analogy with the determination of total charge by an integral over the Maxwell field
at infinity or the identification of the interior mass (and its loss) by (Bondi’s) integrals of the
Weyl tensor, also at infinity.

More specifically, we will see that the asymptotically shear-free congruences lead us to
an asymptotic definition of the center-of-mass and its equations of motion. This includes a
kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In
addition, we obtain insights into intrinsic spin and, in general, angular momentum, including
an angular-momentum–conservation law with well-defined flux terms. When a Maxwell field
is present, the asymptotically shear-free congruences allow us to determine/define at infinity
a center-of-charge world line and intrinsic magnetic dipole moment.
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1 Introduction

Though from the very earliest days of Lorentzian geometries, families of null geodesics (null geodesic
congruences (NGCs)) were obviously known to exist, it nevertheless took many years for their sig-
nificance to be realized. It was from the seminal work of Bondi [8], with the introduction of null
surfaces and their associated null geodesics used for the study of gravitational radiation, that the
importance of NGCs became recognized. To analyze the differential structure of such congruences,
Sachs [56] introduced the fundamental ‘tools’, known as the optical parameters, namely, the diver-
gence, the twist (or curl) and the shear of the congruence. From the optical parameters one then
could classify congruences by the vanishing (or the asymptotic vanishing) of one or more of these
parameters. All the different classes exist in flat space but, in general, only special classes exist in
arbitrary spacetimes. For example, in flat space, divergence-free congruences always exist, but for
nonflat vacuum spacetimes they exist only in the case of certain high symmetries. On the other
hand, twist-free congruences (null surface-forming congruences) exist in all Lorentzian spacetimes.
General vacuum spacetimes do not allow shear-free congruences, though all asymptotically-flat
spacetimes do allow asymptotically shear-free congruences, a natural generalization of shear-free
congruences, to exist.

Our primary topic of study will be the cases of shear-free and asymptotically shear-free NGCs.
In flat space the general shear-free congruences have been extensively studied. However, only
recently has the special family of regular congruences been investigated. In general, as mentioned
above, vacuum (or Einstein–Maxwell) metrics do not possess shear-free congruences; the exceptions
being the algebraically-special metrics, all of which contain one or two such congruences. On
the other hand, all asymptotically-flat spacetimes possess large numbers of regular asymptotically
shear-free congruences.

A priori there does not appear to be anything very special about shear-free or asymptotically
shear-free NGCs. However, over the years, simply by observing a variety of topics, such as the
classification of Maxwell and gravitational fields (algebraically-special metrics), twistor theory,
ℋ-space theory and asymptotically-flat spacetimes, there have been more and more reasons to
consider them to be of considerable importance. One of the earliest examples of this is Robin-
son’s [54] demonstration that a necessary condition for a curved spacetime to admit a null solution
of Maxwell’s equation is that there be, in that space, a congruence of null, shear-free geodesics. Re-
cent results have shown that the regular congruences – both the shear-free and the asymptotically
shear-free congruences – have certain very attractive and surprising properties; each congruence
is determined by a complex analytic curve in the auxiliary complex space that is referred to as
ℋ-space. For asymptotically-flat spacetimes, some of these curves contain a great deal of physical
information about the spacetime itself [29, 27, 28].

It is the main purpose of this work to give a relatively complete discussion of these issues.
However, to do so requires a digression.

A major research topic in general relativity (GR) for many years has been the study of
asymptotically-flat spacetimes. Originally, the term ‘asymptotically flat’ was associated with grav-
itational fields, arising from finite bounded sources, where infinity was approached along spacelike
directions (e.g., [5, 58]). Then the very beautiful work of Bondi [8] showed that a richer and more
meaningful idea to be associated with ‘asymptotically flat’ was to study gravitational fields in
which infinity was approached along null directions. This led to an understanding of gravitational
radiation via the Bondi energy-momentum loss theorem, one of the profound results in GR. The
Bondi energy-momentum loss theorem, in turn, was the catalyst for the entire contemporary sub-
ject of gravitational radiation and gravitational wave detectors. The fuzzy idea of where and what
is infinity was clarified and made more specific by the work of Penrose [46, 47] with the intro-
duction of the conformal compactification (via the rescaling of the metric) of spacetime, whereby
infinity was added as a boundary and brought into a finite spacetime region. Penrose’s infinity or
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spacetime boundary, referred to as Scri or I, has many sub-regions: future null infinity, I+; past
null infinity, I−; future and past timelike infinity, 𝐼+ and 𝐼−; and spacelike infinity, 𝐼0. In the
present work, I+ and its neighborhood will be our arena for study.

A basic question for us is what information about the interior of the spacetime can be obtained
from a study of the asymptotic gravitational field; that is, what can be learned from the remnant
of the full field that now ‘lives’ or is determined on I+? This quest is analogous to obtaining the
total interior electric charge or the electromagnetic multipole moments directly from the asymptotic
Maxwell field, i.e., the Maxwell field at I+, or the Bondi energy-momentum four-vector from the
gravitational field (Weyl tensor) at I+. However, the ideas described and developed here are not
in the mainstream of GR; they lie outside the usual interest and knowledge of most GR workers.
Nevertheless, they are strictly within GR; no new physics is introduced; only the vacuum Einstein
or Einstein–Maxwell equations are used. The ideas come simply from observing (discovering)
certain unusual and previously overlooked features of solutions to the Einstein equations and their
asymptotic behavior.

These observations, as mentioned earlier, centered on the awakening realization of the remark-
able properties and importance of the special families of null geodesics: the regular shear-free and
asymptotically shear-free NGCs.

The most crucial and striking of these overlooked features (mentioned now but fully developed
later) are the following: in flat space every regular shear-free NGC is determined by the arbitrary
choice of a complex analytic world line in complex Minkowski space, MC. Furthermore and more
surprising, for every asymptotically-flat spacetime, every regular asymptotically shear-free NGC
is determined by the given Bondi shear (given for the spacetime itself) and by the choice of an
arbitrary complex analytic world line in an auxiliary complex four-dimensional space, ℋ-space,
endowed with a complex Ricci-flat metric structure. In other words, the space of regular shear-free
and asymptotically shear-free NGCs are both determined by arbitrary analytic curves in MC and
ℋ-space respectively [29, 27, 26].

Eventually, a unique complex world line in this space is singled out, with both the real and
imaginary parts being given physical meaning. The detailed explanation for the determination of
this world line is technical and reserved for a later discussion. However, a rough intuitive idea can
be given in the following manner.

The idea is a generalization of the trivial procedure in electrostatics of first defining the electric
dipole moment, relative to an origin, and then shifting the origin so that the dipole moment
vanishes and thus obtaining the center of charge. Instead, we define, on I+, with specific Bondi
coordinates and tetrad, the complex mass dipole moment (the real mass dipole plus ‘𝑖’ times angular
momentum) from certain components of the asymptotic Weyl tensor. (The choice of the specific
Bondi system is the analogue of the choice of origin in the electrostatic case.) Then, knowing
how the asymptotic Weyl tensor transforms under a change of tetrad and coordinates, one sees
how the complex mass dipole moment changes when the tetrad is rotated to one defined from the
asymptotically shear-free congruence. By setting the transformed complex mass dipole moment
to zero, the unique complex world line, identified as the complex center of mass, is obtained. (In
Einstein–Maxwell theory a similar thing is done with the asymptotic Maxwell field leading to the
vanishing of the complex Maxwell dipole moment [electric plus ‘𝑖’ times magnetic dipole moment],
with a resulting complex center of charge.)

This procedure, certainly unusual and out of the mainstream and perhaps appearing to be
ambiguous, does logically hold together. The real justification for these identifications comes not
from its logical structure, but rather from the observed equivalence of the derived results from
these identifications with well-known classical mechanical and electrodynamical relations. These
derived results involve both kinematical and dynamical relations. Though they will be discussed
at length later, we mention that they range from a kinematic expression for the Bondi momentum
of the form, 𝑃 = 𝑀𝑣 + . . .; a derivation of Newton’s second law, 𝐹 = 𝑀𝑎; a conservation law
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of angular momentum with a well-known angular momentum flux; to the prediction of the Dirac
value of the gyromagnetic ratio. We note that, for the charged spinning particle metric [37], the
imaginary part of the world line is indeed the spin angular momentum, a special case of our results.

A major early clue that shear-free NGCs were important in GR was the discovery of the (vacuum
or Einstein–Maxwell) algebraically special metrics. These metrics are defined by the algebraic
degeneracy in their principle null vectors, which form (by the Goldberg–Sachs theorem [18]) a
null congruence which is both geodesic and shear-free. For the asymptotically-flat algebraically-
special metrics, this shear-free congruence (a very special congruence from the set of asymptotically
shear-free congruences) determines a unique world line in the associated auxiliary complexℋ-space.
This shear-free congruence (with its associated complex world line) is a special case of the above
argument of transforming to the complex center of mass. Our general asymptotically-flat situation
is, thus, a generalization of the algebraically-special case. Much of the analysis leading to the
transformation of the complex dipoles in the case of the general asymptotically-flat spaces arose
from generalizing the case of the algebraically-special metrics.

To get a rough feeling (first in flat space) of how the curves in MC are connected with the
shear-free congruences, we first point out that the shear-free congruences are split into two classes:
the twisting congruences and the twist-free ones. The regular twist-free ones are simply the null
geodesics (the generators) of the light cones with apex on an arbitrary timelike Minkowski space
world line. Observing backwards along these geodesics from afar, one ‘sees’ the world line. The
regular twisting congruences are generated in the following manner: consider the complexification
of Minkowski space, MC. Choose an arbitrary complex (analytic) world line in MC and construct
its family of complex light cones. The projection into the real Minkowski space, M, of the complex
geodesics (the generators of these complex cones), yields the real shear-free twisting NGCs [4]. The
twist contains or ‘remembers’ the apex on the complex world line. Looking backwards via these
geodesics, one appears ‘to see’ the complex world line. In the case of asymptotically shear-free
congruences in curved spacetimes, one can not trace the geodesics back to a complex world line.
However, one can have the illusion (i.e., a virtual image) that the congruence is coming from a
complex world line. It is from this property that we can refer to the asymptotically shear-free
congruences as lying on generalized light cones.

The analysis of the geometry of the asymptotically shear-free NGCs is greatly facilitated by the
introduction of Good-Cut Functions (GCFs). Each GCF is a complex slicing of I+ from which the
associated asymptotically shear-free NGC and world line can be easily obtained. For the special
world line and congruence that leads to the complex center of mass, there is a unique GCF that is
referred to as the Universal-Cut Function, (UCF).

Information about a variety of objects is contained in and can be easily calculated from the UCF,
e.g., the unique complex world line; the direction of each geodesic of the congruence arriving at
I+; and the Bondi asymptotic shear of the spacetime. The ideas behind the GCFs and UCF arose
from some very pretty mathematics: from the ‘good-cut equation’ and its complex four-dimensional
solution space, ℋ-space [34, 24]. In flat space almost every asymptotically vanishing Maxwell field
determines its own Universal Cut Function, where the associated world line determines both the
center of charge and the magnetic dipole moment. In general, for Einstein–Maxwell fields, there
will be two different UCFs, (and hence two different world lines), one for the Maxwell field and
one for the gravitational field. The very physically interesting special case where the two world
lines coincide will be discussed.

In this work, we seek to provide a comprehensive overview of the theory of asymptotically shear-
free NGCs, as well as their physical applications to both flat and asymptotically-flat spacetimes.
The resulting theoretical framework unites ideas from many areas of relativistic physics and has
a crossover with several areas of mathematics, which had previously appeared short of physical
applications.

The main mathematical tool used in our description of I+ is the Newman–Penrose (NP) formal-
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ism [39]. Spherical functions are expanded in spin-𝑠 tensor harmonics [43]; in our approximations
only the 𝑙 = 0, 1, 2 harmonics are retained. Basically, the detailed calculations should be considered
as expansions around the Reissner–Nordström metric, which is treated as zeroth order; all other
terms being small, i.e., at least first order. We retain terms only to second order.

In Section 2, we give a brief review of Penrose’s conformal null infinity I along with an expo-
sition of the NP formalism and its application to asymptotically-flat spacetimes. There is then a
description of I+, the stage on which most of our calculations take place. The Bondi mass aspect
(a function on I+) is defined from the asymptotic Weyl tensor. From it we obtain the physical
identifications of the Bondi mass and linear momentum. Also discussed is the asymptotic sym-
metry group of I+, the Bondi–Metzner–Sachs (BMS) group [8, 56, 40, 49]. The Bondi mass and
linear momentum become basic for the physical identification of the complex center-of-mass world
line. For its pedagogical value and prominence in what follows, we review Maxwell theory in the
spin-coefficient (SC) formalism.

Section 3 contains the detailed analysis of shear-free NGCs in Minkowski spacetime. This
includes the identification of the flat space GCFs from which all regular shear-free congruences
can be found. We also show the intimate connection between the flat space GCFs, the (homo-
geneous) good-cut equation, and MC. As applications, we investigate the UCF associated with
asymptotically-vanishing Maxwell fields and in particular the shear-free congruences associated
with the Liénard–Wiechert (and complex Liénard–Wiechert) fields. This allows us to identify a
real (and complex) center-of-charge world line, as mentioned earlier.

In Section 4, we give an overview of the machinery necessary to deal with twisting asymptot-
ically shear-free NGCs in asymptotically-flat spacetimes. This involves a discussion of the theory
of ℋ-space, the construction of the good-cut equation from the asymptotic Bondi shear and its
complex four-parameter family of solutions. We point out how the simple Minkowski space of the
preceding Section 3 can be seen as a special case of the more general theory outlined here. These
results have ties to Penrose’s twistor theory and the theory of Cauchy–Riemann (CR) structures;
an explanation of these crossovers is given in Appendicies A and B.

In Section 5, as examples of the ideas developed here, linear perturbations off the Schwarz-
schild metric, the algebraically-special type II metrics and asymptotically-stationary spacetime are
discussed.

In Section 6, the ideas laid out in the previous Sections 3, 4 and 5 are applied to the gen-
eral class of asymptotically-flat spacetimes: vacuum and Einstein–Maxwell. Here, reviewing the
material of the previous section, we apply the solutions to the good-cut equation to determine
all regular asymptotically shear-free NGCs by first choosing arbitrary world lines in the solution
space and then singling out a unique one; two world lines in the Einstein–Maxwell case, one for
the gravitational field, the other for the Maxwell field. This identification of the unique lines
comes from a study of the transformation properties, at I+, of the asymptotically-defined mass
and spin dipoles and the electric and magnetic dipoles. The work of Bondi, with the identification
of energy-momentum and its evolution, allows us to make a series of surprising further physical
identifications and predictions. In addition, with a slightly different approximation scheme, we
discuss our ideas applied to the asymptotic gravitational field with an electromagnetic dipole field
as the source.

Section 7 contains an analysis of the gauge (or BMS) invariance of our results.

Section 8, the Discussion/Conclusion section, begins with a brief history of the origin of the
ideas developed here, followed by comments on alternative approaches, possible physical predictions
from our results, a summary and open questions.

Finally, we conclude with four appendices, which contain several mathematical crossovers that
were frequently used or referred to in the text: CR structures and twistors, a brief exposition of
the tensorial spherical harmonics [43] and their Clebsch–Gordon product decompositions, and an
overview of the metric construction on ℋ-space.
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1.1 Notation and definitions

The following contains the notational conventions that will be in use throughout the course of this
review.

∙ Throughout this work we use the symbols ‘𝑙’, ‘𝑚’, ‘𝑛’ . . . with several different ‘decorations’
but always meaning a null tetrad or a null tetrad field.

a) Though in places, e.g., in Section 2.4, the symbols, 𝑙𝑎, 𝑚𝑎, 𝑛𝑎 . . . , i.e., with an 𝑎, 𝑏, 𝑐 . . .
can be thought of as the abstract representation of a null tetrad (i.e., Penrose’s abstract index
notation [50]), in general, our intention is to describe vectors in a coordinate representation.

b) The symbols, 𝑙𝑎, 𝑙# 𝑎, 𝑙* 𝑎 most often represent the coordinate versions of different null
geodesic tangent fields, e.g., one-leg of a Bondi tetrad field or some rotated version.

c) The symbol, �̂�𝑎, (with hat) has a very different meaning from the others. It is used to
represent the Minkowski components of a normalized null vector giving the null directions
on an arbitrary light cone:

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁, 𝜁 + 𝜁, 𝑖𝜁 − 𝑖𝜁,−1 + 𝜁𝜁

)︀
≡

(︃√
2

2
𝑌 0
0 ,

1

2
𝑌 0
1𝑖

)︃
. (1)

As the complex stereographic coordinates (𝜁, 𝜁) sweep out the sphere, the �̂�𝑎 sweeps out the
entire future null cone. The other members of the associated null tetrad are

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
0, 1− 𝜁2,−𝑖(1 + 𝜁2), 2𝜁

)︀
, (2)

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁,−(𝜁 + 𝜁), 𝑖𝜁 − 𝑖𝜁, 1− 𝜁𝜁

)︀
.

∙ Several different timelike variables (𝑢B, 𝑢ret, 𝜏, 𝑠) and their derivatives are used.

The Bondi time, 𝑢B, is closely related to the retarded time, 𝑢ret =
√
2𝑢B. The use of the

retarded time, 𝑢ret, is important in order to obtain the correct numerical factors in the
expressions for the final physical results. Their derivatives are represented by

𝜕𝑢B
𝐾 ≡ �̇�, (3)

𝜕𝑢ret
𝐾 ≡ 𝐾 ′ =

√
2

2
�̇�.

The 𝑢ret, 𝜏, 𝑠, derivatives are denoted by the same prime (′) since it is always applied to
functions with the same functional argument. Though we are interested in real physical
spacetime, often the time variables (𝑢ret, 𝑢B, 𝜏) take complex values close to the real (𝑠 is
always real). Rather than putting on ‘decorations’ to indicate when they are real or complex
(which burdens the expressions with an overabundance of different symbols), we leave reality
decisions to be understood from context. In a few places where the reality of the particular
variable is manifestly first introduced (and is basic) we decorate the symbol by a superscript

(𝑅), i.e., 𝑢
(𝑅)
B or 𝑢

(𝑅)
ret . After their introduction we revert to the undecorated symbol.

Note: At this point we are taking the velocity of light as 𝑐 = 1 and omitting it; later, when
we want the correct units to appear explicitly, we restore the 𝑐. This entails, via 𝜏 → 𝑐𝜏 ,
𝑠→ 𝑐𝑠, changing the prime derivatives to include the 𝑐, i.e.,

K′ → 𝑐−1K′. (4)
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12 Timothy M. Adamo, Carlos Kozameh and Ezra T. Newman

∙ Often the angular (or sphere) derivatives, ð and ð, are used. The notation ð(𝛼)𝐾 means,
apply the ð operator to the function 𝐾 while holding the variable (𝛼) constant.

∙ The complex conjugate is represented by the overbar, e.g., 𝜁. When a complex variable, 𝜁,
is close to the complex conjugate of 𝜁, but independent, we use 𝜁 ≈ 𝜁.

Frequently, in this work, we use terms that are not in standard use. It seems useful for clarity
to have some of these terms defined early.

∙ As mentioned earlier, we use the term “generalized light cones” to mean (real) NGCs that
appear to have their apexes on a world line in the complexification of the spacetime. A
detailed discussion of this will be given in Sections 3 and 4.

∙ The term “complex center of mass” (or “complex center of charge”) is frequently used. Up
to the choice of constants (to give correct units) this is basically the “real center of mass
plus ‘𝑖’ angular momentum” (or “real center of charge plus ‘𝑖’ magnetic moment”). There
will be two different types of these “complex centers . . . ”; one will be geometrically defined
or intrinsic, i.e., independent of the choice of coordinate system, the other will be relative,
i.e., it will depend on the choice of (Bondi) coordinates. The relations between them are
nonlinear and nonlocal.

∙ A very important technical tool used throughout this work is a class of complex analytic
functions, 𝑢B = 𝐺(𝜏, 𝜁, 𝜁), referred to as GCFs that are closely associated with shear-free
NGCs. The details are given later. For any given asymptotically-vanishing Maxwell field with
nonvanishing total charge, the Maxwell field itself allows one, on physical grounds, to choose
a unique member of the class referred to as the (Maxwell) UCF. For vacuum asymptotically-
flat spacetimes, the Weyl tensor allows the choice of a unique member of the class referred to
as the (gravitational) UCF. For Einstein–Maxwell there will be two such functions, though in
important cases they will coincide and be referred to as UCFs. When there is no ambiguity,
in either case, they will simple be UCFs.

∙ A notational irritant arises from the following situation. Very often we expand functions on
the sphere in spin-𝑠 harmonics, as, e.g.,

𝜒 = 𝜒0𝑌0 + 𝜒𝑖𝑌1𝑖(𝜁, 𝜁) + 𝜒𝑖𝑗𝑌2𝑖𝑗(𝜁, 𝜁) + 𝜒𝑖𝑗𝑘𝑌3𝑖𝑗𝑘(𝜁, 𝜁) + . . . ,

where the indices, 𝑖, 𝑗, 𝑘 . . . represent three-dimensional Euclidean indices. To avoid extra
notation and symbols we write scalar products and cross-products without the use of an
explicit Euclidean metric, leading to awkward expressions like

−→𝜂 ·
−→
𝜆 ≡ 𝜂𝑖𝜆𝑖 ≡ 𝜂𝑖𝜆𝑖,

𝜇𝑘 = (−→𝜂 ×
−→
𝜆 )𝑘 ≡ 𝜂𝑖𝜆𝑗𝜖𝑖𝑗𝑘.

This, though easy to understand and keep track of, does run into the unpleasant fact that
often the relativist four-vector,

𝜒𝑎 = (𝜒0, 𝜒𝑖),

appears as the 𝑙 = 0, 1 harmonics in the harmonic expansions. Thus, care must be used when
lowering or raising the relativistic index, i.e., 𝜂𝑎𝑏𝜒

𝑎 = 𝜒𝑏 = (𝜒0,−𝜒𝑖).
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Table 1: Glossary

Symbol/Acronym Definition

I+, I+C Future conformal null infinity, Complex future conformal null
infinity

𝐼+, 𝐼−, 𝐼0 Future, Past conformal timelike infinity, Conformal spacelike
infinity

M, MC Minkowski space, Complex Minkowski space

𝑢B, 𝑢ret Bondi time coordinate, Retarded Bondi time (
√
2𝑢B = 𝑢ret)

𝜕𝑢B
𝑓 = 𝑓 Derivation with respect to 𝑢B

𝜕𝑢ret𝑓 = 𝑓 ′ Derivation with respect to 𝑢ret
𝑟 Affine parameter along null geodesics

(𝜁, 𝜁) (𝑒𝑖𝜑 cot(𝜃/2), 𝑒−𝑖𝜑 cot(𝜃/2)); stereographic coordinates on 𝑆2

𝑌 𝑠
𝑙𝑖...𝑗(𝜁, 𝜁) Tensorial spin-𝑠 spherical harmonics

ð, ð̄ 𝑃 1−𝑠 𝜕
𝜕𝜁𝑃

𝑠, 𝑃 1+𝑠 𝜕
𝜕𝜁
𝑃−𝑠; spin-weighted operator on the two-

sphere

𝑃 Metric function on 𝑆2; often 𝑃 = 𝑃0 ≡ 1 + 𝜁𝜁

ð(𝛼)𝑓 Application of ð-operator to 𝑓 while the variable 𝛼 is held
constant

{𝑙𝑎, 𝑛𝑎,𝑚𝑎, �̄�𝑎} Null tetrad system; 𝑙𝑎𝑛𝑎 = −𝑚𝑎�̄�𝑎 = 1

NGC Null Geodesic Congruence

NP/SC Newman–Penrose/Spin-Coefficient Formalism

{𝑈,𝑋𝐴, 𝜔, 𝜉𝐴} Metric coefficients in the Newman–Penrose formalism

{𝜓0, 𝜓1, 𝜓2, 𝜓3, 𝜓4} Weyl tensor components in the Newman-Penrose formalism

{𝜑0, 𝜑1, 𝜑2} Maxwell tensor components in the Newman–Penrose formal-
ism

𝜌 Complex divergence of a null geodesic congruence

Σ Twist of a null geodesic congruence

𝜎, 𝜎0 Complex shear, Asymptotic complex shear of a NGC

𝑘 8𝜋𝐺
𝑐4 ; Gravitational constant

𝑢 = 𝐺(𝜏, 𝜁, 𝜁) Cut function on I+

𝜏 = 𝑠+ 𝑖𝜆 = 𝑇 (𝑢, 𝜁, 𝜁) Complex auxiliary (CR) potential function

𝜕𝜏𝑓 = 𝑓 ′ Derivation with respect to 𝜏

ð2(𝜏)𝐺(𝜏, 𝜁, 𝜁) = 𝜎0(𝑢, 𝜁, 𝜁) Good-Cut Equation, describing asymptotically shear-free
NGCs

GCF Good-Cut Function

𝐿(𝑢, 𝜁, 𝜁) = ð(𝜏)𝐺 Stereographic angle field for an asymptotically shear-free NGC
at I+

ð(𝑢B)𝑇 + 𝐿�̇� = 0 CR equation, describing the embedding of I+ into C2

three-dimensional CR Structure A class of one-forms describing a real three-manifold of C2

ℋ-space Complex four-dimensional solution space to the Good-Cut
Equation

𝐷𝑖
C = 𝐷𝑖

𝐸 + 𝑖𝐷𝑖
𝑀 = 1

2𝜑
0
0𝑖 Complex electromagnetic dipole

𝜂𝑎(𝑢ret) Complex center-of-charge world line, lives in ℋ-space
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Table 1 – Continued

Symbol/Acronym Definition

𝐷𝑖
C(grav) = 𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖

= − 𝑐2

6
√
2𝐺
𝜓0𝑖
1 Complex gravitational dipole

𝜉𝑎(𝑢ret) Complex center-of-mass world line, lives in ℋ-space

UCF Universal Cut Function

𝑢 = 𝑋(𝜏, 𝜁, 𝜁) UCF; corresponding to the complex center-of-charge world line

Ψ ≡ 𝜓0
2 + ð2𝜎 + 𝜎�̇� = Ψ̄ Bondi Mass Aspect

𝑀B = − 𝑐2

2
√
2𝐺

Ψ0 Bondi mass

𝑃 𝑖 = − 𝑐3

6𝐺Ψ𝑖 Bondi linear three-momentum

𝐽 𝑖 =
√
2𝑐3

12𝐺 Im(𝜓0𝑖
1 ) Vacuum linear theory identification of angular momentum
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2 Foundations

In this section, we review several of the key ideas and tools that are indispensable in our later
discussions. We keep our explanations as concise as possible, and refrain from extensive proofs of
any propositions. The reader will be directed to the appropriate references for the details. In large
part, much of what is covered in this section should be familiar to many workers in GR.

2.1 Asymptotic flatness and I+

Ever since the work of Bondi [8] illustrated the importance of null hypersurfaces in the study of
outgoing gravitational radiation, the study of asymptotically-flat spacetimes has been one of the
more important research topics in GR. Qualitatively speaking, a spacetime can be thought of as
(future) asymptotically flat if the curvature tensor vanishes at an appropriate rate as infinity is
approached along the future-directed null geodesics of the null hypersurfaces. The type of physical
situation we have in mind is an arbitrary compact gravitating source (perhaps with an electric
charge and current distribution), with the associated gravitational (and electromagnetic) field.
The task is to gain information about the interior of the spacetime from the study of far-field
features, multipole moments, gravitational and electromagnetic radiation, etc. [44]. The arena for
this study is on what is referred to as future null infinity, I+, the future boundary of the spacetime.
The intuitive picture of this boundary is the set of all endpoints of future-directed null geodesics.

A precise definition of null asymptotic flatness and the boundary was given by Penrose [46, 47],
whose basic idea was to rescale the spacetime metric by a conformal factor, which approaches zero
asymptotically: the zero value defining future null infinity. This process leads to the boundary being
a null hypersurface for the conformally-rescaled metric. When this boundary can be attached to the
interior of the rescaled manifold in a regular way, then the spacetime is said to be asymptotically
flat.

As the details of this formal structure are not used here, we will rely largely on the intuitive
picture. A thorough review of this subject can be found in [12]. However, there are a number of
important properties of I+ arising from Penrose’s construction that we rely on [44, 46, 47]:

(A): For both the asymptotically-flat vacuum Einstein equations and the Einstein–Maxwell
equations, I+ is a null hypersurface of the conformally rescaled metric.

(B): I+ is topologically 𝑆2 × R.
(C): The Weyl tensor 𝐶𝑎

𝑏𝑐𝑑 vanishes at I+, with the peeling theorem describing the speed of its
falloff (see below).

Property (B) allows an easy visualization of the boundary, I+, as the past light cone of the
point 𝐼+, future timelike infinity. As mentioned earlier, I+ will be the stage for our study of
asymptotically shear-free NGCs.

2.2 Bondi coordinates and null tetrad

Proceeding with our examination of the properties of I+, we introduce, in the neighborhood of
I+, what is known as a Bondi coordinate system: (𝑢B, 𝑟, 𝜁, 𝜁). In this system, 𝑢B, the Bondi
time, labels the null surfaces, 𝑟 is the affine parameter along the null geodesics of the constant 𝑢B
surfaces and 𝜁 = 𝑒𝑖𝜑 cot(𝜃/2), the complex stereographic angle labeling the null geodesics of I+.
To reach I+, we simply let 𝑟 → ∞, so that I+ has coordinates (𝑢B, 𝜁, 𝜁). The time coordinate
𝑢B, the topologically R portion of I+, labels “cuts” of I+. The stereographic angle 𝜁 accounts
for the topological generators of the 𝑆2 portion of I+, i.e., the null generators of I+. The choice
of a Bondi coordinate system is not unique, there being a variety of Bondi coordinate systems to
choose from. The coordinate transformations between any two, known as Bondi–Metzner–Sachs
(BMS) transformations or as the BMS group, are discussed later in this section.
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Associated with the Bondi coordinates is a (Bondi) null tetrad system, (𝑙𝑎, 𝑛𝑎,𝑚𝑎,𝑚𝑎). The
first tetrad vector 𝑙𝑎 is the tangent to the geodesics of the constant 𝑢B null surfaces given by [44]

𝑙𝑎 =
𝑑𝑥𝑎

𝑑𝑟
= 𝑔𝑎𝑏∇𝑏𝑢B, (5)

𝑙𝑎∇𝑎𝑙
𝑏 = 0, (6)

𝑙𝑎
𝜕

𝜕𝑥𝑎
=

𝜕

𝜕𝑟
. (7)

The second null vector 𝑛𝑎 is normalized so that:

𝑙𝑎𝑛
𝑎 = 1. (8)

In Bondi coordinates, we have [44]

𝑛𝑎
𝜕

𝜕𝑥𝑎
=

𝜕

𝜕𝑢B
+ 𝑈

𝜕

𝜕𝑟
+𝑋𝐴 𝜕

𝜕𝑥𝐴
, (9)

for functions 𝑈 and 𝑋𝐴 to be determined, and 𝐴 = 2, 3 with 𝑥2 = 𝜁 and 𝑥3 = 𝜁. At I+, 𝑛𝑎 is
tangent to the null generators of I+.

The tetrad is completed with the choice of a complex null vector 𝑚𝑎, (𝑚𝑎𝑚𝑎 = 0) which is
itself orthogonal to both 𝑙𝑎 and 𝑛𝑎, initially tangent to the constant 𝑢B cuts at I+ and parallel
propagated inward on the null geodesics. It is normalized by

𝑚𝑎�̄�𝑎 = −1. (10)

Once more, in coordinates, we have [44]

𝑚𝑎 𝜕

𝜕𝑥𝑎
= 𝜔

𝜕

𝜕𝑟
+ 𝜉𝐴

𝜕

𝜕𝑥𝐴
, (11)

for some 𝜔 and 𝜉𝐴 to be determined. All other scalar products in the tetrad are to vanish.
With the tetrad thus defined, the contravariant metric of the spacetime is given by

𝑔𝑎𝑏 = 𝑙𝑎𝑛𝑏 + 𝑙𝑏𝑛𝑎 −𝑚𝑎�̄�𝑏 −𝑚𝑏�̄�𝑎. (12)

In terms of the metric coefficients 𝑈 , 𝜔, 𝑋𝐴, and 𝜉𝐴, the metric can be written as:

𝑔𝑎𝑏 =

⎛⎜⎝0 1 0

1 𝑔11 𝑔1𝐴

0 𝑔1𝐴 𝑔𝐴𝐵

⎞⎟⎠ , (13)

𝑔11 = 2(𝑈 − 𝜔�̄�),

𝑔1𝐴 = 𝑋𝐴 − (�̄�𝜉𝐴 + 𝜔𝜉𝐴),

𝑔𝐴𝐵 = −(𝜉𝐴𝜉𝐵 + 𝜉𝐵𝜉𝐴).

Thus, the spacetime metric is determined from the metric coefficients.
There remains the issue of both coordinate and tetrad freedom, i.e., local Lorentz transforma-

tions. Most of the time we work in one arbitrary but fixed Bondi coordinate system, though for
special situations more general coordinate systems are used. The more general transformations
are given, essentially, by choosing an arbitrary slicing of I+, written as 𝑢B = 𝐺(𝑠, 𝜁, 𝜁) with 𝑠
labeling the slices. To keep conventional coordinate conditions unchanged requires a rescaling of
𝑟 : 𝑟 → 𝑟′ = (𝜕𝑠𝐺)

−1𝑟. It is also useful to be able to shift the origin of 𝑟 by 𝑟′ = 𝑟 − 𝑟0(𝑢B, 𝜁, 𝜁)
with arbitrary 𝑟0(𝑢B, 𝜁, 𝜁).
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The tetrad freedom of null rotations around 𝑛𝑎, performed in the neighborhood of I+, will later
play a major role. For an arbitrary function 𝐿(𝑢B, 𝜁, 𝜁) on I+, the null rotation about the vector
𝑛𝑎 [44] is given by

𝑙𝑎 → 𝑙*𝑎 = 𝑙𝑎 − �̄�

𝑟
𝑚𝑎 − 𝐿

𝑟
�̄�𝑎 + 0(𝑟−2), (14)

𝑚𝑎 → 𝑚* 𝑎 = 𝑚𝑎 − 𝐿

𝑟
𝑛𝑎 + 0(𝑟−2), (15)

𝑛𝑎 → 𝑛* 𝑎 = 𝑛𝑎. (16)

Eventually, by the appropriate choice of the function 𝐿(𝑢B, 𝜁, 𝜁), the new null vector, 𝑙*𝑎, can
be made into the tangent vector of an asymptotically shear-free NGC.

The second type of tetrad transformation is the rotation in the tangent (𝑚𝑎,𝑚𝑎) plane, which
keeps 𝑙𝑎 and 𝑛𝑎 fixed:

𝑚𝑎 → 𝑒𝑖𝜆𝑚𝑎, 𝜆 ∈ R. (17)

This latter transformation provides motivation for the concept of spin weight. A quantity 𝜂(𝑠)(𝜁, 𝜁)
is said to have spin-weight 𝑠 if, under the transformation, Equation (17), it transforms as

𝜂 → 𝜂*(𝑠)(𝜁, 𝜁) = 𝑒𝑖𝑠𝜆𝜂(𝑠)(𝜁, 𝜁). (18)

An example would be to take a vector on I+, say 𝜂𝑎, and form the spin-weight-one quantity,
𝜂(1) = 𝜂𝑎𝑚𝑎.

Comment: For later use we note that 𝐿(𝑢B, 𝜁, 𝜁) has spin weight, 𝑠 = 1.
For each 𝑠, spin-𝑠 functions can be expanded in a complete basis set, the spin-𝑠 harmonics,

𝑠𝑌𝑙𝑚(𝜁, 𝜁) or spin-𝑠 tensor harmonics, 𝑌
(𝑠)
𝑙 𝑖...𝑗(𝜁, 𝜁) ⇔ 𝑠𝑌𝑙𝑚(𝜁, 𝜁).

A third tetrad transformation, the boosts, are given by

𝑙# 𝑎 = 𝐾𝑙𝑎, 𝑛# 𝑎 = 𝐾−1𝑛𝑎. (19)

These transformations induce the idea of conformal weight, an idea similar to spin weight. Under
a boost transformation, a quantity, 𝜂(𝑤), will have conformal weight 𝑤 if

𝜂(𝑤) → 𝜂#(𝑤) = 𝐾𝑤𝜂(𝑤). (20)

Sphere derivatives of spin-weighted functions 𝜂(𝑠)(𝜁, 𝜁) are given by the action of the operators
ð and its conjugate operator ð̄, defined by [17]

ð𝜂(𝑠) = 𝑃 1−𝑠 𝜕(𝑃
𝑠𝜂(𝑠))

𝜕𝜁
, (21)

ð̄𝜂(𝑠) = 𝑃 1+𝑠 𝜕(𝑃
−𝑠𝜂(𝑠))

𝜕𝜁
, (22)

where the function 𝑃 is the conformal factor defining the sphere metric,

𝑑𝑠2 =
4𝑑𝜁𝑑𝜁

𝑃 2
,

most often taken as

𝑃 = 𝑃0 ≡ 1 + 𝜁𝜁.
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2.3 The optical equations

Since this work concerns NGCs and, in particular, shear-free and asymptotically shear-free NGCs,
it is necessary to first define them and then study their properties.

Given a Lorentzian manifold with local coordinates, 𝑥𝑎, and an NGC, i.e., a foliation by a three
parameter family of null geodesics,

𝑥𝑎 = 𝑋𝑎(𝑟, 𝑦𝑤), (23)

with 𝑟 the affine parameterization and the (three) 𝑦𝑤 labeling the geodesics, the tangent vector
field 𝑙𝑎 = 𝐷𝑋𝑎 ≡ 𝜕𝑟𝑋

𝑎 satisfies the geodesic equation

𝑙𝑎∇𝑎𝑙
𝑏 = 0.

The two complex optical scalars (spin coefficients), 𝜌 and 𝜎, are defined by

𝜌 =
1

2
(−∇𝑎𝑙

𝑎 + 𝑖 curl 𝑙𝑎), (24)

curl 𝑙𝑎 ≡
√︁

(∇[𝑎𝑙𝑏]∇𝑎𝑙𝑏)

and
𝜎 = ∇(𝑎𝑙𝑏)𝑚

𝑎𝑚𝑏

with 𝑚𝑎 an arbitrary complex (spacelike) vector satisfying 𝑚𝑎𝑚𝑎 = 𝑚𝑎𝑙𝑎 = 𝑚𝑎𝑚𝑎 − 1 = 0.
Equivalently 𝜎 can be defined by its norm,

𝜎𝜎 =
1

2

(︂
∇(𝑎𝑙𝑏)∇𝑎𝑙𝑏 − 1

2
(∇𝑎𝑙

𝑎)2
)︂
,

with an arbitrary phase.
The 𝜌 and 𝜎 satisfy the optical equations of Sachs [56], namely,

𝜕𝜌

𝜕𝑟
= 𝜌2 + 𝜎�̄� +Φ00, (25)

𝜕𝜎

𝜕𝑟
= 2𝜌𝜎 + 𝜓0, (26)

Φ00 = 𝑅𝑎𝑏 𝑙
𝑎𝑙𝑏,

𝜓0 = −𝐶𝑎𝑏𝑐𝑑 𝑙
𝑎𝑚𝑏𝑙𝑐𝑚𝑑,

where Φ00 and Ψ0 are, respectively, a Ricci and a Weyl tensor tetrad component (see below). In
flat space, i.e., with Φ00 = Ψ0 = 0, excluding the degenerate case of 𝜌𝜌 − 𝜎𝜎 = 0, plane and
cylindrical fronts, the general solution is

𝜌 =
𝑖Σ− 𝑟

𝑟2 +Σ2 − 𝜎0𝜎0 , (27)

𝜎 =
𝜎0

𝑟2 +Σ2 − 𝜎0𝜎0 . (28)

The complex 𝜎0 (referred to as the asymptotic shear) and the real Σ (called the twist) are deter-
mined from the original congruence, Equation (23). Both are functions just of the parameters, 𝑦𝑤.
Their behavior for large 𝑟 is given by

𝜌 = −1

𝑟
+
𝑖Σ

𝑟2
+

Σ2

𝑟3
− 𝜎0𝜎0

𝑟3
+𝑂(𝑟−4), (29)

𝜎 =
𝜎0

𝑟2
+𝑂(𝑟−4). (30)
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From this, 𝜎0 gets its name as the asymptotic shear. In Section 3, we return to the issue of
the explicit construction of NGCs in Minkowski space and in particular to the construction and
detailed properties of regular shear-free congruences.

Note the important point that, in M, the vanishing of the asymptotic shear forces the shear
to vanish. The same is not true for asymptotically-flat spacetimes. Specifically, for future null
asymptotically-flat spaces described in a Bondi tetrad and coordinate system, we have, from other
considerations, that

Φ00 = 𝑂(𝑟−6),

𝜓0 = 𝑂(𝑟−5),

Σ = 0,

which leads to the asymptotic behavior of 𝜌 and 𝜎,

𝜌 = 𝜌 = −1

𝑟
+
𝜎0𝜎0

𝑟3
+𝑂(𝑟−5),

𝜎 =
𝜎0
𝑟2

+𝑂(𝑟−4),

with the two order symbols explicitly depending on the leading terms in Φ00 and Ψ0. The vanishing
of 𝜎0 does not, in this nonflat case, imply that 𝜎 vanishes. This case, referred to as asymptotically
shear-free, plays the major role later. It will be returned to in greater detail in Section 4.

2.4 The Newman–Penrose formalism

Though the NP formalism is the basic working tool for our analysis, this is not the appropriate
venue for its detailed exposition. Instead we will simply give an outline of the basic ideas followed
by the results found, from the application of the NP equations, to the problem of asymptotically-flat
spacetimes.

The NP version [39, 44, 41] of the vacuum Einstein (or the Einstein–Maxwell) equations uses
the tetrad components

𝜆𝑎𝑖 = (𝑙𝑎, 𝑛𝑎,𝑚𝑎, �̄�𝑎), (31)

(𝑖 = 1, 2, 3, 4) rather than the metric, as the basic variable. (An alternate version, not discussed
here, is to use a pair of two-component spinors.) The metric, Equation (12), can be written
compactly as

𝑔𝑎𝑏 = 𝜂𝑖𝑗𝜆𝑎𝑖 𝜆
𝑏
𝑗 , (32)

with

𝜂𝑖𝑗 =

⎛⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

⎞⎟⎟⎟⎠ . (33)

The complex spin coefficients, which play the role of the connection, are determined from the
Ricci rotation coefficients [39, 44]:

𝛾𝑖𝑗𝑘 = 𝜆𝑏𝑗𝜆
𝑎
𝑘∇𝑎𝜆

𝑖
𝑏 ≡ 𝜆𝑏𝑗𝜆

𝑖
𝑏;𝑘, (34)

via the linear combinations

𝛼 = 1
2 (𝛾124 − 𝛾344), 𝜆 = −𝛾244, 𝜅 = 𝛾131,

𝛽 = 1
2 (𝛾123 − 𝛾343), 𝜇 = −𝛾243, 𝜌 = 𝛾134,

𝛾 = 1
2 (𝛾122 − 𝛾342), 𝜈 = −𝛾242, 𝜎 = 𝛾133,

𝜀 = 1
2 (𝛾121 − 𝛾341), 𝜋 = −𝛾241, 𝜏 = 𝛾132.

(35)
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The third basic variable in the NP formalism is the Weyl tensor or, equivalently, the following
five complex tetrad components of the Weyl tensor:

𝜓0 = −𝐶𝑎𝑏𝑐𝑑 𝑙
𝑎𝑚𝑏𝑙𝑐𝑚𝑑, 𝜓1 = −𝐶𝑎𝑏𝑐𝑑 𝑙

𝑎𝑛𝑏𝑙𝑐𝑚𝑑, (36)

𝜓2 = −1

2

(︀
𝐶𝑎𝑏𝑐𝑑 𝑙

𝑎𝑛𝑏𝑙𝑐𝑛𝑑 − 𝐶𝑎𝑏𝑐𝑑 𝑙
𝑎𝑛𝑏𝑚𝑐𝑚𝑑

)︀
, (37)

𝜓3 = 𝐶𝑎𝑏𝑐𝑑 𝑙
𝑎𝑛𝑏𝑛𝑐𝑚𝑑, 𝜓4 = 𝐶𝑎𝑏𝑐𝑑 𝑛

𝑎𝑚𝑏𝑛𝑐𝑚𝑑. (38)

When an electromagnetic field is present, we must include the complex tetrad components of
the Maxwell field into the equations:

𝜑0 = 𝐹𝑎𝑏 𝑙
𝑎𝑚𝑏, (39)

𝜑1 =
1

2
𝐹𝑎𝑏

(︀
𝑙𝑎𝑛𝑏 +𝑚𝑎𝑚𝑏

)︀
,

𝜑2 = 𝐹𝑎𝑏 𝑛
𝑎𝑚𝑏,

as well as the Ricci (or stress tensor) constructed from the three 𝜑𝑖, e.g., 𝑇𝑎𝑏 𝑙
𝑎𝑙𝑏 = 𝑘𝜑0𝜑0, 𝑘 =

2𝐺𝑐−4.
Remark: We mention that much of the physical content and interpretations in the present

work comes from the study of the lowest spherical harmonic coefficients in the leading terms of the
far-field expansions of the Weyl and Maxwell tensors.

The NP version of the vacuum (or Einstein–Maxwell) equations consists of three sets (or four
sets) of nonlinear first-order coupled partial differential equations for the variables: the tetrad
components, the spin coefficients, the Weyl tensor (and Maxwell field when present). Though
there is no hope that they can be solved in any general sense, many exact solutions have been
found from them. Of far more importance, large classes of asymptotic solutions and perturbation
solutions can be found. Our interest lies in the asymptotic behavior of the asymptotically-flat
solutions. Though there are some subtle issues, integration in this class is not difficult [39, 45].
With no explanation of the integration process, except to mention that we use the Bondi coordinate
and tetrad system of Equations (7), (9), and (11) and asymptotic flatness, we simply give the final
results.

First, the radial behavior is described. The quantities with a zero superscript, e.g., 𝜎0, 𝜓0
2 , . . . ,

are ‘functions of integration’, i.e., functions only of (𝑢B, 𝜁, 𝜁).

∙ The Weyl tensor:

𝜓0 = 𝜓0
0𝑟

−5 +𝑂(𝑟−6), (40)

𝜓1 = 𝜓0
1𝑟

−4 +𝑂(𝑟−5),

𝜓2 = 𝜓0
2𝑟

−3 +𝑂(𝑟−4),

𝜓3 = 𝜓0
3𝑟

−2 +𝑂(𝑟−3),

𝜓4 = 𝜓0
4𝑟

−1 +𝑂(𝑟−2).

∙ The Maxwell tensor:

𝜑0 = 𝜑00𝑟
−3 +𝑂(𝑟−4), (41)

𝜑1 = 𝜑01𝑟
−2 +𝑂(𝑟−3),

𝜑2 = 𝜑02𝑟
−1 +𝑂(𝑟−2).
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∙ The spin coefficients and metric variables:

𝜅 = 𝜋 = 𝜖 = 0, 𝜏 = 𝛼+ 𝛽, (42)

𝜌 = 𝜌 = −𝑟−1 − 𝜎0𝜎0𝑟−3 +𝑂(𝑟−5),

𝜎 = 𝜎0𝑟−2 +
(︀
(𝜎0)2𝜎0 − 𝜓0

0/2
)︀
𝑟−4 +𝑂(𝑟−5),

𝛼 = 𝛼0𝑟−1 +𝑂(𝑟−2), 𝛽 = 𝛽0𝑟−1 +𝑂(𝑟−2),

𝛾 = 𝛾0 − 𝜓0
2(2𝑟

2)−1 +𝑂(𝑟−3), 𝜆 = 𝜆0𝑟−1 +𝑂(𝑟−2),

𝜇 = 𝜇0𝑟−1 +𝑂(𝑟−2), 𝜈 = 𝜈0 +𝑂(𝑟−1),

𝐴 = 𝜁 or 𝜁,

𝜉𝐴 = 𝜉0𝐴𝑟−1 − 𝜎0𝜉
0𝐴
𝑟−2 + 𝜎0�̄�0𝜉0𝐴𝑟−3 +𝑂(𝑟−4),

𝜔 = 𝜔0𝑟−1 − (𝜎0𝜔0 + 𝜓0
1/2)𝑟

−2 +𝑂(𝑟−3),

𝑋𝐴 = (𝜓0
1𝜉

0𝐴
+ 𝜓

0

1𝜉
0𝐴)(6𝑟3)−1 +𝑂(𝑟−4),

𝑈 = 𝑈0 − (𝛾0 + 𝛾0)𝑟 − (𝜓0
2 + 𝜓

0

2)(2𝑟)
−1 +𝑂(𝑟−2).

∙ The functions of integration are determined, using coordinate conditions, as:

𝜉0𝜁 = −𝑃, 𝜉
0𝜁

= 0, (43)

𝜉0𝜁 = 0, 𝜉
0𝜁

= −𝑃, (44)

𝑃 = 1 + 𝜁𝜁, (45)

𝛼0 = −𝛽0
= −𝜁

2
, (46)

𝛾0 = 𝜈0 = 0, (47)

𝜔0 = −ð𝜎0, (48)

𝜆0 = �̇�
0
, (49)

𝜇0 = 𝑈0 = −1, (50)

𝜓0
4 = −�̈�0

, (51)

𝜓0
3 = ð�̇�0

, (52)

𝜓0
2 − 𝜓

0

2 = ð2𝜎0 − ð2𝜎0 + 𝜎0𝜆0 − 𝜎0𝜆
0
. (53)

∙ The mass aspect,

Ψ ≡ 𝜓0
2 + ð2𝜎0 + 𝜎0�̇�

0
, (54)

satisfies the physically very important reality condition:

Ψ = Ψ. (55)

∙ Finally, from the asymptotic Bianchi identities, we obtain the dynamical (or evolution) rela-
tions:
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�̇�0
2 = −ð𝜓0

3 + 𝜎0𝜓0
4 + 𝑘𝜑02𝜑

0
2, (56)

�̇�0
1 = −ð𝜓0

2 + 2𝜎0𝜓0
3 + 2𝑘𝜑01𝜑

0
2, (57)

�̇�0
0 = −ð𝜓0

1 + 3𝜎0𝜓0
2 + 3𝑘𝜑00𝜑

0
2, (58)

�̇�01 = −ð𝜑02, (59)

�̇�00 = −ð𝜑01 + 𝜎0𝜑02; (60)

𝑘 = 2𝐺𝑐−4. (61)

Remark: These last five equations, the first of which contains the beautiful Bondi energy-
momentum loss theorem, play the fundamental role in the dynamics of our physical quantities.

Remark: Using the mass aspect, Ψ, with Equations (51) and (52), the first of the asymptotic
Bianchi identities can be rewritten in the concise form,

Ψ̇ = �̇��̇� + 𝑘𝜑02𝜑
0

2. (62)

From these results, the characteristic initial problem can roughly be stated in the following
manner. At 𝑢B = 𝑢𝐵0 we choose the initial values for (𝜓0

0 , 𝜓
0
1 , 𝜓

0
2), i.e., functions only of (𝜁, 𝜁).

The characteristic data, the complex Bondi shear, 𝜎0(𝑢B, 𝜁, 𝜁), is then freely chosen. Since 𝜓0
3

and 𝜓0
4 are functions of 𝜎0, Equations (49), (51) and (52) and its derivatives, all the asymptotic

variables can now be determined from Equations (56) – (60).
An important consequence of the NP formalism is that it allows simple proofs for many geo-

metric theorems. Two important examples are the Goldberg–Sachs theorem [18] and the peeling
theorem [57]. The peeling theorem is essentially given by the asymptotic behavior of the Weyl
tensor in Equation (40) (and Equation (41)). The Goldberg–Sachs theorem essentially states that
for an algebraically-special metric, the degenerate principle null vector field is the tangent field to
a shear-free NGC. Both theorems are implicitly used later.

One of the immediate physical interpretations arising from the asymptotically-flat solutions was
Bondi’s [8] identifications, at I+, of the interior spacetime four-momentum (energy/momentum).
Given the mass aspect, Equation (54),

Ψ = 𝜓0
2 + ð2𝜎0 + 𝜎0�̇�

0
,

and the spherical harmonic expansion

Ψ = Ψ0 +Ψ𝑖𝑌 0
1𝑖 +Ψ𝑖𝑗𝑌 0

2𝑖𝑗 + . . . , (63)

Bondi identified the interior mass and three-momentum with the 𝑙 = 0 and 𝑙 = 1 harmonic
contributions;

𝑀B = − 𝑐2

2
√
2𝐺

Ψ0, (64)

𝑃 𝑖 = − 𝑐3

6𝐺
Ψ𝑖. (65)

The evolution of these quantities, (the Bondi mass/momentum loss) is then determined from
Equation (62). The details of this will be discussed in Section 5.

The same clear cut asymptotic physical identification for interior angular momentum is not as
readily available. In vacuum linear theory, the angular momentum is often taken to be

𝐽𝑘 =

√
2𝑐3

12𝐺
Im (𝜓0𝑘

1 ). (66)
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However, in the nonlinear treatment, correction terms quadratic in 𝜎0 and its derivatives are
often included [59]. In the presence of a Maxwell field, this is again modified by the addition of
electromagnetic multipole terms [29, 3].

In our case, where we consider only quadrupole gravitational radiation, the quadratic correction
terms do in fact vanish and hence Equation (66), modified by the Maxwell terms, is correct as it
is stated.

2.5 The Bondi–Metzner–Sachs group

The group of coordinate transformations at I+ that preserves the Bondi coordinate conditions, the
BMS group, is the same as the asymptotic symmetry group that arises from approximate solutions
to Killing’s equation as I+ is approached. The BMS group has two parts: the homogeneous Lorentz
group and the supertranslation group, which contains the Poincaré translation sub-group. Their
importance to us lies in the fact that all the physical quantities arising from our identifications
must transform appropriately under these transformations [49, 29].

Specifically, the BMS group is given by the supertranslations, with 𝛼(𝜁, 𝜁) an arbitrary regular
differentiable function on 𝑆2:

̂︀𝑢𝐵 = 𝑢B + 𝛼(𝜁, 𝜁) (67)

(̂︀𝜁, ̂︀𝜁) = (𝜁, 𝜁)

and the Lorentz transformations, with (𝑎, 𝑏, 𝑐, 𝑑) the complex parameters of SL(2,C),

̂︀𝑢𝐵 = 𝐾𝑢B, (68)

𝐾 =
1 + 𝜁𝜁

(𝑎𝜁 + 𝑏)(𝑎𝜁 + 𝑏) + (𝑐𝜁 + 𝑑)(𝑐𝜁 + 𝑑)
,

̂︀𝜁 =
𝑎𝜁 + 𝑏

𝑐𝜁 + 𝑑
, 𝑎𝑑− 𝑏𝑐 = 1.

If 𝛼(𝜁, 𝜁) is expanded in spherical harmonics,

𝛼(𝜁, 𝜁) =
∑︁

𝛼𝑚𝑙𝑌𝑙𝑚(𝜁, 𝜁), (69)

the 𝑙 = 0, 1 terms represent the Poincaré translations, i.e.,

𝛼(𝑃 )(𝜁, 𝜁) = 𝑑𝑎 �̂�𝑎 =

√
2

2
𝑑0𝑌 0

0 − 1

2
𝑑𝑖𝑌 0

1𝑖. (70)

Details about the representation theory, with applications, are given later.

2.6 Algebraically-special metrics and the Goldberg–Sachs theorem

Among the most studied vacuum spacetimes are those referred to as ‘algebraically-special’ space-
times, i.e., vacuum spacetimes that possess two or more coinciding principle null vectors (PNVs).
PNV fields [50] (in general, four locally-independent fields exist) are defined by solutions, 𝐿𝑎, to
the algebraic equation

𝐿𝑏𝐿[𝑒𝐶𝑎]𝑏𝑐[𝑑𝐿𝑓 ]𝐿
𝑐 = 0, 𝐿𝑎𝐿𝑎 = 0.
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The Cartan–Petrov–Pirani–Penrose classification [52, 53, 50] describes the different degenera-
cies:

Alg. General [1, 1, 1, 1]

Type II [2, 1, 1]

Type D or degenerate [2, 2]

Type III [3, 1]

Type IV or Null [4].

In NP language, if the tetrad vector 𝑙𝑎 is a principle null vector, i.e., 𝐿𝑎 = 𝑙𝑎, then automati-
cally,

𝜓0 = 0.

For the algebraically-special metrics, the special cases are

Type II 𝜓0 = 𝜓1 = 0

Type III 𝜓0 = 𝜓1 = 𝜓2 = 0

Type IV 𝜓0 = 𝜓1 = 𝜓2 = 𝜓3 = 0

Type D
𝜓0 = 𝜓1 = 𝜓3 = 𝜓4 = 0

with both 𝑙𝑎 and 𝑛𝑎 PNVs.

An outstanding feature of the algebraically-special metrics is contained in the beautiful Goldberg–
Sachs theorem [18].

Theorem. For a nonflat vacuum spacetime, if there is an NGC that is shear-free, i.e., there is a
null vector field with (𝜅 = 0, 𝜎 = 0), then the spacetime is algebraically special and, conversely, if
a vacuum spacetime is algebraically special, there is an NGC with (𝜅 = 0, 𝜎 = 0).
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3 Shear-Free NGCs in Minkowski Space

The structure and properties of asymptotically shear-free NGCs (our main topic) are best under-
stood by first looking at the special case of congruences that are shear-free everywhere (except at
their caustics). Though shear-free congruences are also found in algebraically-special spacetimes,
in this section only the shear-free NGCs in Minkowski spacetime, M, are discussed [4]

3.1 The flat-space good-cut equation and good-cut functions

In Section 2, we saw that in the NP formalism, two of the complex spin coefficients, the optical
parameters 𝜌 and 𝜎 of Equations (27) and (28), play a particularly important role in their de-
scription of an NGC; namely, they carry the information of the divergence, twist and shear of the
congruence.

From Equations (27) and (28), the radial behavior of the optical parameters for general shear-
free NGCs, in Minkowski space, is given by

𝜌 =
𝑖Σ− 𝑟

𝑟2 +Σ2
, 𝜎 = 0, (71)

where Σ is the twist of the congruence. A more detailed and much deeper understanding of
the shear-free congruences can be obtained by first looking at the explicit coordinate expression,
Equation (23), for all flat-space NGCs:

𝑥𝑎 = 𝑢B(�̂�
𝑎 + �̂�𝑎)− 𝐿�̂�

𝑎 − �̄��̂�𝑎 + (𝑟* − 𝑟0)�̂�
𝑎, (72)

where 𝐿(𝑢B, 𝜁, 𝜁) is an arbitrary complex function of the parameters 𝑦𝑤 = (𝑢B, 𝜁, 𝜁); 𝑟0, also an
arbitrary function of (𝑢B, 𝜁, 𝜁), determines the origin of the affine parameter; 𝑟* can be chosen
freely. Most frequently, to simplify the form of 𝜌, 𝑟0 is chosen as

𝑟0 ≡ −1

2

(︁
ð�̄�+ ð̄𝐿+ 𝐿 ˙̄𝐿+ �̄��̇�

)︁
. (73)

At this point, Equation (72) describes an arbitrary NGC with (𝑢B, 𝜁, 𝜁) labeling the geodesics and
𝑟* the affine distance along the individual geodesics; later 𝐿(𝑢B, 𝜁, 𝜁) will be chosen so that the
congruence is shear-free.

The tetrad (�̂�𝑎, �̂�𝑎, �̂�𝑎, �̂�
𝑎
) is given by [27]

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁, 𝜁 + 𝜁, 𝑖𝜁 − 𝑖𝜁,−1 + 𝜁𝜁

)︀
, (74)

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁,−(𝜁 + 𝜁), 𝑖𝜁 − 𝑖𝜁, 1− 𝜁𝜁

)︀
,

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
0, 1− 𝜁2,−𝑖(1 + 𝜁2), 2𝜁

)︀
.

There are several important comments to be made about Equation (72). The first is that there is a
simple geometric meaning to the parameters (𝑢B, 𝜁, 𝜁): they are the values of the Bondi coordinates
of I+, where each geodesic of the congruence intersects I+.

The second concerns the geometric meaning of 𝐿. At each point of I+, consider the past
light cone and its sphere of null directions. Coordinatize that sphere (of null directions) with
stereographic coordinates. The function 𝐿(𝑢B, 𝜁, 𝜁) is the stereographic angle field on I+ that
describes the null direction of each geodesic intersecting I+ at the point (𝑢B, 𝜁, 𝜁). The values
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𝐿 = 0 and 𝐿 = ∞ represent, respectively, the direction along the Bondi 𝑙𝑎 and 𝑛𝑎 vectors. This
stereographic angle field completely determines the NGC.

The twist, Σ, of the congruence can be calculated in terms of 𝐿(𝑢B, 𝜁, 𝜁) directly from Equa-
tion (72) and the definition of the complex divergence, Equation (24), leading to

𝑖Σ =
1

2

{︁
ð𝐿+ 𝐿�̇�− ð𝐿− 𝐿�̇�

}︁
. (75)

We now demand that 𝐿 be a regular function of its arguments, i.e., have no infinities, or, equiv-
alently, that all members of the NGC come from the interior of the spacetime and not lie on I+

itself.
It has been shown [6] that the condition on the stereographic angle field 𝐿 for the NGC to be

shear-free is that
ð𝐿+ 𝐿�̇� = 0. (76)

Our task is now to find the regular solutions of Equation (76). The key to doing this is via the
introduction of a new complex variable 𝜏 and complex function [26, 27],

𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁). (77)

𝑇 is related to 𝐿 by the CR equation (related to the existence of a CR structure on I+; see
Appendix B):

ð(𝑢B)𝑇 + 𝐿�̇� = 0. (78)

Remark: The following ‘gauge’ freedom becomes useful later. 𝜏 ⇒ 𝜏* = 𝐹 (𝜏), with 𝐹 analytic,
leaving Equation (78) unchanged. In other words,

𝜏* = 𝑇 * (︀𝑢B, 𝜁, 𝜁)︀ ≡ 𝐹
(︀
𝑇 (𝑢B, 𝜁, 𝜁)

)︀
, (79)

leads to

ð(𝑢B)𝑇
* = 𝐹 ′ð(𝑢B)𝑇,

�̇� * = 𝐹 ′�̇� ,

ð(𝑢B)𝑇
* + 𝐿�̇� * = 0.

We assume, in the neighborhood of real I+, i.e., near the real 𝑢B and 𝜁 = 𝜁, that 𝑇 (𝑢B, 𝜁, 𝜁)
is analytic in the three arguments (𝑢B, 𝜁, 𝜁). The inversion of Equation (77) yields the complex
analytic cut function

𝑢B = 𝐺(𝜏, 𝜁, 𝜁). (80)

Though we are interested in real values for 𝑢B, from Equation (80) we see that for arbitrary 𝜏 in
general it would take complex values. Shortly, we will also address the important issue of what
values of 𝜏 are needed for real 𝑢B.

Returning to the issue of integrating the shear-free condition, Equation (76), using Equa-
tion (77), we note that the derivatives of 𝑇 , ð(𝑢B)𝑇 and �̇� can be expressed in terms of the
derivatives of 𝐺(𝜏, 𝜁, 𝜁) by implicit differentiation. The 𝑢B derivative of 𝑇 is obtained by taking
the 𝑢B derivative of Equation (80):

1 = 𝐺′(𝜏, 𝜁, 𝜁)�̇� ⇒ �̇� =
1

(𝐺′)
, (81)

while the ð(𝑢B)𝑇 derivative is found by applying ð(𝑢B) to Equation (80),

0 = 𝐺′(𝜏, 𝜁, 𝜁)ð(𝑢B)𝑇 + ð(𝜏)𝐺, (82)

ð(𝑢B)𝑇 = −
ð(𝜏)𝐺

𝐺′(𝜏, 𝜁, 𝜁)
.
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When Equations (81) and (82) are substituted into Equation (78), one finds that 𝐿 is given im-
plicitly in terms of the cut function by

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁), (83)

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) ⇔ 𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁). (84)

Thus, we see that all information about the NGC can be obtained from the cut function
𝐺(𝜏, 𝜁, 𝜁).

By further implicit differentiation of Equation (83), i.e.,

ð(𝑢B)𝐿(𝑢B, 𝜁, 𝜁) = ð2(𝜏)𝐺(𝜏, 𝜁, 𝜁) + ð(𝜏)𝐺′(𝜏, 𝜁, 𝜁) · ð(𝑢B)𝑇,

�̇�(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺′(𝜏, 𝜁, 𝜁) · �̇� ,

using Equation (78), the shear-free condition (76) becomes

ð2(𝜏)𝐺(𝜏, 𝜁, 𝜁) = 0. (85)

This equation will be referred to as the homogeneous Good-Cut Equation and its solutions as flat-
space GCFs. In the next Section 4, an inhomogeneous version, the Good-Cut Equation, will be
found for asymptotically shear-free NGCs. Its solutions will also be referred to as GCFs.

From the properties of the ð2 operator, the general regular solution to Equation (85) is easily
found: 𝐺 must contain only 𝑙 = 0 and 𝑙 = 1 spherical harmonic contributions; thus, any regular
solution will be dependent on four arbitrary complex parameters, 𝑧𝑎. If these parameters are
functions of 𝜏 , i.e., 𝑧𝑎 = 𝜉𝑎(𝜏), then we can express any regular solution 𝐺 in terms of the complex
world line 𝜉𝑎(𝜏) [26, 27]:

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) ≡
√
2𝜉0

2
− 1

2
𝜉𝑖𝑌 0

1𝑖. (86)

The angle field 𝐿(𝑢B, 𝜁, 𝜁) then has the form

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁), (87)

𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁). (88)

Thus, we have our first major result: every regular shear-free NGC in Minkowski space is gen-
erated by the arbitrary choice of a complex world line in what turns out to be complex Minkowski
space. See Equation (70) for the connection between the 𝑙 = (0, 1) harmonics in Equation (86)
and the Poincaré translations. We see in the next Section 4 how this result generalizes to regular
asymptotically shear-free NGCs.

Remark: We point out that this construction of regular shear-free NGCs in Minkowski space
is a special example of the Kerr theorem (cf. [51]). Writing Equations (87) and (88) as

𝑢B =
𝑎+ 𝑏𝜁 + 𝑏𝜁 + 𝑐𝜁𝜁

1 + 𝜁𝜁
,

𝐿 =
(𝑏+ 𝑐𝜁)− 𝜁(𝑎+ 𝑏𝜁)

1 + 𝜁𝜁
,

where the (𝑎(𝜏), 𝑏(𝜏), 𝑐(𝜏), 𝑑(𝜏)) are simple combinations of the 𝜉𝑎(𝜏), we then find that

𝐿+ 𝑢𝜁 = 𝑏+ 𝑐𝜁,

𝑢− 𝐿𝜁 = 𝑎+ 𝑏𝜁.
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Noting that the right-hand side of both equations are functions only of 𝜏 and 𝜁, we can eliminate
the 𝜏 from the two equations, thereby constructing a function of three variables of the form

𝐹 (𝐿+ 𝑢𝜁, 𝑢− 𝐿𝜁, 𝜁) = 0.

This is a special case of the general solution to Equation (76), which is the Kerr theorem.

In addition to the construction of the angle field, 𝐿(𝑢B, 𝜁, 𝜁), from the GCF, another quantity
of great value in applications, obtained from the GCF, is the local change in 𝑢B as 𝜏 changes, i.e.,

𝑉 (𝜏, 𝜁, 𝜁) ≡ 𝜕𝜏𝐺 = 𝐺′. (89)

3.2 Real cuts from the complex good cuts, I

Though our discussion of shear-free NGCs has relied, in an essential manner, on the use of the
complexification of I+ and the complex world lines in complex Minkowski space, it is the real
structures that are of main interest to us. We want to find the intersection of the complex GCF
with real I+, i.e., what are the real points and real cuts of 𝑢B = 𝐺(𝜏, 𝜁, 𝜁), (𝜁 = 𝜁), and what are
the values of 𝜏 that yield real 𝑢B.

To construct an associated family of real cuts from a GCF, we begin with

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) =

√
2

2
𝜉0(𝜏)− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁) (90)

and write

𝜏 = 𝑠+ 𝑖𝜆 (91)

with 𝑠 and 𝜆 real. The cut function can then be rewritten

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝐺(𝑠+ 𝑖𝜆, 𝜁, 𝜁) (92)

= 𝐺𝑅(𝑠, 𝜆, 𝜁, 𝜁) + 𝑖𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁),

with real 𝐺𝑅(𝑠, 𝜆, 𝜁, 𝜁) and 𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁). The 𝐺𝑅(𝑠, 𝜆, 𝜁, 𝜁) and 𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁) are easily calculated
from 𝐺(𝜏, 𝜁, 𝜁) by

𝐺𝑅(𝑠, 𝜆, 𝜁, 𝜁) =
1

2

{︁
𝐺(𝑠+ 𝑖𝜆, 𝜁, 𝜁) +𝐺(𝑠+ 𝑖𝜆, 𝜁, 𝜁)

}︁
, (93)

𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁) =
1

2

{︁
𝐺(𝑠+ 𝑖𝜆, 𝜁, 𝜁)−𝐺(𝑠+ 𝑖𝜆, 𝜁, 𝜁)

}︁
. (94)

By setting

𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁) = 0 (95)

and solving for

𝜆 = Λ(𝑠, 𝜁, 𝜁) (96)

we obtain the associated real slicing,

𝑢
(𝑅)
B = 𝐺𝑅(𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁). (97)

Thus, the values of 𝜏 that yield real values of 𝑢B are given by

𝜏 = 𝑠+ 𝑖Λ(𝑠, 𝜁, 𝜁). (98)
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As an example, using Equation (90), we find to first order in 𝜆

𝑢B =

√
2

2
𝜉0𝑅(𝑠)−

√
2

2
𝜉0𝐼 (𝑠)

′𝜆− 1

2

[︂
𝜉𝑖𝑅(𝑠)− 𝜉𝑖𝐼(𝑠)

′𝜆

]︂
𝑌 0
1𝑖(𝜁, 𝜁) (99)

+𝑖

[︂√
2

2
𝜉0𝐼 (𝑠) +

√
2

2
𝜉0𝑅(𝑠)

′𝜆

]︂
− 𝑖

1

2

[︂
𝜉𝑖𝐼(𝑠) + 𝜉𝑖𝑅(𝑠)

′𝜆

]︂
𝑌 0
1𝑖(𝜁, 𝜁),

𝑢
(𝑅)
B = 𝐺𝑅(𝑠,Λ, 𝜁, 𝜁) (100)

=

√
2

2
𝜉0𝑅(𝑠)−

√
2

2
𝜉0𝐼 (𝑠)

′𝜆− 1

2

[︂
𝜉𝑖𝑅(𝑠)− 𝜉𝑖𝐼(𝑠)

′𝜆

]︂
𝑌 0
1𝑖(𝜁, 𝜁),

𝜆 = Λ(𝜁, 𝜁) = −
√
2𝜉0𝐼 (𝑠) + 𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖(𝜁, 𝜁)

[
√
2𝜉0𝑅(𝑠)

′ − 𝜉𝑖𝑅(𝑠)
′𝑌 0

1𝑖(𝜁, 𝜁)]
. (101)

An Important Remark: We saw earlier that the shear-free angle field was given by

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁), (102)

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) ⇔ 𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁), (103)

where real values of 𝑢B should be used. If the real cuts, 𝑢B = 𝐺𝑅

(︀
𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁

)︀
, were used

instead to calculate 𝐿(𝑢B, 𝜁, 𝜁), the results would be wrong. The restriction of 𝜏 to yield real 𝑢B,
does not commute with the application of the ð operator, i.e.,

𝐿(𝑢B, 𝜁, 𝜁) ̸= ð𝐺𝑅.

The ð differentiation must be done first, holding 𝜏 constant, before the reality of 𝑢B is used.
In other words, though we are interested in real I+, it is essential that we consider its (local)
complexification.

3.3 Approximations

Due to the difficulties involved in the intrinsic nonlinearities and the virtual impossibility of exactly
inverting arbitrary analytic functions, it often becomes necessary to resort to approximations. The
basic approximation will be to consider the complex world line 𝜉𝑎(𝜏) as being close to the straight
line, 𝜉𝑎0 (𝜏) = 𝜏𝛿𝑎0 ; deviations from this will be considered as first order. We retain terms up
to second order, i.e., quadratic terms. Another frequently used approximation is to terminate
spherical harmonic expansions after the 𝑙 = 2 terms.

It is worthwhile to discuss some of the issues related to these approximations. One important
issue is how to use the gauge freedom, Equation (79), 𝜏 ⇒ 𝜏* = Φ(𝜏), to simplify the ‘velocity
vector’,

𝑣𝑎(𝜏) = 𝜉𝑎 ′(𝜏) ≡ 𝑑𝜉𝑎

𝑑𝜏
. (104)

A Notational issue: Given a complex analytic function (or vector) of the complex variable
𝜏 , say 𝐺(𝜏), then 𝐺(𝜏) can be decomposed uniquely into two parts,

𝐺(𝜏) = G𝑅(𝜏) + 𝑖G𝐼(𝜏),

where all the coefficients in the Taylor series for G𝑅(𝜏) and G𝐼(𝜏) are real. With but a slight
extension of conventional notation we refer to them as real analytic functions.

With this notation, we also write

𝑣𝑎(𝜏) = 𝑣𝑎𝑅(𝜏) + 𝑖𝑣𝑎𝐼 (𝜏).
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By using the reparametrization of the world line, via 𝜏* = Φ(𝜏), with the decomposition

Φ(𝜏) = Φ𝑅(𝜏) + 𝑖Φ𝐼(𝜏),

the ‘velocity’ transforms as

𝑣*𝑎(𝜏*) = 𝑣𝑎(𝜏)[Φ(𝜏)′]−1.

One can easily check that by the appropriate choice of Φ𝐼(𝜏) we can make 𝑣*𝑎𝑅 (𝜏*) and 𝑣*𝑎𝐼 (𝜏*)
orthogonal, i.e.,

𝜂𝑎𝑏𝑣
*𝑎
𝑅 𝑣*𝑏𝐼 = 0, (105)

and by the choice of Φ𝑅(𝜏), the 𝑣
*𝑎
𝑅 (𝜏*) can be normalized to one,

𝜂𝑎𝑏𝑣
*𝑎
𝑅 𝑣*𝑏𝑅 = 1. (106)

The remaining freedom in the choice of Φ(𝜏) is simply an additive complex constant, which is
used shortly for further simplification.

We now write 𝑣𝑎𝑅(𝜏) =
(︀
𝑣0𝑅(𝜏), 𝑣

𝑖
𝑅(𝜏)

)︀
, which, with the slow motion approximation, yields, from

the normalization,

𝑣0𝑅(𝜏) =
√︁
1 + (𝑣𝑖𝑅)

2 ≈ 1 +
1

2
𝑣𝑖2𝑅 + . . . . (107)

From the orthogonality, we have

𝑣0𝐼 (𝜏) ≈ 𝑣𝑖𝑅(𝜏)𝑣
𝑖
𝐼(𝜏),

i.e., 𝑣0𝐼 (𝜏) is second order. Since 𝑣0𝐼 (𝜏) = 𝜉0𝐼 (𝜏)
′ is second order, 𝜉0𝐼 (𝜏) is a constant plus a second-

order term. Using the remaining complex constant freedom in Φ(𝜏), the constant can be set to
zero:

𝜉0𝐼 (𝜏) = second order. (108)

Finally, from the reality condition on the 𝑢B, Equations (94), (97) and (96) yield, with 𝜏 = 𝑠+𝑖𝜆
and 𝜆 treated as small,

𝑢
(𝑅)
B = 𝜉𝑎𝑅(𝑠)�̂�𝑎 + 𝑣𝑎𝐼 (𝑠)�̂�𝑎

𝜉𝑏𝐼(𝑠)�̂�𝑏

𝜉𝑐 ′𝑅 (𝑠)�̂�𝑐
, (109)

𝜆 = Λ(𝑠, 𝜁, 𝜁) = − 𝜉𝑏𝐼(𝑠)�̂�𝑏

𝜉𝑐 ′𝑅 (𝑠)�̂�𝑐
, (110)

=

√
2
2 𝜉

𝑖
𝐼(𝑠)𝑌

0
1𝑖

1−
√
2
2 𝜉

𝑖 ′
𝑅 (𝑠)𝑌 0

1𝑖

.

Within this slow motion approximation scheme, we have from Equations (109) and (110),

𝑢
(𝑅)
ret =

√
2𝑢

(𝑅)
B = 𝑠− 1√

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖 + 2𝑣𝑎𝐼 (𝑠)�̂�𝑎𝜉

𝑏
𝐼(𝑠)�̂�𝑏, (111)

𝜆 ≈
√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖

(︃
1−

√
2

2
𝑣𝑗𝑅(𝑠)𝑌

0
1𝑗

)︃
, (112)

or, to first order, which is all that is needed,

𝜆 =

√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖.
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We then have, to linear order,

𝜏 = 𝑠+ 𝑖

√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖, (113)

𝑢
(𝑅)
ret = 𝑠− 1√

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖.

3.4 Asymptotically-vanishing Maxwell fields

3.4.1 A prelude

The basic starting idea in this work is simple. It is in the generalizations and implementations
where difficulties arise.

Starting in Minkowski space in a fixed given Lorentzian frame with spatial origin, the electric

dipole moment
−→
𝐷𝐸 is calculated from an integral over the (localized) charge distribution. If there

is a shift,
−→
𝑅 , in the origin, the dipole transforms as

−→
𝐷*

𝐸 =
−→
𝐷𝐸 − 𝑞

−→
𝑅. (114)

If
−→
𝐷𝐸 is time dependent, we obtain the center-of-charge world line by taking

−→
𝐷*

𝐸 = 0, i.e., from
−→
𝑅 =

−→
𝐷𝐸𝑞

−1. It is this idea that we want to generalize and extend to gravitational fields.
The first generalization is formal and somewhat artificial: shortly it will become quite natural.

We introduce, in addition to the electric dipole moment, the magnetic dipole moment
−→
𝐷𝑀 (also

obtained by an integral over the current distribution) and write

−→
𝐷C =

−→
𝐷𝐸 + 𝑖

−→
𝐷𝑀 .

By allowing the displacement
−→
𝑅 to take complex values,

−→
𝑅C, Equation (114), can be generalized

to −→
𝐷*

C =
−→
𝐷C − 𝑞

−→
𝑅C, (115)

so that the complex center-of-charge is given by
−→
𝐷*

C = 0 or

−→
𝑅C =

−→
𝐷C𝑞

−1. (116)

We emphasize that this is done in a fixed Lorentz frame and only the origin is moved. In
different Lorentz frames there will be different complex centers of charge.

Later, directly from the general asymptotic Maxwell field itself (satisfying the Maxwell equa-
tions), we define the asymptotic complex dipole moment and give its transformation law, including
transformations between Lorentz frames. This yields a unique complex center of charge indepen-
dent of the Lorentz frame.

3.4.2 Asymptotically-vanishing Maxwell fields: General properties

In this section, we describe how a complex center of charge for asymptotically vanishing Maxwell
fields in flat spacetime can be found by using the shear-free NGCs congruences, constructed from
solutions of the homogeneous good cut equation, to transform certain Maxwell field components
to zero. Although this serves as a good example for our later methods in asymptotically flat
spacetimes, the reader may wish to skip ahead to Section 4, where we go directly to gravitational
fields in a setting of greater generality.

Our first set of applications of shear-free NGCs comes from Maxwell theory in Minkowski space.
We review the general theory of the behavior of asymptotically-flat or vanishing Maxwell fields
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assuming throughout that there is a nonvanishing total charge, 𝑞. As stated in Section 2, the
Maxwell field is described in terms of its complex tetrad components, (𝜑0, 𝜑1, 𝜑2). In a Bondi
coordinate/tetrad system the asymptotic integration is relatively simple [35, 25] resulting in the
radial behavior (the peeling theorem):

𝜑0 =
𝜑00
𝑟3

+𝑂(𝑟−4), (117)

𝜑1 =
𝜑01
𝑟2

+𝑂(𝑟−3),

𝜑2 =
𝜑02
𝑟

+𝑂(𝑟−2),

where the leading coefficients of 𝑟, (𝜑00, 𝜑
0
1, 𝜑

0
2) satisfy the evolution equations:

�̇�00 + ð𝜑01 = 0, (118)

�̇�01 + ð𝜑02 = 0. (119)

The formal integration procedure is to take 𝜑02 as an arbitrary function of (𝑢B, 𝜁, 𝜁) (the free
broadcasting data), then integrate the second, for 𝜑01, with a time-independent spin-weight 𝑠 = 0
function of integration and finally integrate the first, for 𝜑00. Using a slight modification of this,
namely from the spherical harmonic expansion, we obtain,

𝜑00 = 𝜑00𝑖𝑌
1
1𝑖 + 𝜑00𝑖𝑗𝑌

1
2𝑖𝑗 + . . . , (120)

𝜑01 = 𝑞 + 𝜑01𝑖𝑌
0
1𝑖 + 𝜑01𝑖𝑗𝑌

0
2𝑖𝑗 + . . . , (121)

𝜑02 = 𝜑02𝑖𝑌
−1
1𝑖 + 𝜑02𝑖𝑗𝑌

−1
2𝑖𝑗 + . . . , (122)

with the harmonic coefficients related to each other by the evolution equations:

𝜑00 = 2𝑞𝜂𝑖(𝑢ret)𝑌
1
1𝑖 +𝑄𝑖𝑗 ′

C 𝑌 1
2𝑖𝑗 + . . . , (123)

𝜑01 = 𝑞 +
√
2𝑞𝜂𝑖 ′(𝑢ret)𝑌

0
1𝑖 +

√
2

6
𝑄𝑖𝑗 ′′

C 𝑌 0
2𝑖𝑗 + . . . ,

𝜑02 = −2𝑞𝜂𝑖 ′′(𝑢ret)𝑌
−1
1𝑖 − 1

3
𝑄𝑖𝑗 ′′′

C 𝑌 −1
2𝑖𝑗 + . . .

The physical meaning of the coefficients are

𝑞 = total electric charge, (124)

𝑞𝜂𝑖 = 𝐷𝑖
C = complex (electric & magnetic) dipole moment = 𝐷𝑖

𝐸 + 𝑖𝐷𝑖
𝑀 ,

𝑄𝑖𝑗
C = complex (electric & magnetic) quadrupole moment,

etc. For later use, the complex dipole is written as 𝐷𝑖
C(𝑢ret) = 𝑞𝜂𝑖(𝑢ret). Note that the 𝐷𝑖

C is
defined relative to a given Bondi system. This is the analogue of a given origin for the calculations
of the dipole moments of Equation (114).

Later in this section it will be shown that we can find a unique complex world line, 𝜉𝑎(𝜏) =
(𝜉0, 𝜉𝑖), (the world line associated with a shear-free NGC), that is closely related to the 𝜂𝑖(𝑢ret).
From this complex world line we can define the intrinsic complex dipole moment, 𝐷𝑖

ℐC = 𝑞𝜉𝑖(𝑠).
However, we first discuss a particular Maxwell field, 𝐹 𝑎𝑏, where one of its eigenvectors is a

tangent field to a shear-free NGC. This solution, referred to as the complex Liénard–Wiechert field
is the direct generalization of the ordinary Liénard–Wiechert field. Though it is a real solution in
Minkowski space, it can be thought of as arising from a complex world line in complex Minkowski
space.
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3.4.3 A coordinate and tetrad system attached to a shear-free NGC

The parametric form of the general NGC was given earlier by Equation (72),

𝑥𝑎 = 𝑢B(�̂�
𝑎 + �̂�𝑎)− 𝐿�̂�

𝑎 − �̄��̂�𝑎 + (𝑟* − 𝑟0)�̂�
𝑎. (125)

The parameters (𝑢B, 𝜁, 𝜁) labeled the individual members of the congruence while 𝑟* was the affine
parameter along the geodesics. An alternative interpretation of the same equation is to consider it
as the coordinate transformation between the coordinates, 𝑥𝑎 (or the Bondi coordinates) and the
geodesic coordinates (𝑢B, 𝑟

*, 𝜁, 𝜁). Note that these coordinates are not Bondi coordinates, though,
in the limit, at I+, they are. The associated (geodesic) tetrad is given as a function of these geodesic
coordinates, but with Minkowskian components by Equations (74). We restrict ourselves to the
special case of the coordinates and tetrad associated with the 𝐿 from a shear-free NGC. Though
we are dealing with a real shear-free twisting congruence, the congruence, as we saw, is generated
by a complex analytic world line in the complexified Minkowski space, 𝑧𝑎 = 𝜉𝑎(𝜏). The complex
parameter, 𝜏 , must in the end be chosen so that the ‘𝑢B’ of Equation (90) is real. The Minkowski
metric and the spin coefficients associated with this geodesic system can be calculated [27] in
the (𝑢B, 𝑟

*, 𝜁, 𝜁) frame. Unfortunately, it must be stated parametrically, since the 𝜏 explicitly
appears via the 𝜉𝑎(𝜏) and can not be directly eliminated. (An alternate choice of these geodesic
coordinates is to use the 𝜏 instead of the 𝑢B. Unfortunately, this leads to an analytic flat metric
on the complexified Minkowski space, where the real spacetime is hard to find.)

The use and insight given by this coordinate/tetrad system is illustrated by its application to a
special class of Maxwell fields. We consider, as mentioned earlier, the Maxwell field where one of its
principle null vectors, 𝑙*𝑎, (an eigenvector of the Maxwell tensor, 𝐹𝑎𝑏𝑙

*𝑎 = 𝜆𝑙*𝑏 ), is a tangent vector
of a shear-free NGC. Thus, it depends on the choice of the complex world line and is therefore
referred to as the complex Liénard–Wiechert field. (If the world line was real it would lead to the
ordinary Liénard–Wiechert field.) We emphasize that though the source can formally be thought
of as a charge moving on the complex world line, the Maxwell field is a real field on real Minkowski
space. It will have a real (distributional) source at the caustics of the congruence. Physically, its
behavior is very similar to real Liénard–Wiechert fields, the essential difference is that the electric
dipole is now replaced by the combined electric and magnetic dipoles. The imaginary part of the
world line determines the magnetic dipole moment.

In the spin-coefficient version of the Maxwell equations, using the geodesic tetrad, the choice
of 𝑙*𝑎 as the principle null vector ‘congruence’ is just the statement that

𝜑*0 = 𝐹𝑎𝑏𝑙
*𝑎𝑚*𝑏 = 0.

This allows a very simple exact integration of the remaining Maxwell components [35].

3.4.4 Complex Liénard–Wiechert Maxwell field

The complex Liénard–Wiechert fields (which we again emphasize are real Maxwell fields) are for-
mally given by the (geodesic) tetrad components of the Maxwell tensor in the null geodesic coor-
dinate system (𝑢B, 𝑟

*, 𝜁, 𝜁), Equation (125). As the detailed calculations are long [35] and take us
too far afield, we only give an outline here. The integration of the radial Maxwell equations leads
to the asymptotic behavior,

𝜑*0 = 0, (126)

𝜑*1 = 𝜌2𝜑*01 , (127)

𝜑*2 = 𝜌𝜑*02 +𝑂(𝜌2), (128)
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with

𝜌 = −(𝑟* + 𝑖Σ)−1, (129)

2𝑖Σ = ð�̄�+ 𝐿 ˙̄𝐿− ð𝐿− �̄��̇�.

The order expression is known in terms of (𝜑*01 , 𝜑
*0
2 ). The function 𝐿(𝑢B, 𝜁, 𝜁) is given by

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁),

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁),

with 𝜉𝑎(𝜏) an arbitrary complex world line that determines the shear-free congruence whose tangent
vectors are the Maxwell field eigenvectors.

Remark: In this case of the complex Liénard–Wiechert Maxwell field, the 𝜉𝑎 determines the
intrinsic center-of-charge world line, rather than the relative center-of-charge line.

The remaining unknowns, 𝜑*01 , 𝜑
*0
2 , are determined by the last of the Maxwell equations,

ð𝜑*01 + 𝐿�̇�*01 + 2�̇�𝜑*01 = 0, (130)

ð𝜑*02 + 𝐿�̇�*02 + �̇�𝜑*02 = �̇�*01 ,

which have been obtained from Equations (59) and (60) via the null rotation between the Bondi
and geodesic tetrads and the associated Maxwell field transformation, namely,

𝑙𝑎 → 𝑙*𝑎 = 𝑙𝑎 − �̄�

𝑟
𝑚𝑎 − 𝐿

𝑟
�̄�𝑎 +𝑂(𝑟*−2), (131)

𝑚𝑎 → 𝑚*𝑎 = 𝑚𝑎 − 𝐿

𝑟
𝑛𝑎, (132)

𝑛𝑎 → 𝑛*𝑎 = 𝑛𝑎, (133)

with

𝜑*00 = 0 = 𝜑00 − 2𝐿𝜑01 + 𝐿2𝜑02, (134)

𝜑*01 = 𝜑01 − 𝐿𝜑02, (135)

𝜑*02 = 𝜑02. (136)

These remaining equations depend only on 𝐿(𝑢B, 𝜁, 𝜁), which, in turn, is determined by 𝜉𝑎(𝜏).
In other words, the solution is driven by the complex line, 𝜉𝑎(𝜏). As they now stand, Equa-
tions (130) appear to be difficult to solve, partially due to the implicit description of the 𝐿(𝑢B, 𝜁, 𝜁).

Actually they are easily solved when the independent variables are changed, via Equation (86),
from (𝑢B, 𝜁, 𝜁) to the complex (𝜏, 𝜁, 𝜁). They become, after a bit of work,

ð(𝜏)(𝑉 2𝜑01) = 0, (137)

ð(𝜏)(𝑉 𝜑02) = 𝜑0 ′
1 , (138)

𝑉 = 𝜉𝑎′(𝜏)�̂�𝑎(𝜁, 𝜁), (139)

with the solution

𝜑*01 =
𝑞

2
𝑉 −2, (140)

𝜑*02 =
𝑞

2
𝑉 −1ð(𝜏)[𝑉 −1𝜕𝜏𝑉 ].
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𝑞 being the Coulomb charge.
Though we now have the exact solution, unfortunately it is in complex coordinates where

virtually every term depends on the complex variable 𝜏 , via 𝜉𝑎(𝜏). This is a severe impediment to
a full description and understanding of the solution in the real Minkowski space.

In order to understand its asymptotic behavior and physical content, one must transform it,
via Equations (131) – (136), back to a Bondi coordinate/tetrad system. This can only be done by
approximations. After a lengthy calculation [35], we find the Bondi peeling behavior

𝜑0 = 𝑟−3𝜑00 +𝑂(𝑟−4), (141)

𝜑1 = 𝑟−2𝜑01 +𝑂(𝑟−3),

𝜑2 = 𝑟−1𝜑02 +𝑂(𝑟−2),

with

𝜑00 = 𝑞

(︂
𝐿𝑉 −2 +

1

2
𝐿2𝑉 −1ð(𝜏)[𝑉 −1𝑉 ′]

)︂
, (142)

𝜑01 =
𝑞

2𝑉 2

(︀
1 + 𝐿𝑉 ð(𝜏)[𝑉 −1𝑉 ′]

)︀
, (143)

𝜑02 = −𝑞
2
𝑉 −1ð(𝜏)[𝑉 −1𝑉 ′], (144)

𝑉 = 𝜉𝑎 ′ �̂�𝑎(𝜁, 𝜁). (145)

Next, treating the world line, as discussed earlier, as a small deviation from the straight line,
𝜉𝑎(𝜏) = 𝜏𝛿𝑎0 , i.e., by

𝜉𝑎(𝜏) =
(︀
𝜏 + 𝛿𝜉0(𝜏), 𝜉𝑖(𝜏)

)︀
,

𝜉𝑖(𝜏) ≪ 1, 𝛿𝜉0(𝜏) = second order.

The GCF and its inverse (see Section 6) are given, to first order, by

𝑢ret =
√
2𝑢B =

√
2𝐺 = 𝜏 −

√
2

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁), (146)

𝜏 = 𝑢ret +

√
2

2
𝜉𝑖(𝑢ret)𝑌

0
1𝑖(𝜁, 𝜁). (147)

Again to first order, Equations (142), (143) and (144) yield

𝜑00 = 2𝑞𝜉𝑖(𝑢ret)𝑌
1
1𝑖, (148)

𝜑01 = 𝑞 +
√
2𝑞𝜉𝑖′(𝑢ret)𝑌

0
1𝑖,

𝜑02 = −2𝑞𝜉𝑖′′(𝑢ret)𝑌
−1
1𝑖 ,

the known electromagnetic dipole field, with a Coulomb charge, 𝑞. One then has the physical
interpretation of 𝜉𝑎(𝑢ret) : 𝑞𝜉𝑎(𝑢ret) is the complex dipole moment; (the electric plus ‘𝑖’ times
magnetic dipole) and 𝜉𝑎(𝑢ret) is the complex center of charge, the real part being the ordinary
center of charge, while the imaginary part is the ‘imaginary’ magnetic center of charge. This simple
relationship between the Bondi form of the complex dipole moment, 𝑞𝜉𝑖(𝑢ret), and the intrinsic
complex center of charge, 𝜉𝑎(𝜏), is true only at linear order. The second-order relationship is given
later.

Reversing the issue, if we had instead started with an exact complex Liénard–Wiechert field
but now given in a Bondi coordinate/tetrad system and performed on it the transformations,
Equations (14) and (134) to the geodesic system, it would have resulted in

𝜑*0 = 0.
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This example was intended to show how physical meaning could be attached to the complex
world line associated with a shear-free NGC. In this case and later in the case of asymptotically-flat
spacetimes, when the GCF is singled out by either the Maxwell field or the gravitational field, it
will be referred to it as a UCF. For either of the two cases, a flat-space asymptotically-vanishing
Maxwell field (with nonvanishing total charge) and for a vacuum asymptotically-flat spacetime,
there will be a unique UCF. In the case of the Einstein–Maxwell fields there, in general, will be
two UCFs, one for each field.

3.4.5 Asymptotically vanishing Maxwell fields & shear-free NGCs

We return now to the general asymptotically-vanishing Maxwell field, Equations (117) and (120),
and its transformation behavior under the null rotation around 𝑛𝑎,

𝑙𝑎 → 𝑙*𝑎 = 𝑙𝑎 − �̄�

𝑟
𝑚𝑎 − 𝐿

𝑟
�̄�𝑎 + 0(𝑟−2), (149)

𝑚𝑎 → 𝑚*𝑎 = 𝑚𝑎 − 𝐿

𝑟
𝑛𝑎,

𝑛𝑎 → 𝑛*𝑎 = 𝑛𝑎,

with 𝐿(𝑢B, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎, being one of our shear-free angle fields defined by a world line, 𝑧𝑎 =
𝜉𝑎(𝜏). The leading components of the Maxwell fields transform as

𝜑*00 = 𝜑00 − 2𝐿𝜑01 + 𝐿2 𝜑02, (150)

𝜑*01 = 𝜑01 − 𝐿𝜑02, (151)

𝜑*02 = 𝜑02. (152)

The ‘picture’ to adopt is that the new 𝜑*s are now given in a tetrad defined by the complex
light cone (the generalized light cone) with origin on the complex world line. (This is obviously
formal and physically nonsense, but mathematically quite sound, as the shear-free congruence can
be thought of as having its origin on the complex line, 𝜉𝑎(𝜏).) From the physical identifications
of charge, dipole moments, etc., of Equation (123), we can obtain the transformation law of these
physical quantities. In particular, the 𝑙 = 1 harmonic of 𝜑00, or, equivalently, the complex dipole,
transforms as

𝜑0*0𝑖 = 𝜑00𝑖 − 2(𝐿𝜑01)|𝑖 + (𝐿2𝜑02)|𝑖, (153)

where the notation 𝑊 |𝑖 means extract only the 𝑙 = 1 harmonic from a Clebsch–Gordon expansion
of 𝑊 . A subtlety and difficulty of this extraction process is explained/clarified below.

If by some accident the Maxwell field was a complex Liénard–Wiechert field, a world line 𝜉𝑎(𝜏)
could be chosen so that 𝜑*00 = 0. However, though this cannot be done in general, the 𝑙 = 1
harmonics of 𝜑*00 can be made to vanish by the appropriate choice of the 𝜉𝑎(𝜏). This is the means
by which a unique world line is chosen.

A Clarifying Comment:
An important observation, obvious but easily overlooked, concerning the spherical harmonic

expansions, is that, in a certain sense, they lack uniqueness. As this issue is significant, its clarifi-
cation is important.

Assume that we have a particular spin-𝑠 function on I+, say, 𝜂(𝑠)(𝑢B, 𝜁, 𝜁), given in a specific

Bondi coordinate system, (𝑢B, 𝜁, 𝜁), that has a harmonic expansion given, for constant 𝑢B, by

𝜂(𝑠)(𝑢B, 𝜁, 𝜁) = Σ
𝑙,(𝑖𝑗𝑘...)

𝜂
𝑙,(𝑖𝑗𝑘...)
(𝑠) (𝑢B)𝑌

(𝑠)
𝑙,(𝑖𝑗𝑘...)

If exactly the same function was given on different cuts or slices, say,

𝑢B = 𝐺(𝑠, 𝜁, 𝜁), (154)
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with
𝜂*(𝑠)(𝑠, 𝜁, 𝜁) = 𝜂(𝑠)

(︀
𝐺(𝑠, 𝜁, 𝜁), 𝜁, 𝜁

)︀
,

the harmonic expansion at constant 𝑠 would be different. The new coefficients are extracted by
the two-sphere integral taken at constant 𝑠:

𝜂
*𝑙,(𝑖𝑗𝑘...)
(𝑠) (𝑠) =

∫︁
𝑆2

𝜂*(𝑠)(𝑠, 𝜁, 𝜁)𝑌
(𝑠)

𝑙,(𝑖𝑗𝑘...)𝑑
2𝑆. (155)

It is in this rather obvious sense that the expansions are not unique. From Equation (97), using
the real values of the complex cuts, i.e.,

𝑢B = 𝐺𝑅

(︀
𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁

)︀
, (156)

(in place of 𝑢B = 𝐺(𝑠, 𝜁, 𝜁)), the transformation, Equation (153), and harmonic extraction yields
𝜑0*0𝑖 (𝑠). This is proportional to the transformed complex dipole moment. This transformation, a
functional of the form,

𝜑0*0𝑖 (𝑠) = Γ𝑖(𝜑
0
0, 𝜑

0
1, 𝜑

0
2, 𝜉

𝑎), (157)

is decidedly nontensorial: in fact it is very nonlocal and nonlinear.
Though it is clear that extracting 𝜑0*0𝑖 (𝑠) with this relationship is available in principle, in

practice it is impossible to do it exactly and all examples are done with approximations: essentially
using slow motion for the complex world line.

3.4.6 The complex center of charge

The complex center of charge is defined by the vanishing of the complex dipole moment 𝜑0*0𝑖 (𝑠); in
other words,

Γ𝑖(𝜑
0
0, 𝜑

0
1, 𝜑

0
2, 𝜉

𝑎) = 0 (158)

determines the (up to this point) arbitrary complex world line, 𝜉𝑎(𝜏). In practice we do this only
up to second order with the use of only the (𝑙 = 0, 1, 2) harmonics. The approximation we are
using is to consider the charge 𝑞 as zeroth order and the dipole moments and the spatial part of
the complex world line as first order.

From Equation (153),
𝜑0*0𝑖 = Γ𝑖 ≈ 𝜑00𝑖 − 2𝐿𝜑01|𝑖 = 0 (159)

with the identifications, Equation (123), for 𝑞 and 𝐷C, we have to first order (with 𝑠 ≈ 𝑢ret ≈ 𝜏),

𝐷𝑖
C(𝑢ret) = 𝑞𝜂𝑖(𝑢ret) = 𝑞𝜉𝑖(𝑢ret). (160)

This is exactly the same result as we obtained earlier in Equation (116), via the charge and current
distributions in a fixed Lorentz frame.

Carrying this calculation [35] to second order, we find the second-order relationship between
the intrinsic complex dipole and the intrinsic dipole,

𝐷𝑖
ℐ:C = 𝑞𝜉𝑖(𝑠), 𝐷𝑖

C = 𝑞𝜂𝑖(𝑠), (161)

𝜉𝑘(𝑠) = 𝜂𝑘(𝑠) + 𝑖𝜂0𝐼 (𝑠)𝜂
𝑘′(𝑠)− 𝑖

2
𝜖𝑖𝑗𝑘𝜂

𝑖(𝑠)𝜂𝑗′(𝑠). (162)

In Section 5, these ideas are applied to GR, with the complex electric and magnetic dipoles
being replaced by the complex combination of the mass dipole and the angular momentum.

The GCF,
𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁),

with this uniquely determined world line is referred to as the Maxwell UCF.
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4 The Good-Cut Equation and ℋ-Space

In Section 3, we discussed NGCs in Minkowski spacetime that were shear-free. In this section
we consider asymptotically shear-free NGCs in asymptotically-flat spacetimes. That is to say, we
consider NGCs that have nonvanishing shear in the interior of the spacetime but where, as null
infinity is approached, the shear vanishes. In this case, whereas fully shear-free NGCs almost
never occur, asymptotically shear-free congruences always exist. The case of algebraically-special
spacetimes is the exception; they do allow one or two shear-free congruences.

We begin by reviewing the shear-free condition and follow with its generalization to the asymp-
totically shear-free case. From this we derive the generalization of the homogeneous good-cut
equation to the inhomogeneous good-cut equation. Almost all the properties of the shear-free and
asymptotically shear-free NGCs come from the study of these equations. We will see that virtually
all the attributes of shear-free congruences are shared by the asymptotically shear-free congruences.
It is from the use of these shared attributes that we will be able to extract physical identifications
and information (e.g., complex center of mass/charge, Bondi mass, linear and angular momentum,
equations of motion, etc.) from the asymptotic gravitational fields.

Though again the use of the formal complexification of I+, i.e., I+C , is essential for our analysis,
it is the extraction of the real structures that is important.

4.1 Asymptotically shear-free NGCs and the good-cut equation

We saw in Section 3 that shear-free NGCs in Minkowski space could be constructed by looking at
their properties near I+, in one of two equivalent ways. The first was via the stereographic angle
field, 𝐿(𝑢B, 𝜁, 𝜁), which gives the directions the null rays make at their intersection with I+. The
condition for the congruence to be shear-free was that 𝐿 must satisfy

ð(𝑢B)𝐿+ 𝐿�̇� = 0. (163)

We required solutions that were all nonsingular (regular) on the (𝜁, 𝜁) sphere. (This equation has
in the past most often been solved via twistor methods [19].)

The second was via the complex cut function, 𝑢B = 𝐺(𝜏, 𝜁, 𝜁), that satisfied

ð2(𝜏)𝐺 = 0. (164)

The regular solutions were easily given by

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) (165)

with inverse function,
𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁).

They determined the 𝐿(𝑢B, 𝜁, 𝜁) that satisfies Equation (163) by the parametric relations

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁), (166)

𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁),

or by
𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁)|𝜏=𝑇 (𝑢B,𝜁,𝜁),

where 𝜉𝑎(𝜏) was an arbitrary complex world line in complex Minkowski space.
It is this pair of equations, (163) and (164), that will now be generalized to asymptotically-flat

spacetimes.
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In Section 2, we saw that the asymptotic shear of the (null geodesic) tangent vector fields, 𝑙𝑎,
of the out-going Bondi null surfaces was given by the free data (the Bondi shear) 𝜎0(𝑢B, 𝜁, 𝜁). If,
near I+, a second NGC, with tangent vector 𝑙*𝑎, is chosen and then described by the null rotation
from 𝑙𝑎 to 𝑙*𝑎 around 𝑛𝑎 by

𝑙*𝑎 = 𝑙𝑎 + 𝑏𝑚𝑎 + 𝑏𝑚𝑎 + 𝑏𝑏𝑛𝑎, (167)

𝑚*𝑎 = 𝑚𝑎 + 𝑏𝑛𝑎,

𝑛*𝑎 = 𝑛𝑎,

𝑏 = −𝐿/𝑟 +𝑂(𝑟−2),

with 𝐿(𝑢B, 𝜁, 𝜁) an arbitrary stereographic angle field, then the asymptotic Weyl components
transform as

𝜓*0
0 = 𝜓0

0 − 4𝐿𝜓0
1 + 6𝐿2𝜓0

2 − 4𝐿3𝜓*0
3 + 𝐿4𝜓0

4 , (168)

𝜓*0
1 = 𝜓0

1 − 3𝐿𝜓0
2 + 3𝐿2𝜓0

3 − 𝐿3𝜓0
4 , (169)

𝜓*0
2 = 𝜓0

2 − 2𝐿𝜓0
3 + 𝐿2𝜓0

4 , (170)

𝜓*0
3 = 𝜓0

3 − 𝐿𝜓0
4 , (171)

𝜓*0
4 = 𝜓0

4 , (172)

and the (new) asymptotic shear of the null vector field 𝑙*𝑎 is given by [6, 26]

𝜎0* = 𝜎0 − ð(𝑢B)𝐿− 𝐿�̇�. (173)

By requiring that the new congruence be asymptotically shear-free, i.e., 𝜎0* = 0, we obtain the
generalization of Equation (163) for the determination of 𝐿(𝑢B, 𝜁, 𝜁), namely,

ð(𝑢B)𝐿+ 𝐿�̇� = 𝜎0(𝑢B, 𝜁, 𝜁). (174)

To solve this equation we again complexify I+ to I+C by freeing 𝜁 to 𝜁 and allowing 𝑢B to take
complex values close to the real.

Again we introduce the complex potential 𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁) that is related to 𝐿 by

ð(𝑢B)𝑇 + 𝐿�̇� = 0, (175)

with its inversion,
𝑢B = 𝐺(𝜏, 𝜁, 𝜁). (176)

Equation (174) becomes, after the change in the independent variable, 𝑢B ⇒ 𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁), and
implicit differentiation (see Section 3.1 for the identical details),

ð2(𝜏)𝐺 = 𝜎0(𝐺, 𝜁, 𝜁). (177)

This, the inhomogeneous good-cut equation, is the generalization of Equation (164).
In Section 4.2, we will discuss how to construct solutions of Equation (177) of the form, 𝑢B =

𝐺(𝜏, 𝜁, 𝜁); however, assuming we have such a solution, it determines the angle field 𝐿(𝑢B, 𝜁, 𝜁) by
the parametric relations

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺, (178)

𝑢B = 𝐺(𝜏, 𝜁, 𝜁).

We return to the properties of these solutions in Section 4.2.
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4.2 ℋ-space and the good-cut equation

Equation (177), written in earlier literature as

ð2𝑍 = 𝜎0(𝑍, 𝜁, 𝜁), (179)

is a well-known and well-studied partial differential equation, often referred to as the “good-
cut equation” [19, 20]. For sufficiently regular 𝜎0(𝑢B, 𝜁, 𝜁) (which is assumed here) it has been
proven [20] that the solutions are determined by points in a complex four-dimensional space, 𝑧𝑎,
referred to as ℋ-space, i.e., solutions are given as

𝑢B = 𝑍(𝑧𝑎, 𝜁, 𝜁). (180)

Later in this section, by choosing an arbitrary complex analytic world line in ℋ-space, 𝑧𝑎 =
𝜉𝑎(𝜏), we describe how to construct the shear-free angle field, 𝐿(𝑢B, 𝜁, 𝜁). First, however, we
discuss properties and the origin of Equation (180).

Roughly or intuitively one can see how the four complex parameters enter the solution from
the following argument. We can write Equation (179) as the integral equation

𝑍 = 𝑧𝑎 �̂�𝑎(𝜁, 𝜁) +

∮︁
𝜎0(𝑍, 𝜂, 𝜂)𝐾+

0,−2(𝜂, 𝜂, 𝜁, 𝜁)𝑑𝑆𝜂 (181)

with

𝐾+
0,−2(𝜁, 𝜁, 𝜂, 𝜂) ≡ − 1

4𝜋

(1 + 𝜁𝜂)2(𝜂 − 𝜁)

(1 + 𝜁𝜁)(1 + 𝜂𝜂)(𝜂 − 𝜁)
,

𝑑𝑆𝜂 = 4𝑖
𝑑𝜂 ∧ 𝑑𝜂
(1 + 𝜂𝜂)2

,

where 𝑧𝑎 �̂�𝑎(𝜁, 𝜁) is the kernel of the ð2 operator (the solution to the homogeneous good-cut equa-
tion) and𝐾+

0,−2(𝜁, 𝜁, 𝜂, 𝜂) is the Green’s function for the ð2 operator [23]. By iterating this equation,
with the kernel being the zeroth iterate, i.e.,

𝑍𝑛(𝜁, 𝜁) = 𝑧𝑎 �̂�𝑎(𝜁, 𝜁) +

∫︁
𝑆2

𝐾+
0,−2(𝜁, 𝜁, 𝜂, 𝜂)𝜎(𝑍𝑛−1, 𝜂, 𝜂)𝑑𝑆𝜂, (182)

𝑍0(𝜁, 𝜁) = 𝑧𝑎 �̂�𝑎(𝜁, 𝜁), (183)

one easily sees how the four 𝑧𝑎 enter the solution. Basically, the 𝑧𝑎 come from the solution to the
homogeneous equation.

It should be noted again that the 𝑧𝑎 �̂�𝑎(𝜁, 𝜁) is composed of the 𝑙 = (0, 1) harmonics,

𝑧𝑎 �̂�𝑎(𝜁, 𝜁) =
1√
2
𝑧0 − 1

2
𝑧𝑖𝑌 0

1𝑖(𝜁, 𝜁). (184)

Furthermore, the integral term does not contribute to these lowest harmonics. This means that
solutions can be written

𝑢B = 𝑍(𝑧𝑎, 𝜁, 𝜁) ≡ 𝑧𝑎 �̂�𝑎(𝜁, 𝜁) + 𝑍𝑙≥2(𝑧
𝑎, 𝜁, 𝜁), (185)

with 𝑍𝑙≥2 containing spherical harmonics 𝑙 = 2 and higher.
We note that using this form of the solution implies that we have set stringent coordinate

conditions on the ℋ-space by requiring that the first four spherical harmonic coefficients be the
four ℋ-space coordinates. Arbitrary coordinates would just mean that these four coefficients were
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arbitrary functions of other coordinates. How these special coordinates change under the BMS
group is discussed later.

Remark: It is of considerable interest that on ℋ-space there is a natural quadratic complex
metric – demonstrated in Appendix D – that is given by the surprising relationship [34, 20]

𝑑𝑠2(ℋ) = 𝑔(ℋ)𝑎𝑏 𝑑𝑧
𝑎𝑑𝑧𝑏 ≡

(︂
1

8𝜋

∫︁
𝑆2

𝑑𝑆

(𝑑𝑍)2

)︂−1

, (186)

𝑑𝑍 ≡ ∇𝑎𝑍 𝑑𝑧𝑎, (187)

𝑑𝑆 = 4𝑖
𝑑𝜁 ∧ 𝑑𝜁
(1 + 𝜁𝜁)2

. (188)

Remarkably this turns out to be a Ricci-flat metric with a nonvanishing anti-self-dual Weyl tensor,
i.e., it is intrinsically a complex vacuum metric. For vanishing Bondi shear, ℋ-space reduces to
complex Minkowski space (i.e., 𝑔(ℋ)𝑎𝑏|𝜎0=0 = 𝜂𝑎𝑏).

4.2.1 Solutions to the shear-free equation

Returning to the issue of the solutions to the shear-free condition, i.e., Equation (174), 𝐿(𝑢B, 𝜁, 𝜁),
we see that they are easily constructed from the solutions to the good-cut equation, 𝑢B = 𝑍(𝑧𝑎, 𝜁, 𝜁).
By choosing an arbitrary complex world line in the ℋ-space, i.e.,

𝑧𝑎 = 𝜉𝑎(𝜏), (189)

we write the GCF as
𝑢B = 𝐺(𝜏, 𝜁, 𝜁) ≡ 𝑍(𝜉𝑎(𝜏), 𝜁, 𝜁), (190)

or, from Equation (185),

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) =
1√
2
𝜉0(𝜏)− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁) + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗(𝜁, 𝜁) + . . . . (191)

This leads immediately, via Equations (178) and (179), to the parametric description of the shear-
free stereographic angle field 𝐿(𝑢B, 𝜁, 𝜁), as well as the Bondi shear 𝜎0(𝑢B, 𝜁, 𝜁):

𝑢B =
1√
2
𝜉0(𝜏)− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁) + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗(𝜁, 𝜁) + . . . , (192)

𝐿(𝑢B, 𝜁, 𝜁) = 𝜉𝑖(𝜏)𝑌 1
1𝑖(𝜁, 𝜁)− 6𝜉𝑖𝑗(𝜏)𝑌 1

2𝑖𝑗(𝜁, 𝜁) + . . . , (193)

𝜎0(𝑢B, 𝜁, 𝜁) = 24𝜉𝑖𝑗(𝜏)𝑌 2
2𝑖𝑗 + . . . . (194)

We denote the inverse to Equation (191) by

𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁). (195)

The asymptotic twist of the asymptotically shear-free NGC is exactly as in the flat-space case,

𝑖Σ =
1

2

{︁
ð𝐿+ 𝐿�̇�− ð𝐿− 𝐿�̇�

}︁
. (196)

As in the flat-space case, the derived quantity

𝑉 (𝜏, 𝜁, 𝜁) ≡ 𝜕𝜏𝐺 = 𝐺′ (197)

plays a large role in applications. (In the case of the Robinson–Trautman metrics [55, 28] 𝑉 is the
basic variable for the construction of the metric.)
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Using the gauge freedom, 𝜏 ⇒ 𝜏* = Φ(𝜏)), in a slightly different way than in the Minkowski-
space case, we impose the simple condition

𝜉0 = 𝜏. (198)

A Brief Summary: The description and analysis of the asymptotically shear-free NGCs in
asymptotically-flat spacetimes is remarkably similar to that of the flat-space regular shear-free
NGCs. We have seen that all regular shear-free NGCs in Minkowski space and asymptotically-flat
spaces are generated by solutions to the good-cut equation, with each solution determined by the
choice of an arbitrary complex analytic world line in complex Minkowski space or ℋ-space. The
basic governing variables are the complex GCF, 𝑢B = 𝐺(𝜏, 𝜁, 𝜁), and the stereographic angle field
on I+C , 𝐿(𝑢B, 𝜁, 𝜁), restricted to real I+. In every sense, the flat-space case can be considered as a
special case of the asymptotically-flat case.

In Sections 5 and 6, we will show that in every asymptotically flat spacetime a special complex-
world line (along with its associated NGC and GCF) can be singled out using physical considera-
tions. This special GCF is referred to as the (gravitational) UCF, and is denoted by

𝑢B = 𝑋(𝜏, 𝜁, 𝜁). (199)

4.3 Real cuts from the complex good cuts, II

The construction of real structures from the complex structures, i.e., finding the complex values
of 𝜏 that yield real values of 𝑢B and the associated real cuts, is virtually identical to the flat-space
construction of Section 3. The only difference is that we start with the GCF

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) +𝐺𝑙≥2(𝜏, 𝜁, 𝜁) (200)

rather than the flat-space

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁).

Using 𝜏 = 𝑠+ 𝑖𝜆, Equation (200) is written

𝑢B = 𝐺𝑅(𝑠, 𝜆, 𝜁, 𝜁) + 𝑖𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁). (201)

The reality of 𝑢B, i.e.,

𝐺𝐼(𝑠, 𝜆, 𝜁, 𝜁) = 0, (202)

again leads to

𝜆 = Λ(𝑠, 𝜁, 𝜁) (203)

and the real slicing,

𝑢
(𝑅)
B = 𝐺𝑅

(︀
𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁

)︀
. (204)
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Using Equation (191) and expanding to first order in 𝜆, we have the expressions:

𝑢B =

√
2

2
𝜉0𝑅(𝑠)−

√
2

2
𝜉0𝐼 (𝑠)

′𝜆− 1

2
[𝜉𝑖𝑅(𝑠)− 𝜉𝑖𝐼(𝑠)

′𝜆]𝑌 0
1𝑖(𝜁, 𝜁) (205)

+[𝜉𝑖𝑗𝑅 (𝑠)− 𝜉𝑖𝑗𝐼 (𝑠)′𝜆]𝑌 0
2𝑖𝑗(𝜁, 𝜁)

+𝑖

[︃√
2

2
𝜉0𝐼 (𝑠) +

√
2

2
𝜉0𝑅(𝑠)

′𝜆

]︃
− 𝑖

2
[𝜉𝑖𝐼(𝑠) + 𝜉𝑖𝑅(𝑠)

′𝜆]𝑌 0
1𝑖(𝜁, 𝜁)

+𝑖[𝜉𝑖𝑗𝐼 (𝑠) + 𝜉𝑖𝑗𝑅 (𝑠)′𝜆]𝑌 0
2𝑖𝑗(𝜁, 𝜁),

𝑢
(𝑅)
B = 𝐺𝑅(𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁) (206)

=

√
2

2
𝜉0𝑅(𝑠)−

√
2

2
𝜉0𝐼 (𝑠)

′𝜆− 1

2
[𝜉𝑖𝑅(𝑠)− 𝜉𝑖𝐼(𝑠)

′𝜆]𝑌 0
1𝑖(𝜁, 𝜁)

+[𝜉𝑖𝑗𝑅 (𝑠)− 𝜉𝑖𝑗𝐼 (𝑠)′𝜆]𝑌 0
2𝑖𝑗(𝜁, 𝜁),

𝜆 = Λ(𝑠, 𝜁, 𝜁) = −
√
2𝜉0𝐼 (𝑠) + 𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖(𝜁, 𝜁) + 2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗(𝜁, 𝜁)

{
√
2𝜉0𝑅(𝑠)

′ − 𝜉𝑖𝑅(𝑠)
′𝑌 0

1𝑖(𝜁, 𝜁) + 2𝜉𝑖𝑗𝑅 (𝑠)′𝑌 0
2𝑖𝑗(𝜁, 𝜁)}

. (207)

Since in all applications Λ(𝑠, 𝜁, 𝜁) is multiplied by a first-order quantity, only the first-order ex-
pression for Λ(𝑠, 𝜁, 𝜁) is needed. Using the slow motion assumption, we have,

𝜆 =

√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖(𝜁, 𝜁)−

√
2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗(𝜁, 𝜁). (208)

Substituting this into Equation (206), via the slow motion assumption, leads to the real cut function
𝑢B = 𝐺𝑅(𝑠,Λ(𝑠, 𝜁, 𝜁), 𝜁, 𝜁):

𝑢
(𝑅)
ret =

√
2𝑢

(𝑅)
B = 𝑠−

√
2

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖(𝜁, 𝜁) +

√
2𝜉𝑖𝑗𝑅 (𝑠)𝑌 0

2𝑖𝑗(𝜁, 𝜁) (209)

+
1

3
𝜉𝑖𝐼𝑣

𝑖
𝐼 +

24

5
𝑣𝑖𝑗𝐼 𝜉

𝑖𝑗
𝐼 +

12

5
(𝜉𝑖𝐼𝑣

𝑘𝑖
𝐼 − 𝑣𝑖𝐼𝜉

𝑘𝑖
𝐼 )𝑌 0

1𝑘 +
1

6
𝜉𝑘𝐼 𝑣

𝑖
𝐼𝑌

0
2𝑖𝑗 − 𝑣𝑖𝑗𝐼 𝜉

𝑘𝑗
𝐼 𝑌 0

2𝑖𝑘.

Later the linear versions are extensively used:

𝑢
(𝑅)
ret =

√
2𝑢

(𝑅)
B = 𝑠−

√
2

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖(𝜁, 𝜁) +

√
2𝜉𝑖𝑗𝑅 (𝑠)𝑌 0

2𝑖𝑗(𝜁, 𝜁) (210)

𝜏 = 𝑠+ 𝑖

(︃√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖(𝜁, 𝜁)−

√
2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗(𝜁, 𝜁)

)︃
. (211)
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5 Simple Applications

In this section we give four simple examples of the use of shear-free and asymptotically shear-
free NGCs in GR. The first is for asymptotically-linearized perturbations off the Schwarzschild
metric, while the next two are from the class of algebraically-special metrics, namely the Robinson–
Trautman metric and the type II twisting metrics; the fourth is for asymptotically static/stationary
metrics.

5.1 Linearized off Schwarzschild

As a first example, we describe how the shear-free NGCs are applied in linear perturbations off the
Schwarzschild metric. The ideas used here are intended to clarify the more complicated issues in
the full nonlinear asymptotic theory. We will see that these linear perturbations greatly resemble
our results from the previous section on the determination of the intrinsic center of charge in
Maxwell theory, when there were small deviations from the Coulomb field.

We begin with the Schwarzschild spacetime, treating the Schwarzschild mass, 𝑀Sch ≡ 𝑀B, as
a zeroth-order quantity, and integrate the linearized Bianchi identities for the linear Weyl tensor
corrections. Though we could go on and find the linearized connection and metric, we stop just
with the Weyl tensor. The radial behavior is given by the peeling theorem, so that we can start
with the linearized asymptotic Bianchi identities, Equations (56) – (58).

Our main variables for the investigation are the asymptotic Weyl tensor components and the
Bondi shear, 𝜎0, with their related differential equations, i.e., the asymptotic Bianchi identities,
Eq. (56), (57) and (55). Assuming the gravitational radiation is weak, we treat 𝜎0 and �̇�0 as small.
Keeping only linear terms in the Bianchi identities, the equations for 𝜓0

1 and Ψ (the mass aspect)
become

�̇�0
1 + ðΨ = ð3𝜎0, (212)

Ψ̇ = 0, (213)

Ψ = Ψ, (214)

Ψ ≡ 𝜓0
2 + ð2𝜎0. (215)

The 𝜓0
1 is small (first order), while the

Ψ = Ψ0 +Ψ𝑖𝑌 0
1𝑖 +Ψ𝑖𝑗𝑌 0

2𝑖𝑗 + . . . (216)

has the zeroth-order Schwarzschild mass plus first-order terms

Ψ0 = −2
√
2𝐺

𝑐2
𝑀Sch + 𝛿Ψ0, (217)

Ψ𝑖 = −6𝐺

𝑐3
𝑃 𝑖. (218)

In linear theory, the complex (mass) dipole moment,

𝐷𝑖
C(grav.) = 𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖 (219)

is given [59], on a particular Bondi cut with a Bondi tetrad (up to dimensional constants), by the
𝑙 = 1 harmonic components of 𝜓0

1 , i.e., from the 𝜓0 𝑖
1 in the expansion

𝜓0
1 = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗 + . . . (220)
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For a different cut and different tetrad, one needs the transformation law to the new 𝜓*0
1 and new

𝜓*0 𝑖
1 . Under the tetrad transformation (a null rotation around 𝑛𝑎) to the asymptotically shear-free

vector field, 𝑙*𝑎, Equation (149),

𝑙𝑎 → 𝑙*𝑎 = 𝑙𝑎 − �̄�

𝑟
𝑚𝑎 − 𝐿

𝑟
�̄�𝑎 +𝑂(𝑟−2),

with, from Equations (192) and (193),

𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗(𝜁, 𝜁) + . . . (221)

=
1√
2
𝜉0(𝜏)− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁) + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗(𝜁, 𝜁) + . . . (222)

𝐿(𝑢B, 𝜁, 𝜁) = 𝜉𝑖(𝜏)𝑌 1
1𝑖(𝜁, 𝜁)− 6𝜉𝑖𝑗(𝜏)𝑌 1

2𝑖𝑗(𝜁, 𝜁) + . . . (223)

the linearized transformation is given by [6]

𝜓0*
1 = 𝜓0

1 − 3𝐿Ψ. (224)

The extraction of the 𝑙 = 1 part of 𝜓0*
1 should, in principle, be taken on the new cut given by the

real 𝑢B obtained from 𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗(𝜁, 𝜁) + . . . with constant 𝑠 in the expression,

Equation (98), 𝜏 = 𝑠 + 𝑖Λ(𝑠, 𝜁, 𝜁). However, because of the linearization, the extraction can be
taken on the 𝑢B constant cuts. Following the same line of reasoning that led to the definition of
center of charge, we demand the vanishing of the 𝑙 = 1 part of 𝜓0*

1 .
This leads immediately to

𝜓0
1 |𝑙=1 = 3𝐿Ψ|𝑙=1, (225)

or, using the decomposition into real and imaginary parts, 𝜓0𝑖
1 = 𝜓0𝑖

1𝑅 + 𝑖𝜓0𝑖
1𝐼 and 𝜉𝑖(𝑢ret) =

𝜉𝑖𝑅(𝑢ret) + 𝑖𝜉𝑖𝐼(𝑢ret),

𝜓0𝑖
1𝑅 = −6

√
2𝐺

𝑐2
𝑀Sch𝜉

𝑖
𝑅(𝑢ret), (226)

𝜓0𝑖
1𝐼 = −6

√
2𝐺

𝑐2
𝑀Sch𝜉

𝑖
𝐼(𝑢ret). (227)

Identifying [59, 37] the (intrinsic) angular momentum, either from the conventional linear iden-
tification or from the Kerr metric, as

𝐽 𝑖 = 𝑆𝑖 =𝑀Sch𝑐𝜉
𝑖
𝐼 (228)

and the mass dipole as
𝐷𝑖

(mass) =𝑀Sch𝜉
𝑖
𝑅, (229)

we have

𝜓0𝑖
1 = −6

√
2𝐺

𝑐2
𝐷𝑖

C(grav) = −6
√
2𝐺

𝑐2
(𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖). (230)

By inserting Equation (230) into Equation (212), taking, respectively, the real and imaginary parts,
using Equation (218) and the reality of Ψ, we find

𝑃 𝑖 =𝑀Sch𝜉
𝑖 ′
𝑅 ≡𝑀Sch𝑣

𝑖
𝑅, (231)

the kinematic expression of linear momentum and

𝐽 𝑖 ′ = 0, (232)
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the conservation of angular momentum.
Finally, from the 𝑙 = (0, 1) parts of Equation (213), we have, at this approximation, that the

mass and linear momentum remain constant, i.e., 𝑀 =𝑀Sch =𝑀B and 𝛿Ψ0 = 0. Thus, we obtain
the trivial equations of motion for the center of mass,

𝑀Sch𝜉
𝑖 ′′
𝑅 = 0. (233)

It was the linearization that let to such simplifications. In Section 6, when nonlinear terms are
included (in similar calculations), much more interesting and surprising physical results are found.

5.2 The Robinson–Trautman metrics

The algebraically-special type II Robinson–Trautman (RT) metrics are expressed in conventional
RT coordinates, (𝜏, 𝑟, 𝜁, 𝜁), 𝜏 now real, by [55]

𝑑𝑠2 = 2

(︂
𝐾 − 𝑉 ′

𝑉
𝑟 +

𝜓0
2

𝑟

)︂
𝑑𝜏2 + 2𝑑𝜏𝑑𝑟 − 𝑟2

2𝑑𝜁𝑑𝜁

𝑉 2𝑃 2
0

, (234)

, with

𝐾 = 2𝑉 2𝑃 2
0 𝜕𝜁𝜕𝜁 log 𝑉 𝑃0, (235)

𝑃0 = 1 + 𝜁𝜁, (236)

𝜓0
2 = 𝜓0

2(𝜏). (237)

The unknowns are the Weyl component 𝜓0
2 , (closely related to the Bondi mass), which is a function

only of (real) 𝜏 and the variable, 𝑉 (𝜏, 𝜁, 𝜁), both of which satisfy the RT equation. (See below.)
There remains the freedom

𝜏 ⇒ 𝜏* = 𝑔(𝜏), (238)

which often is chosen so that 𝜓0
2(𝜏) = constant. However, we make a different choice. In the

spherical harmonic expansion of 𝑉 ,

𝑉 = 𝑣𝑎 �̂�𝑎(𝜁, 𝜁) + 𝑣𝑖𝑗𝑌 0
2𝑖𝑗 + . . . , (239)

the 𝜏 is chosen by normalizing the four-vector, 𝑣𝑎, to one, i.e., 𝑣𝑎𝑣𝑎 = 1. The final field equation,
the RT equation, is

𝜓0 ′
2 − 3𝜓0

2

𝑉 ′

𝑉 3
− 𝑉 3

(︁
ð2(𝜏)ð

2

(𝜏)𝑉 − 𝑉 −1ð2(𝜏)𝑉 · ð2(𝜏)𝑉
)︁
= 0. (240)

These spacetimes, via the Goldberg–Sachs theorem, possess a degenerate shear-free PNV field, 𝑙𝑎,
that is surface-forming, (i.e., twist free). Using the tetrad constructed from 𝑙𝑎 we have that the
Weyl components are of the form

𝜓0 = 𝜓1 = 0,

𝜓2 ̸= 0.

Furthermore, the metric contains a “real timelike world line, 𝑥𝑎 = 𝜉𝑎(𝜏),” with normalized velocity
vector 𝑣𝑎 = 𝜉𝑎 ′. All of these properties allow us to identify the RT metrics as being analogous to
the real Liénard–Wiechert solutions of the Maxwell equations.

Assuming for the moment that we have integrated the RT equation and know 𝑉 = 𝑉 (𝜏, 𝜁, 𝜁),
then, by the integral

𝑢 =

∫︁
𝑉 (𝜏, 𝜁, 𝜁)𝑑𝜏 ≡ 𝑋RT(𝜏, 𝜁, 𝜁), (241)
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the UCF for the RT metrics has been found. The freedom of adding 𝛼(𝜁, 𝜁) to the integral is
just the supertranslation freedom in the choice of a Bondi coordinate system. From 𝑋RT(𝜏, 𝜁, 𝜁) a
variety of information can be obtained: the Bondi shear, 𝜎0, is given parametrically by

𝜎0(𝑢B, 𝜁, 𝜁) = ð2(𝜏)𝑋RT(𝜏, 𝜁, 𝜁), (242)

𝑢B = 𝑋RT(𝜏, 𝜁, 𝜁),

as well as the angle field 𝐿 by

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝑋RT(𝜏, 𝜁, 𝜁), (243)

𝑢B = 𝑋RT(𝜏, 𝜁, 𝜁).

In turn, from this information the RT metric (in the neighborhood of I+) can, in principle, be re-
expressed in terms of the Bondi coordinate system. In practice one must revert to approximations.
These approximate calculations lead, via the Bondi mass aspect evolution equation, to both Bondi
mass loss and to equations of motion for the world line, 𝑥𝑎 = 𝜉𝑎(𝜏). An alternate approximation for
the mass loss and equations of motion is to insert the spherical harmonic expansion of 𝑉 into the
RT equation and look at the lowest harmonic terms. We omit further details aside from mentioning
that we come back to these calculations in a more general context in Section 6.

5.3 Type II twisting metrics

It was pointed out in the previous section that the RT metrics are the general relativistic analogues
of the (real) Liénard–Wiechert Maxwell fields. The type II algebraically-special twisting metrics
are the gravitational analogues of the complex Liénard–Wiechert Maxwell fields described earlier.
Unfortunately they are far more complicated than the RT metrics. In spite of the large literature
and much effort there are very few known solutions and much still to be learned [28, 42, 33]. We
give a very brief description of them, emphasizing only the items of relevance to us.

A null tetrad system (and null geodesic coordinates) can be adopted for the type II metrics so
that the Weyl tetrad components are such that

𝜓0 = 𝜓1 = 0,

𝜓2 ̸= 0.

It follows from the Goldberg–Sachs theorem that the degenerate principal null congruence is
geodesic and shear-free. Thus, from the earlier discussions it follows that there is a unique angle
field, 𝐿(𝑢B, 𝜁, 𝜁). As with the complex Liénard–Wiechert Maxwell fields, the type II metrics and
Weyl tensors are given in terms of the angle field, 𝐿(𝑢B, 𝜁, 𝜁). In fact, the entire metric and the
field equations (the asymptotic Bianchi identities) can be written in terms of 𝐿 and a Weyl tensor
component (essentially the Bondi mass). Since 𝐿(𝑢B, 𝜁, 𝜁) describes a unique shear-free NGC, it
can be written, parametrically, in terms of a unique GCF, namely a UCF, 𝑋(type II)(𝜏, 𝜁, 𝜁), i.e.,
we have that

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝑋(type II),

𝑢B = 𝑋(type II)(𝜏, 𝜁, 𝜁).

Since 𝑋(type II)(𝜏, 𝜁, 𝜁) can be expanded in spherical harmonics, the 𝑙 = (0, 1) harmonics can
be identified with a (unique) complex world line in ℋ-space. The asymptotic Bianchi identities
then yield both kinematic equations (for angular momentum and the Bondi linear momentum)
and equations of motion for the world line, analogous to those obtained for the Schwarzschild
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perturbation and the RT metrics. As a kinematic example, the imaginary part of the world line is
identified as the intrinsic spin, the same identification as in the Kerr metric,

𝑆𝑖 =𝑀B𝑐𝜉
𝑖
𝐼 . (244)

In Section 6, a version of these results will be derived in a far more general context.

5.4 Asymptotically static and stationary spacetimes

By defining asymptotically static or stationary spacetimes as those asymptotically-flat spacetimes
where the asymptotic variables are ‘time’ independent, i.e., 𝑢B independent, we can look at our
procedure for transforming to the complex center of mass (or complex center of charge). This
example, though very special, has the huge advantage in that it can be done exactly, without the
use of perturbations [2].

Imposing time independence on the asymptotic Bianchi identities, Equations (56) – (58),

�̇�0
2 = −ð𝜓0

3 + 𝜎0𝜓0
4 , (245)

�̇�0
1 = −ð𝜓0

2 + 2𝜎0𝜓0
3 , (246)

�̇�0
0 = −ð𝜓0

1 + 3𝜎0𝜓0
2 , (247)

and reality condition

Ψ ≡ 𝜓0
2 + ð2𝜎 + 𝜎�̇� = Ψ, (248)

we have, using Equations (51) and (52) with �̇�0 = 0, that

𝜓0
3 = 𝜓0

4 = 0, (249)

ð𝜓0
2 = 0, (250)

ð𝜓0
1 = 3𝜎0𝜓0

2 , (251)

Ψ ≡ 𝜓0
2 + ð2𝜎 = 𝜓

0

2 + ð2𝜎 = Ψ. (252)

From Equation (252), we find (after a simple calculation) that the imaginary part of 𝜓0
2 is

determined by the ‘magnetic’ [44] part of the Bondi shear (spin-weight 𝑠 = 2) and thus must
contain harmonics only of 𝑙 ≥ 2. But from Equation (250), we find that 𝜓0

2 contains only the 𝑙 = 0
harmonic. From this it follows that the ‘magnetic’ part of the shear must vanish. The remaining
part of the shear, i.e., the ‘electric’ part, which by assumption is time independent, can be made
to vanish by a supertranslation, via the Sachs theorem:

̂︀𝑢𝐵 = 𝑢B + 𝛼(𝜁, 𝜁), (253)̂︀𝜎(𝜁, 𝜁) = 𝜎(𝜁, 𝜁) + ð2𝛼(𝜁, 𝜁).

In this Bondi frame, (i.e., frame with a vanishing shear), Equation (251), implies that

𝜓0
1 = 𝜓0𝑖

1 𝑌
1
1𝑖, (254)

𝜓0𝑖
1 = −6

√
2𝐺

𝑐2
𝐷𝑖

C(grav) = −6
√
2𝐺

𝑐2
(𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖), (255)

using the conventionally accepted physical identification of the complex gravitational dipole. (Since
the shear vanishes, this agrees with probably all the various attempted identifications.)
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From the mass identification, 𝜓0
2 becomes

𝜓0
2 = −2

√
2𝐺

𝑐2
𝑀B. (256)

Since the Bondi shear is zero, the asymptotically shear-free congruences are determined by the
same GCFs as in flat spaces, i.e., we have

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁), (257)

𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁). (258)

Our procedure for the identification of the complex center of mass, namely setting 𝜓*0
1 = 0 in

the transformation, Equation (276),

𝜓*0
1 = 𝜓0

1 − 3𝐿𝜓0
2 + 3𝐿2𝜓0

3 − 𝐿3𝜓*0
4

leads, after using Equations (254), (249) and (257), to

𝜓0
1 = 3𝐿𝜓0

2 , (259)

𝜓0𝑖
1 = −6

√
2𝐺

𝑐2
𝐷𝑖

C(grav),

𝐷𝑖
C(grav) =𝑀B𝜉

𝑖.

From the time independence, 𝜉𝑖, the spatial part of the world line is a constant vector. By a
(real) spatial Poincaré transformation (from the BMS group), the real part of 𝜉𝑖 can be made to
vanish, while by ordinary rotation the imaginary part of 𝜉𝑖 can be made to point in the three-
direction. Using the the gauge freedom in the choice of 𝜏 we set 𝜉0(𝜏) = 𝜏 . Then pulling all
these items together, we have for the complex world line, the UCF, 𝐿(𝑢B, 𝜁, 𝜁) and the angular
momentum, 𝐽 𝑖:

𝜉𝑎(𝜏) = (𝜏, 0, 0, 𝑖𝜉3), (260)

𝑢B = 𝜉𝑎(𝜏)�̂�𝑎(𝜁, 𝜁) ≡
𝜏√
2
− 𝑖

2
𝜉3𝑌 0

1,3,

𝐿(𝑢B, 𝜁, 𝜁) = 𝑖𝜉3𝐼𝑌
1
1,3,

𝐽 𝑖 = 𝑆𝑖 =𝑀B𝑐𝜉
3𝛿𝑖3 =𝑀B𝑐(0, 0, 𝜉

3) =𝑀B𝑐𝜉
𝑖
𝐼 .

Thus, we have the complex center of mass on the complex world line, 𝑧𝑎 = 𝜉𝑎(𝜏).
These results for the lower multipole moments, i.e., 𝑙 = 0, 1, are identical to those of the Kerr

metric. The higher moments are still present (appearing in higher 𝑟−1 terms in the Weyl tensor)
and are not affected by these results.
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6 Main Results

We saw in Sections 3 and 4 how shear-free and asymptotically shear-free NGCs determine arbitrary
complex analytic world lines in the auxiliary complex ℋ-space (or complex Minkowski space). In
the examples from Sections 3 and 5, we saw how, in each of the cases, one could pick out a
special GCF, referred to as the UCF, and the associated complex world line by a transformation
to the complex center of mass or charge by requiring that the complex dipoles vanish. In the
present section we consider the same problem, but now perturbatively for the general situation
of asymptotically-flat spacetimes satisfying either the vacuum Einstein or the Einstein–Maxwell
equations in the neighborhood of future null infinity. Since the calculations are relatively long and
complicated, we give the basic details only for the vacuum case, but then present the final results
for the Einstein–Maxwell case without an argument.

We begin with the Reissner–Nordström metric, considering both the mass and the charge as
zeroth-order quantities, and perturb from it. The perturbation data is considered to be first
order and the perturbations themselves are general in the class of analytic asymptotically-flat
spacetimes. Though our considerations are for arbitrary mass and charge distributions in the
interior, we look at the fields in the neighborhood of I+. The calculations are carried to second
order in the perturbation data. Throughout we use expansions in spherical harmonics and their
tensor harmonic versions, but terminate the expansions after 𝑙 = 2. Clebsch–Gordon expansions
are frequently used. See Appendix C.

6.1 A brief summary – Before continuing

Very briefly, for the purpose of organizing the many strands so far developed, we summarize our
procedure for finding the complex center of mass. We begin with the gravitational radiation data,
the Bondi shear, 𝜎0(𝑢B, 𝜁, 𝜁) and solve the good-cut equation,

ð2𝑍 = 𝜎0(𝑍, 𝜁, 𝜁),

with solution 𝑢B = 𝑍(𝑧𝑎, 𝜁, 𝜁) and the four complex parameters 𝑧𝑎 defining the solution space.
Next we consider an arbitrary complex world line in the solution space, 𝑧𝑎 = 𝜉𝑎(𝜏) = (𝜉0(𝜏), 𝜉𝑖(𝜏)),
so that 𝑢B = 𝑍(𝜉𝑎(𝜏), 𝜁, 𝜁) = 𝐺(𝜏, 𝜁, 𝜁), a GCF, which can be expanded in spherical harmonics as

𝑢B = 𝐺(𝜏, 𝜁, 𝜁) = 𝜉𝑎(𝜏)�̂�𝑎𝜁, 𝜁 + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗 + . . . (261)

=
𝜉0(𝜏)√

2
− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖 + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗 + . . .

Assuming slow motion and the gauge condition 𝜉0(𝜏) = 𝜏 (see Section 4), we have

𝑢B =
𝜏√
2
− 1

2
𝜉𝑖(𝜏)𝑌 0

1𝑖 + 𝜉𝑖𝑗(𝜏)𝑌 0
2𝑖𝑗 + . . . (262)

(Though the world line is arbitrary, the quadrupole term, 𝜉𝑖𝑗(𝜏), and higher harmonics, are deter-
mined by both the Bondi shear and the world line.)

The inverse function,

𝜏 = 𝑇 (𝑢ret, 𝜁, 𝜁),

𝑢ret =
√
2𝑢B,

can be found by the following iteration process [27]; writing Equation (262) as

𝜏 = 𝑢ret + 𝐹 (𝜏, 𝜁, 𝜁), (263)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-6

http://www.livingreviews.org/lrr-2009-6


Null Geodesic Congruences 51

with

𝐹 (𝜏, 𝜁, 𝜁) =

√
2

2
𝜉𝑖(𝜏)𝑌 0

1𝑖(𝜁, 𝜁)−
√
2𝜉𝑖𝑗(𝜏)𝑌 0

1𝑖𝑗(𝜁, 𝜁) + . . . , (264)

the iteration relationship, with the zeroth-order iterate, 𝜏0 = 𝑢ret, is

𝜏𝑛 = 𝑢ret + 𝐹 (𝜏𝑛−1, 𝜁, 𝜁). (265)

Though the second iterate easily becomes

𝜏 = 𝑇 (𝑢ret, 𝜁, 𝜁) = 𝑢ret + 𝐹
(︀
𝑢ret + 𝐹 (𝑢ret, 𝜁, 𝜁), 𝜁, 𝜁

)︀
≈ 𝑢ret + 𝐹 + 𝐹𝜕𝑢ret𝐹. (266)

For most of our calculations, all that is needed is the first iterate, given by

𝜏 = 𝑇 (𝑢ret, 𝜁, 𝜁) = 𝑢ret +

√
2

2
𝜉𝑖(𝑢ret)𝑌

0
1𝑖(𝜁, 𝜁)−

√
2𝜉𝑖𝑗(𝑢ret)𝑌

0
1𝑖𝑗(𝜁, 𝜁). (267)

This relationship is important later.
We also have the linearized reality relations – easily found earlier or from Equation (267):

𝜏 = 𝑠+ 𝑖𝜆, (268)

𝜆 = Λ(𝑠, 𝜁, 𝜁) =

√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖 −

√
2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗 , (269)

𝜏 = 𝑠+ 𝑖

(︃√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖 −

√
2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗

)︃
, (270)

𝑢
(𝑅)
ret =

√
2𝐺𝑅(𝑠, 𝜁, 𝜁) =

√
2𝑢

(𝑅)
B = 𝑠−

√
2

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖 +

√
2𝜉𝑖𝑗𝑅 (𝑠)𝑌 0

2𝑖𝑗 . (271)

The associated angle field, 𝐿, and the Bondi shear, 𝜎0, are given parametrically by

𝐿(𝑢B, 𝜁, 𝜁) = ð(𝜏)𝐺(𝜏, 𝜁, 𝜁) (272)

= 𝜉𝑖(𝜏)𝑌 1
1𝑖 − 6𝜉𝑖𝑗(𝜏)𝑌 1

1𝑖𝑗 + . . .

and

𝜎0(𝜏, 𝜁, 𝜁) = ð2(𝜏)𝐺(𝜏, 𝜁, 𝜁), (273)

= 24𝜉𝑖𝑗(𝜏)𝑌 2
2𝑖𝑗 + . . . ,

using 𝑢B = 𝐺, while the asymptotically shear-free NGC is given (again) by the null rotation

𝑙*𝑎 = 𝑙𝑎 + 𝑏𝑚𝑎 + 𝑏𝑚𝑎 + 𝑏𝑏𝑛𝑎, (274)

𝑚*𝑎 = 𝑚𝑎 + 𝑏𝑛𝑎,

𝑛*𝑎 = 𝑛𝑎,

𝑏 = −𝐿/𝑟 +𝑂(𝑟−2).

From Equation (274), the transformed asymptotic Weyl tensor becomes, Equations (275) –
(279),

𝜓*0
0 = 𝜓0

0 − 4𝐿𝜓0
1 + 6𝐿2𝜓0

2 − 4𝐿3𝜓0
3 + 𝐿4𝜓0

4 , (275)

𝜓*0
1 = 𝜓0

1 − 3𝐿𝜓0
2 + 3𝐿2𝜓0

3 − 𝐿3𝜓0
4 , (276)

𝜓*0
2 = 𝜓0

2 − 2𝐿𝜓0
3 + 𝐿2𝜓0

4 , (277)

𝜓*0
3 = 𝜓0

3 − 𝐿𝜓0
4 , (278)

𝜓*0
4 = 𝜓0

4 . (279)
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The procedure is centered on Equation (276), where we search for and set to zero the 𝑙 = 1
harmonic in 𝜓*0

1 on an s = constant slice. This determines the complex center-of-mass world line
and singles out a particular GCF referred to as the UCF,

𝑋(𝜏, 𝜁, 𝜁) = 𝐺(𝜏, 𝜁, 𝜁),

with the real version,

𝑋𝑅(𝑠, 𝜁, 𝜁) = 𝐺𝑅(𝑠, 𝜁, 𝜁), (280)

for the gravitational field in the general asymptotically-flat case.

(For the case of the Einstein–Maxwell fields, in general, there will be two complex world lines,
one for the center of charge, the other for the center of mass and the two associated UCFs. For
later use we note that the gravitational world line will be denoted by 𝜉𝑎, while the electromagnetic
world line by 𝜂𝑎. Later we consider the special case when the two world lines and the two UCFs
coincide, i.e., 𝜉𝑎 = 𝜂𝑎.)

From the assumption that 𝜎0 and 𝐿 are first order and, from Equation (52), that 𝜓0
3 = ð�̇�0

,
Equation (276), to second order, is

𝜓*0
1 = 𝜓0

1 − 3𝐿[Ψ− ð2�̄�0], (281)

where 𝜓0
2 has been replaced by the mass aspect, Equation (54), Ψ ≈ 𝜓0

2 + ð2�̄�0.

Using the spherical harmonic expansions (see Equations (272) and (273)),

Ψ = Ψ0 +Ψ𝑖𝑌 0
1𝑖 +Ψ𝑖𝑗𝑌 0

2𝑖𝑗 + . . . , (282)

𝜓0
1 = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗 + . . . , (283)

𝜓*0
1 = 𝜓*0𝑖

1 𝑌 1
1𝑖 + 𝜓*0𝑖𝑗

1 𝑌 1
2𝑖𝑗 + . . . , (284)

𝐿(𝑢B, 𝜁, 𝜁) = 𝜉𝑖(𝜏)𝑌 1
1𝑖 − 6𝜉𝑖𝑗(𝜏)𝑌 1

2𝑖𝑗 + . . . , (285)

𝜎0(𝑢B, 𝜁, 𝜁) = 24𝜉𝑖𝑗(𝜏)𝑌 2
2𝑖𝑗 + . . . (286)

Remembering that Ψ0 is zeroth order, Equation (281), becomes

𝜓*0
1 = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗

−3[𝜉𝑖(𝜏)𝑌 1
1𝑖 − 6𝜉𝑖𝑗(𝜏)𝑌 1

2𝑖𝑗 ][Ψ
0 +Ψ𝑖𝑌 0

1𝑖 + {Ψ𝑖𝑗 − 24𝜉
𝑖𝑗
(𝜏)}𝑌 0

2𝑖𝑗 ]

or

𝜓*0
1 = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗 − 3𝜉𝑖(𝜏)𝑌 1

1𝑖Ψ
0 − 3Ψ𝑖𝜉𝑗(𝜏)𝑌 1

1𝑗𝑌
0
1𝑖 (287)

−3𝜉𝑘(𝜏)[Ψ𝑖𝑗 − 24𝜉
𝑖𝑗
(𝜏)]𝑌 1

1𝑘𝑌
0
2𝑖𝑗

+18𝜉𝑖𝑗(𝜏)𝑌 1
2𝑖𝑗Ψ

0 +Ψ𝑘18𝜉𝑖𝑗(𝜏)𝑌 1
2𝑖𝑗𝑌

0
1𝑘 + 18𝜉𝑘𝑙(𝜏)[Ψ𝑖𝑗 − 24𝜉

𝑖𝑗
(𝜏)]𝑌 1

2𝑘𝑙𝑌
0
2𝑖𝑗 .

Note that the right-hand side of Equation (287) depends initially on both 𝜏 and 𝑢ret, with 𝜏 =
𝑇 (𝑢ret, 𝜁, 𝜁).

This equation, though complicated and unattractive, is our main source of information con-
cerning the complex center-of-mass world line. Extracting this information, i.e., determining 𝜓*0𝑖

1

at constant values of 𝑠 by expressing 𝜏 and 𝑢ret as functions of 𝑠 and setting it equal to zero, takes
considerable effort.
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6.2 The complex center-of-mass world line

Before trying to determine 𝜓*0𝑖
1 , several comments are in order:

1. As mentioned earlier, the right-hand side of Equation (287) is a function of both 𝜏 , via the
the GC variables, 𝜉𝑖, 𝜉𝑖𝑗 and the 𝑢ret, via the 𝜓0𝑖

1 , 𝜓
0𝑖𝑗
1 and Ψ. The extraction of the 𝑙 = 1

part of 𝜓*0
1 must be taken on the constant ‘𝑠’ cuts. In other words, both 𝜏 and 𝑢ret must be

eliminated by using Equations (268) – (271) and (267).

2. This elimination must be done in the linear terms, e.g., from Equation (271),

𝜂(𝑢
(𝑅)
ret ) = 𝜂

(︃
𝑠−

√
2

2
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖 +

√
2𝜉𝑖𝑗𝑅 (𝑠)𝑌 0

2𝑖𝑗

)︃

≈ 𝜂(𝑠)−
√
2

2
𝜂(𝑠)′

[︁
𝜉𝑖𝑅(𝑠)𝑌

0
1𝑖 − 2𝜉𝑖𝑗𝑅 (𝑠)𝑌 0

2𝑖𝑗

]︁
or, from Equation (270),

𝜒(𝜏) = 𝜒

(︃
𝑠+ 𝑖

(︃√
2

2
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖 −

√
2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗

)︃)︃

≈ 𝜒(𝑠) + 𝑖

√
2

2
𝜒(𝑠)′

[︁
𝜉𝑖𝐼(𝑠)𝑌

0
1𝑖 − 2𝜉𝑖𝑗𝐼 (𝑠)𝑌 0

2𝑖𝑗

]︁
.

In the nonlinear terms we can simply use

𝑢ret = 𝜏 = 𝑠.

3. In the Clebsch–Gordon expansions of the harmonic products, though we need both the 𝑙 = 1
and 𝑙 = 2 terms in the calculation, we keep at the end only the 𝑙 = 1 terms for the 𝜓0𝑖

1 . (Note
that there are no 𝑙 = 0 terms since 𝜓*0

1 is spin weight 𝑠 = 1.)

4. The calculation to determine the 𝜓*0𝑖
1 for the constant ‘𝑠’ slices was probably the most

tedious and lengthy in this work. The importance of the results necessitated the calculation
be repeated several times.

Expanding and organizing Equation (287) with the linear terms given explicitly and the quadratic
terms collected in the expression for 𝐴, we obtain the long expression with all terms functions of
either 𝜏 or 𝑢ret:

𝜓0*
1 = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗 − 3Ψ0𝜉𝑖𝑌 1

1𝑖 + 18Ψ0𝜉𝑖𝑗𝑌 1
2𝑖𝑗 +𝐴. (288)

𝐴 = −3𝜉𝑖Ψ𝑗𝑌 1
1𝑖𝑌

0
1𝑗 + 18𝜉𝑖𝑗Ψ𝑘𝑌 1

2𝑖𝑗𝑌
0
1𝑘 − 3𝜉𝑖

[︁
Ψ𝑘𝑗 − 24𝜉

𝑘𝑗
]︁
𝑌 1
1𝑖𝑌

0
2𝑘𝑗 (289)

+18𝜉𝑖𝑗
[︁
Ψ𝑘𝑙 − 24𝜉

𝑘𝑙
(𝜏)
]︁
𝑌 1
2𝑖𝑗𝑌

0
2𝑘𝑙

= 𝐴𝑖𝑌 1
1𝑖 +𝐴𝑖𝑗𝑌 1

2𝑖𝑗 .

Using Equations (269) and (271), the 𝑢ret and 𝜏 in Equation (288) are replaced by 𝑠. On the
right-hand side all the variables, e.g., 𝜓0𝑘

1 ,Ψ𝑖, 𝜉𝑘, 𝑒𝑡𝑐., are functions of ‘𝑠’; their functional forms
are the same as when they were functions of 𝑢ret and 𝜏 ; the linear terms are again explicitly given
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and the quadratic terms are collected in the 𝐵𝑈 +𝐵𝑇 +𝐴

𝜓0*
1 (𝑠, 𝜁, 𝜁) = 𝜓0𝑖

1 𝑌
1
1𝑖 + 𝜓0𝑖𝑗

1 𝑌 1
2𝑖𝑗 − 3Ψ0𝜉𝑖𝑌 1

1𝑖 + 18Ψ0𝜉𝑖𝑗𝑌 1
2𝑖𝑗 +𝐵𝑈 +𝐵𝑇 +𝐴, (290)

𝐵𝑈 = −
√
2

2
𝜓0𝑖′
1 𝜉𝑘𝑅𝑌

0
1𝑘𝑌

1
1𝑖 +

√
2𝜓0𝑖′

1 𝜉𝑘𝑙𝑅 𝑌
0
2𝑘𝑙𝑌

1
1𝑖 −

√
2

2
𝜓0𝑖𝑗′
1 𝜉𝑘𝑅𝑌

0
1𝑘𝑌

1
2𝑖𝑗

+
√
2𝜓0𝑖𝑗′

1 𝜉𝑘𝑙𝑅 𝑌
0
2𝑘𝑙𝑌

1
2𝑖𝑗 ,

𝐵𝑇 = 𝑖3
√
2Ψ0

{︂
−1

2
𝜉𝑖′𝜉𝑘𝐼 (𝑠)𝑌

0
1𝑘𝑌

1
1𝑖 + 𝜉𝑖′𝜉𝑘𝑙𝐼 (𝑠)𝑌 0

2𝑘𝑙𝑌
1
1𝑖 + 3𝜉𝑖𝑗′𝜉𝑘𝐼 𝑌

0
1𝑘𝑌

1
2𝑖𝑗

−6𝜉𝑖𝑗′𝜉𝑘𝑙𝐼 𝑌
0
2𝑘𝑙𝑌

1
2𝑖𝑗

}︂
.

To proceed, we use the complex center-of-mass condition, namely, 𝜓*0𝑘
1 (𝑠) = 0, and solve for

𝜓0𝑘
1 (𝑢ret). This is accomplished by first reversing the calculation via

𝜓0
1 = 𝜓0*

1 + 3𝐿𝜓0*
2 = 𝜓0*

1 + 3𝐿𝜓0
2

and then, before extracting the 𝑙 = 1 harmonic component, replacing the 𝑠 by 𝑢ret, via the inverse
of Equation (271),

𝑠 = 𝑢
(𝑅)
ret +

√
2

2
𝜉𝑖𝑅(𝑢

(𝑅)
ret )𝑌

0
1𝑖 −

√
2𝜉𝑖𝑗𝑅 (𝑢

(𝑅)
ret )𝑌

0
2𝑖𝑗 ,

using Equation 280
𝑋𝑅(𝑠, 𝜁, 𝜁) = 𝐺𝑅(𝑠, 𝜁, 𝜁). (291)

In this process several of the quadratic terms cancel out and new ones arise.
The final expression for 𝜓0𝑗

1 , given in terms of the complex world line 𝜉𝑗 expressed as a function
of 𝑢ret, then becomes our basic equation:

𝜓0𝑗
1 = 3Ψ0𝜉𝑗 − 18

5
𝜉𝑖𝜓0𝑖𝑗

2 − 108

5
Ψ𝑖𝜉𝑖𝑗 − 3

√
2

5
𝜓0𝑖𝑗′
1 𝜉𝑖𝑅 (292)

+
18
√
2

5
Ψ0(𝜉𝑗𝑖𝑅 + 𝑖𝜉𝑗𝑖𝐼 )𝜉𝑖′ + 𝑖

(︃
3
√
2

2
𝜉𝑖Ψ𝑘

+
24

5
𝜉𝑚𝑘
𝑅 𝜓0𝑚𝑖′

1 − 216
√
2

5
𝜉𝑚𝑘𝜓0𝑚𝑖

2 +
3

2
Ψ0(𝜉𝑘𝑅 + 𝑖𝜉𝑘𝐼 )𝜉

𝑖′

)︃
𝜖𝑖𝑘𝑗 .

This, which becomes the analogue of the Newtonian dipole expression �⃗� = 𝑀�⃗�, is our central
relationship. Almost all of our results in the following sections follow directly from it.

We emphasize that prior to this discussion/derivation, the 𝜓0𝑗
1 and the 𝜉𝑗 were independent

quantities but in the final expression the 𝜓0𝑗
1 is now a function of the 𝜉𝑗 .

Note that the linear term
𝜓0𝑖
1 = 3Ψ0𝜉𝑖

coincides with the earlier results in the stationary case, Equation (259). From

Ψ0 = −2
√
2𝐺

𝑐2
𝑀B

we have

𝜓0𝑖
1 = −6

√
2𝐺

𝑐2
𝑀B𝜉

𝑖, (293)

= −6
√
2𝐺

𝑐2
𝐷𝑖

C(grav),

𝐷𝑖
C(grav) =𝑀B(𝜉

𝑖
𝑅 + 𝑖𝜉𝑖𝐼) = (𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖).
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We will see shortly that there is a great deal of physical content to be found in the nonlinear terms
in Equation (292).

6.3 Results

6.3.1 Preliminaries

Before describing in details our results, it appears to be worthwhile to very roughly survey the
results and describe the logical steps taken to reach them. Virtually everything, as we said earlier,
follows from the equation for 𝜓0𝑖

1 , i.e., Equation (292).
In the final results, we will include, from Section 3, the Maxwell field. Though we do consider

the case where the two complex world lines (the complex center-of-mass and center-of-charge lines)
differ from each other, some discussion will be directed to the special case of coinciding world lines.

1. The first step is to decompose the 𝜓0𝑖
1 into its real and imaginary parts, identifying the real

center of mass and the total angular momentum (as seen from infinity) described in the
given Bondi coordinate system. In a different Bondi system they would undergo a specific
transformation. These results are the analogues of Equation (115). It should be emphasized
that there are alternative definitions, [59], but using our approximations all should reduce to
our expression.

2. The second step is to look at the evolution equation for 𝜓0𝑖
1 , i.e., insert our 𝜓0

1 into the
Bianchi identity, (57), now including the Maxwell field. We obtain, from the 𝑙 = 1 harmonic,
the evolution of 𝜓0𝑖

1 . After again decomposing it into the real and imaginary parts we find
the kinematic description of the Bondi linear momentum, 𝑃 𝑖 = 𝑀𝜉𝑖′ + . . . (i.e., the usual
kinematic expression 𝑃 = 𝑀𝑣 plus additional terms) and the evolution (conservation law)
for the angular momentum including a flux expression, i.e., 𝐽 𝑖 ′ = (𝐹𝑙𝑢𝑥)𝑖.

3. The third step is to reinsert the kinematic expression for the Bondi mass into the evolution
equation for 𝜓0

2 , i.e., Equation (56). From the reality condition on the mass aspect, Equa-
tion (55) or Equation (53), only the real part is relevant. It leads to the evolution equation
for the real part of the complex world line, a second-order ODE, that can be identified with
Newton’s second law, 𝐹 𝑖 = 𝑀𝜉𝑖 ′′, with 𝐹 𝑖 being the recoil and radiation reaction forces.
The 𝑙 = 0 harmonic term is the energy/mass loss equation of Bondi.

Before continuing we note that the 𝑙 = 2 coefficients in 𝜓0
1 and 𝜓0

2 , i.e., 𝜓
0𝑖𝑗
1 and 𝜓0𝑖𝑗

2 , appear
frequently in second-order expressions, e.g., in Equation (292). Thus, knowing them, in terms of
the free data, to first order is sufficient. By going to the linearized Bianchi identities (with the
linearized Maxwell field) and the expression for the Bondi shear 𝜎0,

�̇�0
2 = −ð2�̇�0

, (294)

�̇�0
1 = −ð𝜓0

2 + 2𝑘𝑞𝜑02, (295)

𝜎0(𝜏, 𝜁, 𝜁) = 24𝜉𝑖𝑗(𝜏)𝑌 2
2𝑖𝑗 + . . . , (296)

𝜑01 = 𝑞, (297)

𝜑
0

2 = −2𝑞𝜂𝑖 ′′(𝑢ret)𝑌
1
1𝑖 −

1

3
𝑄

𝑖𝑗 ′′′
C 𝑌 1

2𝑖𝑗 , (298)

we easily find

𝜓0𝑖𝑗
2 = −24𝜉

𝑖𝑗
(𝑢ret), (299)

𝜓0𝑖𝑗 ′
1 = −72

√
2𝜉

𝑖𝑗
(𝑢ret)−

√
2

3
𝑐−3𝑘𝑞𝑄

𝑖𝑗 ′′′
C ,
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where a constant of integration was set to zero via initial conditions. These expressions are fre-
quently used in the following. In future expressions we will restore explicitly ‘𝑐’, via the derivative,
(′) → 𝑐−1(′) and replace the gravitational coupling constant by 𝑘 = 2𝐺𝑐−4.

6.3.2 The real center of mass and the angular momentum

Returning to the basic relation, Equation (292), using Equations (299) we obtain

𝜓0𝑗
1 = 3Ψ0𝜉𝑗 +

3(12)2

5
𝜉
𝑖𝑗
𝜉𝑖 +

18
√
2

5
𝑐−1Ψ0𝜉𝑗𝑖𝑣𝑖 (300)

−108

5
Ψ𝑖𝜉𝑖𝑗 +

3(12)2

5
𝜉𝑖𝑅𝜉

𝑖𝑗
+

4
√
2

5
𝑐−7𝐺𝑞𝑄

𝑖𝑗′′′
C 𝜉𝑖𝑅

+𝑖

(︃
3

2
𝑐−1Ψ0𝜉𝑘𝜉𝑖 ′ − (12)3

√
2

5
𝜉𝑚𝑘
𝑅 𝜉

𝑖𝑚
+

3
√
2

2
𝜉𝑖Ψ𝑘

)︃
𝜖𝑖𝑘𝑗

+𝑖

(︃
3(12)3

√
2

5
𝜉𝑚𝑘𝜉

𝑖𝑚 − 32

5
𝐺𝑐−7𝑞𝑄

𝑖𝑚 ′′′
C 𝜉𝑚𝑘

𝑅

)︃
𝜖𝑖𝑘𝑗 .

By replacing Ψ0 and Ψ𝑖, in terms of the Bondi mass and linear momentum, then decomposing the
individual terms, e.g., 𝜉𝑖 = 𝜉𝑖𝑅 + 𝑖𝜉𝑖𝐼 , 𝑄

𝑖𝑗
C = 𝑄𝑖𝑗

𝐸 + 𝑖𝑄𝑖𝑗
𝑀 , into their real and imaginary parts, the full

expression is decomposed as

𝜓0𝑖
1 ≡ −6

√
2𝐺

𝑐2
(𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖) (301)

= −6
√
2𝐺

𝑐2
(𝑀B𝜉

𝑖
𝑅 + 𝑖𝑀B𝜉

𝑖
𝐼) + . . .

The physical identifications – first from the real part, are, initially, a tentative definition of the
mass dipole moment,

𝐷
(𝑇 ) 𝑗
(mass) =𝑀B𝜉

𝑗
𝑅 + 𝑐−1

{︂
𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑖𝐼 +

1

2
𝑀B𝜉

𝑘
𝑅𝜉

𝑖 ′
𝐼

}︂
𝜖𝑘𝑖𝑗 +𝒟# 𝑗

(mass), (302)

𝒟# 𝑗
(mass) = −54

√
2

5
𝑐−1𝑀B𝜉

𝑖 ′
𝑅 𝜉

𝑖𝑗
𝑅 − 6

√
2

5
𝑐−1𝑀B𝜉

𝑗𝑖
𝐼 𝜉

𝑖 ′
𝐼 (303)

−36
√
2

5
𝐺−1𝑐2(𝜉𝑖𝑅𝜉

𝑖𝑗
𝑅 + 𝜉𝑖𝐼𝜉

𝑖𝑗
𝐼 )

−36
√
2

5
𝐺−1𝑐2𝜉𝑖𝑅𝜉

𝑖𝑗
𝑅 −

√
2

15
𝑐−5𝑞𝜉𝑖𝑅𝑄

𝑖𝑗 ′′′
𝐸

−
{︂
2(12)2

5
𝐺−1𝑐2𝜉𝑖𝑚𝐼 𝜉𝑚𝑘

𝑅 − 8

15
𝑐−5𝑞𝜉𝑚𝑘

𝑅 𝑄𝑖𝑚 ′′′
𝑀

}︂
𝜖𝑖𝑘𝑗

+
36
√
2

5
𝑐−4𝑞2𝜂𝑖 ′′𝑅 𝜉𝑖𝑗𝑅 + 𝑐−4𝑞2𝜉𝑖𝐼𝜂

𝑘′′
𝑅 𝜖𝑖𝑘𝑗 ,
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and – from the imaginary part, again, a tentative definition of the total angular momentum,

𝐽 (𝑇 ) 𝑗 =𝑀B𝑐𝜉
𝑗
𝐼 +

{︂
𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑖𝑅 +

1

2
𝑀B𝜉

𝑖
𝐼𝜉

𝑘 ′
𝐼

}︂
𝜖𝑖𝑘𝑗 + 𝒥# 𝑗 , (304)

𝒥# 𝑗 = −3(12)
√
2

5

𝑐3

𝐺
(𝜉𝑖𝐼𝜉

𝑖𝑗
𝑅 − 2𝜉𝑖𝑅𝜉

𝑖𝑗
𝐼 )− 54

√
2

5
𝑀B𝜉

𝑖 ′
𝑅 𝜉

𝑖𝑗
𝐼 (305)

+
6
√
2

5
𝑀B𝜉

𝑗𝑖
𝑅 𝜉

𝑖 ′
𝐼 +

√
2

15
𝑐−4𝑞𝜉𝑖𝑅𝑄

𝑖𝑗′′′
𝑀 − 8

15
𝑐−4𝑞𝜉𝑚𝑘

𝑅 𝑄𝑖𝑚 ′′′
𝐸 𝜖𝑖𝑘𝑗 .

+
36
√
2

5
𝑐−3𝑞2𝜂𝑖 ′′𝑅 𝜉𝑖𝑗𝐼 + 𝑐−3𝑞2𝜉𝑖𝑅𝜂

𝑘 ′′
𝑅 𝜖𝑖𝑘𝑗 .

The reason for referring to these identifications as tentative is the following:
If there were no Maxwell field present, then the terms involving the electromagnetic dipole,

𝑞𝜂𝑖, and quadruple, 𝑄𝑖𝑚
C , would not appear and these identifications, 𝐷

(𝑇 ) 𝑗
(mass) and 𝐽 (𝑇 ) 𝑖, would

then be considered to be firm; however, if a Maxwell field is present, we will see later that the
identifications must be modified. Extra Maxwell terms are ‘automatically’ added to the above
expressions when the conservation laws are considered.

As an important point we must mention a short cut that we have already taken in the interests of
simplifying the presentation. When the linearized Equation (300) is substituted into the linearized

Bianchi identity, �̇�0
1 = −ð𝜓0

2 , we obtain the linear expression for the momentum, 𝑃 𝑖 ≡ − 𝑐3

6𝐺𝜓
0𝑖
2 ,

in terms of the linearized expression for �̇�0𝑖
1 , namely,

𝑃 𝑖 =𝑀B𝜉
𝑖′
𝑅 − 2

3
𝑐−3𝑞2𝜂𝑖′′𝑅 =𝑀B𝑣

𝑗
𝑅 − 2

3
𝑐−3𝑞2𝜂𝑖′′𝑅 . (306)

This expression is then ‘fed’ into the full nonlinear Equation (300) leading to the relations Equa-
tions (302) and (304).

Considering now only the pure gravitational case, there are several comments and observations
to be made.

1. Equations (302) and (304) have been split into two types of terms: terms that contain only
dipole information and terms that contain quadrupole information. The dipole terms are
explicitly given, while the quadrupole terms are hidden in the 𝒟# 𝑖 and 𝒥# 𝑖.

2. In 𝐽 𝑖 we identify 𝑆𝑖 as the intrinsic or spin angular momentum,

𝑆𝑖 =𝑀B𝑐𝜉
𝑖
𝐼 . (307)

This identification comes from the Kerr or Kerr–Newman metric [37]. The second term,

𝑀B𝜉
𝑘 ′
𝑅 𝜉𝑖𝑅𝜖𝑖𝑘𝑗 = (−→𝑟 ×

−→
𝑃 )𝑗 , (308)

is the orbital angular momentum. The third term,

1

2
𝑀B𝜉

𝑖
𝐼𝜉

𝑘 ′
𝐼 𝜖𝑖𝑘𝑗 =

1

2𝑀B𝑐2
𝑆𝑖𝑆𝑘′𝜖𝑖𝑘𝑗 ,

though very small, represents a spin-spin contribution to the total angular momentum.

3. In the mass dipole expression 𝐷
(𝑇 ) 𝑖
(mass), the first term is the classical Newton mass dipole,

while the next two are dynamical spin contributions.

In the following Sections 6.3.3 and 6.3.4 further physical results (with more comments and
observations) will be found from the dynamic equations (asymptotic Bianchi identities) when they

are applied to 𝐷
(𝑇 ) 𝑖
(mass) and 𝐽

(𝑇 ) 𝑖.
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6.3.3 The evolution of the complex center of mass

The evolution of the mass dipole and the angular momentum, defined from the 𝜓0𝑖
1 , Equation (301),

is determined by the Bianchi identity,

�̇�0
1 = −ð𝜓0

2 + 2𝜎0𝜓0
3 + 2𝑘𝜑01𝜑

0
2. (309)

In the analysis of this relationship, the asymptotic Maxwell equations

�̇�01 = −ð𝜑02, (310)

�̇�00 = −ð𝜑01 + 𝜎0𝜑02,

and their solution, from Section 3, Equation (123) (needed only to first order),

𝜑00 = 2𝑞𝜂𝑖(𝑢ret)𝑌
1
1𝑖 + 𝑐−1𝑄𝑖𝑗 ′

C 𝑌 1
2𝑖𝑗 + . . . , (311)

𝜑01 = 𝑞 +
√
2𝑐−1𝑞𝜂𝑖 ′(𝑢ret)𝑌

0
1𝑖 +

√
2

6
𝑐−2𝑄𝑖𝑗 ′′

C 𝑌 0
2𝑖𝑗 + . . . ,

𝜑02 = −2𝑐−2𝑞𝜂𝑖 ′′(𝑢ret)𝑌
−1
1𝑖 − 1

3
𝑐−3𝑄𝑖𝑗 ′′′

C 𝑌 −1
2𝑖𝑗 + . . . ,

must be used. By extracting the 𝑙 = 1 harmonic from Equation (309), we find

𝜓0𝑖 ′
1 =

√
2𝑐Ψ𝑖 +

𝑖2(12)3
√
2

5
𝜉𝑘𝑙𝜉

𝑘𝑗 ′
𝜖𝑙𝑗𝑖 − 8

√
2𝐺𝑐−5𝑞2𝜂𝑖 ′′ + 𝑖4

√
2𝐺𝑐−6𝑞2𝜂𝑗 ′′𝜂𝑚 ′𝜖𝑚𝑗𝑖 (312)

+
8

5
𝐺𝑐−7𝑞𝜂𝑘 ′′𝑄𝑘𝑖 ′′

C − 8

5
𝐺𝑐−7𝑞𝜂𝑚 ′𝑄

𝑖𝑚 ′′′
C − 𝑖

8
√
2

15
𝐺𝑐−8𝑄𝑚𝑗 ′′

C 𝑄
𝑙𝑚 ′′′
C 𝜖𝑙𝑗𝑖.

Using Equation (301),

𝜓0𝑖
1 ≡ −6

√
2𝐺

𝑐2
(𝐷𝑖

(mass) + 𝑖𝑐−1𝐽 𝑖),

with the (real)

𝑀B = − 𝑐2

2
√
2𝐺

Ψ0, (313)

𝑃 𝑖 = − 𝑐3

6𝐺
Ψ𝑖, (314)

we obtain, (1) from the real part, the kinematic expression for the (real) linear momentum and,
(2) from the imaginary part, the conservation or flux law for angular momentum.

(1) Linear Momentum:

𝑃 𝑖 = 𝐷𝑖′
(mass) −

2

3
𝑐−3𝑞2𝜂𝑖 ′′𝑅 +Π𝑖, (315)

Π𝑖 = −4(12)2

5

𝑐2

𝐺
{𝜉𝑘𝑙𝐼 𝜉

𝑘𝑗′
𝑅 − 𝜉𝑘𝑙𝑅 𝜉

𝑘𝑗′
𝐼 }𝜖𝑙𝑗𝑖 −

2𝑐−4𝑞2

3
{𝜂𝑗 ′′𝑅 𝜂𝑙 ′𝐼 − 𝜂𝑗′′𝐼 𝜂𝑙 ′𝑅}𝜖𝑙𝑗𝑖

+
2
√
2

15
𝑐−5𝑞{𝜂𝑘 ′′

𝑅 𝑄𝑘𝑖′′
𝐸 + 𝜂𝑘′′𝐼 𝑄𝑘𝑖′′

𝑀 − 𝜂𝑚′
𝑅 𝑄𝑖𝑚 ′′′

𝐸 + 𝜂𝑚′
𝐼 𝑄𝑖𝑚′′′

𝑀 }

+
4

45
𝑐−6{𝑄𝑚𝑗 ′′

𝑀 𝑄𝑚𝑙 ′′′
𝐸 −𝑄𝑚𝑗 ′′

𝐸 𝑄𝑚𝑙 ′′′
𝑀 }𝜖𝑙𝑗𝑖.

Using

𝐷
(𝑇 ) 𝑖 ′
(mass) =𝑀B𝜉

𝑖 ′
𝑅 − 𝑐−1

{︂
𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑗𝐼 +

1

2
𝑀B𝜉

𝑘
𝑅𝜉

𝑗 ′
𝐼

}︂′

𝜖𝑗𝑘𝑖 +𝒟# 𝑖 ′
(mass),
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we get the kinematic expression for the linear momentum,

𝑃 𝑖 =𝑀B𝜉
𝑖 ′
𝑅 − 2

3
𝑐−3𝑞2𝜂𝑖 ′′𝑅 − 𝑐−1{𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑗 ′𝐼 +𝑀B𝜉

𝑘 ′′
𝑅 𝜉𝑗𝐼 (316)

+
1

2
𝑀B(𝜉

𝑘
𝑅𝜉

𝑗 ′
𝐼 )′}𝜖𝑗𝑘𝑖 +𝒟# 𝑖 ′

(mass) +Π𝑖,

Π𝑖 = −4(12)2

5

𝑐2

𝐺
{𝜉𝑘𝑙𝐼 𝜉

𝑘𝑗′
𝑅 − 𝜉𝑘𝑙𝑅 𝜉

𝑘𝑗′
𝐼 }𝜖𝑙𝑗𝑖 −

2𝑐−4𝑞2

3
{𝜂𝑗′′𝑅 𝜂𝑙 ′

𝐼 − 𝜂𝑗′′𝐼 𝜂𝑙 ′
𝑅 }𝜖𝑙𝑗𝑖

+
2
√
2

15
𝑐−5𝑞{𝜂𝑘′′𝑅 𝑄𝑘𝑖′′

𝐸 + 𝜂𝑘′′𝐼 𝑄𝑘𝑖′′
𝑀 − 𝜂𝑚′

𝑅 𝑄𝑖𝑚′′′
𝐸 + 𝜂𝑚′

𝐼 𝑄𝑖𝑚′′′
𝑀 }

+
4

45
𝑐−6{𝑄𝑚𝑗 ′′

𝑀 𝑄𝑚𝑙 ′′′
𝐸 −𝑄𝑚𝑗 ′′

𝐸 𝑄𝑚𝑙 ′′′
𝑀 }𝜖𝑙𝑗𝑖,

or

𝑃 𝑖 =𝑀B𝜉
𝑖 ′
𝑅 − 2

3
𝑐−3𝑞2𝜂𝑖′′𝑅 + 𝑐−1𝑀B𝜉

𝑗′
𝑅𝜉

𝑘 ′
𝐼 𝜖𝑖𝑗𝑘 + Ξ𝑖, (317)

Ξ𝑖 = −𝑐−1{𝑀B𝜉
𝑘 ′′
𝑅 𝜉𝑗𝐼 +

1

2
𝑀B(𝜉

𝑘
𝑅𝜉

𝑗 ′
𝐼 )′}𝜖𝑗𝑘𝑖 +𝒟# 𝑖 ′

(mass) +Π𝑖,

(2) Angular Momentum Flux:

𝐽 𝑖 ′ = (𝐹𝑙𝑢𝑥)𝑖, (318)

𝐽 𝑖 = 𝐽 (𝑇 ) 𝑖 +
2

3
𝑞2𝑐−2𝜂𝑖 ′𝐼 , (319)

𝐽 (𝑇 ) 𝑖 =𝑀B𝑐𝜉
𝑗
𝐼 + {𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑖𝑅 +

1

2
𝑀B𝜉

𝑖
𝐼𝜉

𝑘 ′
𝐼 }𝜖𝑖𝑘𝑗 + 𝒥# 𝑖, (320)

(𝐹𝑙𝑢𝑥)𝑖 = −4(12)2

5

𝑐3

𝐺
{𝜉𝑘𝑙𝑅 𝜉

𝑘𝑗′
𝑅 + 𝜉𝑘𝑙𝐼 𝜉

𝑘𝑗′
𝐼 }𝜖𝑙𝑗𝑖 (321)

−2

3
𝑞2𝑐−3{𝜂𝑗′′𝑅 𝜂𝑙 ′𝑅 + 𝜂𝑗′′𝐼 𝜂𝑙 ′𝐼 }𝜖𝑙𝑗𝑖

+
4

45
𝑐−5{𝑄𝑚𝑗′′

𝐸 𝑄𝑚𝑙 ′′′
𝐸 +𝑄𝑚𝑗 ′′

𝑀 𝑄𝑚𝑙 ′′′
𝑀 }𝜖𝑙𝑗𝑖

−2
√
2

15
𝑞𝑐−4{𝜂𝑘′′𝑅 𝑄𝑘𝑖′′

𝑀 − 𝜂𝑘′′𝐼 𝑄𝑘𝑖′′
𝐸 }

+
2
√
2

15
𝑞𝑐−4{𝜂𝑚′

𝐼 𝑄𝑖𝑚′′′
𝐸 − 𝜂𝑚′

𝑅 𝑄𝑖𝑚′′′
𝑀 }.

There are a variety of comments to be made about the physical content contained in these
relations:

∙ The first term of 𝑃 𝑖 is the standard Newtonian kinematic expression for the linear momentum,
𝑀B𝜉

𝑘 ′
𝑅 .

∙ The second term, − 2
3𝑐

−3𝑞2𝜂𝑖 ′′𝑅 , which is a contribution from the second derivative of the
electric dipole moment, 𝑞𝜂𝑖𝑅, plays a special role for the case when the complex center of
mass coincides with the complex center of charge, 𝜂𝑎 = 𝜉𝑎. In this case, the second term is
exactly the contribution to the momentum that yields the classical radiation reaction force
of classical electrodynamics [30].

∙ The third term, 𝑐−1𝑀B𝜉
𝑗′
𝑅𝜉

𝑘 ′
𝐼 𝜖𝑖𝑗𝑘, is the classical Mathisson–Papapetrou spin-velocity contri-

bution to the linear momentum. If the evolution equation (angular momentum conservation)
is used, this term becomes third order.
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∙ Many of the remaining terms in 𝑃 𝑖, though apparently second order, are really of higher order
when the dynamics are considered. Others involve quadrupole interactions, which contain
high powers of 𝑐−1. Though it is nice to see the Mathisson–Papapetrou term, it should be
treated more as a suggestive result rather than a physical prediction.

Aside: Later, in the discussion of the Bondi energy loss theorem, we will see that we can
relate 𝜉𝑖𝑗 , i.e., the 𝑙 = 2 shear term, to the gravitational quadrupole by

𝜉𝑖𝑗 = (𝜉𝑖𝑗𝑅 + 𝑖𝜉𝑖𝑗𝐼 ) =

√
2𝐺𝑐−4

24
(𝑄𝑖𝑗 ′′

Mass + 𝑖𝑄𝑖𝑗 ′′
Spin) =

√
2𝐺𝑐−4𝑄𝑖𝑗 ′′

Grav

24
. (322)

∙ In the expression for 𝐽 𝑖 we have already identified, in the earlier discussion, the first two terms,
𝑀B𝑐𝜉

𝑗
𝐼 and 𝑀B𝜉

𝑘 ′
𝑅 𝜉𝑖𝑅𝜖𝑖𝑘𝑗 as the intrinsic spin angular momentum and the orbital angular

momentum. The third term, 1
2𝑀B𝜉

𝑖
𝐼𝜉

𝑘 ′
𝐼 𝜖𝑖𝑘𝑗 = 1

2𝑀B𝑐2𝑆
𝑖𝑆𝑘 ′𝜖𝑖𝑘𝑗 , a spin-spin interaction term,

considerably smaller, can be interpreted as a spin-precession contribution to the total angular
momentum. An interesting contribution to the total angular momentum comes from the
term, 2

3𝑐
−2𝑞2𝜂𝑖 ′𝐼 = 2

3𝑐
−2𝑞𝐷𝑖 ′

𝑀 , i.e., a contribution from the time-varying magnetic dipole.

∙ As mentioned earlier, our identification of 𝐽 (𝑇 ) 𝑖 as the total angular momentum in the
absence of a Maxwell field agrees with most other identifications (assuming our approxima-
tions). Very strong support of this view, with the Maxwell terms added in, comes from the
flux law. In Equation (321) we see that there are five flux terms, the first is from the gravi-
tational quadrupole flux, the second and third are from the classical electromagnetic dipole
and electromagnetic quadrupole flux, while the fourth and fifth come from electromagnetic-
gravitational coupling. The Maxwell dipole part is identical to that derived from pure Maxwell
theory [30]. We emphasize that this angular momentum flux law has little to do directly with
the chosen definition of angular momentum. The imaginary part of the Bianchi identity,
Equation (309), is the conservation law. How to identify the different terms, i.e., identifying
the time derivative of the angular momentum and the flux terms, comes from different argu-
ments. The identification of the Maxwell contribution to total angular momentum and the
flux contain certain arbitrary assignments: some terms on the left-hand side of the equation,
i.e., terms with a time derivative, could have been moved onto the right-hand side and been
called ‘flux’ terms. However, our assignments were governed by the question of what terms
appeared most naturally to be explicit time derivatives, thereby being assigned to the time
derivative of the angular momentum.

∙ The angular momentum conservation law can be considered as the evolution equation for
the imaginary part of the complex world line, i.e., 𝜉𝑖𝐼(𝑢ret). The evolution for the real part
is found from the Bondi energy-momentum loss equation.

∙ In the special case where the complex centers of mass and charge coincide, 𝜂𝑎 = 𝜉𝑎, we have a
rather attractive identification: since now the magnetic dipole moment is given by 𝐷𝑖

𝑀 = 𝑞𝜉𝑖𝐼
and the spin by 𝑆𝑖 =𝑀B𝑐𝜉

𝑖
𝐼 , we have that the gyromagnetic ratio is

|𝑆𝑖|
|𝐷𝑖

𝑀 |
=
𝑀B𝑐

𝑞

leading to the Dirac value of 𝑔, i.e., 𝑔 = 2.

6.3.4 The evolution of the Bondi energy-momentum

Finally, to obtain the equations of motion, we substitute the kinematic expression for 𝑃 𝑖 into the
Bondi evolution equation, the Bianchi identity, Equation (56);

�̇�0
2 = −ð𝜓0

3 + 𝜎0𝜓0
4 + 𝑘𝜑02𝜑

0
2, (323)
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or its much more useful and attractive (real) equivalent expression

Ψ̇ = �̇��̇� + 2𝐺𝑐−4𝜑02𝜑
0

2, (324)

with
Ψ ≡ 𝜓0

2 + ð2𝜎 + 𝜎�̇� = Ψ. (325)

Remark: The Bondi mass, 𝑀B = − 𝑐2

2
√
2𝐺

Ψ0, and the original mass of the Reissner–Nordström

(Schwarzschild) unperturbed metric, 𝑀RN = − 𝑐2

2
√
2𝐺
𝜓0 0
2 , i.e., the 𝑙 = 0 harmonic of 𝜓0

2 , differ by

a quadratic term in the shear, the 𝑙 = 0 part of 𝜎�̇�. This suggests that the observed mass of an
object is partially determined by its time-dependent quadrupole moment.

Looking only at the 𝑙 = 0 and 𝑙 = 1 spherical harmonics and switching to the ‘′’ derivatives
with the 𝑐−1 inserted, we first obtain the Bondi mass loss theorem:

𝑀 ′
B = −2(12)2𝑐

5𝐺

(︁
𝑣𝑖𝑗𝑅𝑣

𝑖𝑗
𝑅 + 𝑣𝑖𝑗𝐼 𝑣

𝑖𝑗
𝐼

)︁
− 2𝑞2

3𝑐5
(︀
𝜂𝑖 ′′𝑅 𝜂𝑖 ′′𝑅 + 𝜂𝑖 ′′𝐼 𝜂𝑖 ′′𝐼

)︀
− 1

180𝑐7

(︁
𝑄𝑖𝑗 ′′′

𝐸 𝑄𝑖𝑗 ′′′
𝐸 +𝑄𝑖𝑗 ′′′

𝑀 𝑄𝑖𝑗 ′′′
𝑀

)︁
.

If we identify 𝜉𝑖𝑗 with the gravitational quadrupole moment 𝑄𝑖𝑗
Grav via

𝜉𝑖𝑗 = (𝜉𝑖𝑗𝑅 + 𝑖𝜉𝑖𝑗𝐼 ) =
𝐺

12
√
2𝑐4

(︁
𝑄𝑖𝑗 ′′

Mass + 𝑖𝑄𝑖𝑗 ′′
Spin

)︁
=
𝐺𝑄𝑖𝑗 ′′

Grav

12
√
2𝑐4

,

and the electric and magnetic dipole moments by

𝐷𝑖
C = 𝑞(𝜂𝑖𝑅 + 𝑖𝜂𝑖𝐼) = 𝐷𝑖

𝐸 + 𝑖𝐷𝑖
𝑀 ,

the mass loss theorem becomes

𝑀 ′
B = − 𝐺

5𝑐7

(︁
𝑄𝑖𝑗 ′′′

Mass𝑄
𝑖𝑗 ′′′
Mass +𝑄𝑖𝑗 ′′′

Spin𝑄
𝑖𝑗 ′′′
Spin

)︁
(326)

− 2

3𝑐5
(︀
𝐷𝑖 ′′

𝐸 𝐷𝑖 ′′
𝐸 +𝐷𝑖 ′′

𝑀𝐷𝑖 ′′
𝑀

)︀
− 1

180𝑐7

(︁
𝑄𝑖𝑗 ′′′

𝐸 𝑄𝑖𝑗 ′′′
𝐸 +𝑄𝑖𝑗 ′′′

𝑀 𝑄𝑖𝑗 ′′′
𝑀

)︁
.

The mass/energy loss equation contains the classical energy loss due to electric and magnetic
dipole radiation and electric and magnetic quadrupole (𝑄𝑖𝑗

𝐸 , 𝑄
𝑖𝑗
𝑀 ) radiation. The gravitational en-

ergy loss is the conventional quadrupole loss by the above identification of 𝜉𝑖𝑗 with the gravitational
quadrupole moment 𝑄𝑖𝑗

Grav.
The momentum loss equation, from the 𝑙 = 1 part of Equation (324), becomes

𝑃 𝑘 ′ = 𝐹 𝑘
recoil, (327)

𝐹 𝑘
recoil ≡

2𝐺

15𝑐6

(︁
𝑄𝑙𝑗 ′′′

Spin𝑄
𝑖𝑗 ′′′
Mass −𝑄𝑙𝑗 ′′′

Mass𝑄
𝑖𝑗 ′′′
Spin

)︁
𝜖𝑖𝑙𝑘 − 2

3𝑐4
𝐷𝑙 ′

𝑀𝐷
𝑖 ′
𝐸 𝜖𝑖𝑙𝑘

+
1

15𝑐5

(︁
𝐷𝑗 ′

𝐸𝐷
𝑗𝑘 ′′′
𝐸 +𝐷𝑗 ′

𝑀𝐷
𝑗𝑘 ′′′
𝑀

)︁
+

1

540𝑐6

(︁
𝐷𝑙𝑗 ′′′

𝐸 𝐷𝑖𝑗 ′′′
𝑀 −𝐷𝑙𝑗 ′′′

𝑀 𝐷𝑖𝑗 ′′′
𝐸

)︁
𝜖𝑖𝑙𝑘.

Finally, substituting the 𝑃 𝑖 from Equation (317), we have Newton’s second law of motion:

𝑀B𝜉
𝑖 ′′
𝑅 = 𝐹 𝑖, (328)

with

𝐹 𝑖 = −𝑀 ′
B𝜉

𝑖 ′
𝑅 − 𝑐−1𝑀B(𝜉

𝑗 ′
𝑅 𝜉

𝑘 ′
𝐼 )′𝜖𝑖𝑗𝑘 +

2

3
𝑐−3𝑞2𝜂𝑖 ′′′𝑅 + 𝐹 𝑖

recoil − Ξ𝑖 ′. (329)

There are several things to observe and comment on concerning Equations (328) and (329):
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∙ If the complex world line associated with the Maxwell center of charge coincides with the
complex center of mass, i.e., if 𝜂𝑖 = 𝜉𝑖, the term

2

3
𝑐−3𝑞𝜉𝑖 ′′′𝑅 (330)

becomes the classical electrodynamic radiation reaction force.

∙ This result follows directly from the Einstein–Maxwell equations. There was no model build-
ing other than requiring that the two complex world lines coincide. Furthermore, there was
no mass renormalization; the mass was simply the conventional Bondi mass as seen at infinity.
The problem of the runaway solutions, though not solved here, is converted to the stability
of the Einstein–Maxwell equations with the ‘coinciding’ condition on the two world lines. If
the two world lines do not coincide, i.e., the Maxwell world line forms independent data,
then there is no problem of unstable behavior. This suggests a resolution to the problem of
the unstable solutions: one should treat the source as a structured object, not a point, and
centers of mass and charge as independent quantities.

∙ The 𝐹 𝑖
recoil is the recoil force from momentum radiation.

∙ The Ξ𝑖 ′ = −𝐹 𝑖
RR can be interpreted as the gravitational radiation reaction.

∙ The first term in 𝐹 𝑖, i.e., −𝑀 ′
B𝜉

𝑖 ′
𝑅 , is identical to a term in the classical Lorentz–Dirac

equations of motion. Again it is nice to see it appearing, but with the use of the mass loss
equation it is in reality third order.

6.4 Other related results

The ideas involved in the identification, at future null infinity, of interior physical quantities that
were developed in the proceeding sections can also be applied to a variety of different perturbation
schemes. Bramson, Adamo and Newman [9, 1, 3] have investigated how gravitational perturbations
originating solely from a Maxwell radiation field can be carried through again using the asymptotic
Bianchi identities to obtain, in a different context, the same identifications: a complex center-of-
mass/charge world line, energy and momentum loss, as well as an angular momentum flux law that
agrees exactly with the predictions of classical electromagnetic field theory. This scheme yields (up
to the order of the perturbation) an approximation for the metric in the interior of the perturbed
spacetime.

We briefly describe this procedure. One initially chooses as a background an exact solution
of the Einstein equations; three cases were studied, flat Minkowski spacetime, the Schwarzschild
spacetime with a ‘small’ mass and the Schwarzschild spacetime with a finite, ‘zero order’, mass. For
such backgrounds, the set of spin coefficients is known and fixed. On this background the Maxwell
equations were integrated to obtain the desired electromagnetic field that acts as the gravitational
perturbation. Bramson has done this for a pure electric dipole solution [9, 1] on the Minkowski
background. Recent work has used an electric and magnetic dipole field with a Coulomb charge [3].
The resulting Maxwell field, in each case, is then inserted into the asymptotic Bianchi identities,
which, in turn, determine the behavior of the perturbed asymptotic Weyl tensor, i.e., the Maxwell
field induces nontrivial changes to the gravitational field. Treating the Maxwell field as first order,
the calculations were done to second order, as was done earlier in this review.

Using the just obtained Weyl tensor terms, one can proceed to the integration of the spin-
coefficient equations and the second-order metric tensor. For example, one finds that the dipole
Maxwell field induces a second-order Bondi shear, 𝜎0. (This in principle would lead to a fourth-
order gravitational energy loss, which in our approximation is ignored.)
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Returning to the point of view of this section, the perturbed Weyl tensor can now be used
to obtain the same physical identifications described earlier, i.e., by employing a null rotation to
set 𝜓0*𝑖

1 = 0, equations of motion and asymptotic physical quantities, (e.g., center of mass and
charge, kinematic expressions for momentum and angular momentum, etc.) for the interior of the
system could be found. Although we will not repeat these calculations here, we present a few of
the results. Though the calculations are similar to the earlier ones, they differ in two ways: there
is no first-order freely given Bondi shear and the perturbation term orders are different.

For instance, the perturbations induced by a Coulomb charge and general electromagnetic dipole
Maxwell field in a Schwarzschild background lead to energy, momentum, and angular momentum
flux relations [3]:

𝑀 ′
B = − 2

3𝑐5
(︀
𝐷𝑖 ′′

𝐸 𝐷𝑖′′
𝐸 +𝐷𝑖′′

𝑀𝐷
𝑖 ′′
𝑀

)︀
, (331)

𝑃 𝑖′ =
1

3𝑐4
𝐷𝑘 ′′

𝐸 𝐷𝑗 ′′
𝑀 𝜖𝑘𝑗𝑖,

𝐽𝑘′ =
2

3𝑐3

(︁
𝐷𝑖 ′′

𝐸 𝐷𝑗 ′
𝐸 +𝐷𝑖 ′′

𝑀𝐷𝑗 ′
𝑀

)︁
𝜖𝑖𝑗𝑘,

all of which agree exactly with predictions from classical field theory [30].
The familiarity of such results is an exhibit in favor of the physical identification methods

described in this review, i.e., they are a confirmation of the consistency of the identification scheme.
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7 Gauge (BMS) Invariance

The issue of gauge invariance, the understanding of which is not obvious or easy, must now be
addressed. The claim is that the work described here is in fact gauge (or BMS) invariant.

First of all we have, I+C , or its real part, I+. On I+C , for each choice of spacetime interior
and solution of the Einstein–Maxwell equations, we have its UCF, either in its complex version,
𝑢𝐵 = 𝑋(𝜏, 𝜁, 𝜁), or its real version, Equation (291). The geometric picture of the UCF is a one-
parameter family of slicings (complex or real) of I+C or I+. This is a geometric construct that has
a different appearance or description in different Bondi coordinate systems. It is this difference
that we must investigate. We concentrate on the complex version.

Under the action of the supertranslation, Equation (67), we have:

𝑋(𝜏, 𝜁, 𝜁) → ̂︀𝑋(𝜏, 𝜁, 𝜁) = 𝑋(𝜏, 𝜁, 𝜁) + 𝛼(𝜁, 𝜁), (332)

with 𝛼(𝜁, 𝜁) an arbitrary complex smooth function on (complexified) 𝑆2. Its effect is to add on a
constant to each spherical harmonic coefficient. The special case of translations, with

𝛼(𝜁, 𝜁) = 𝑑𝑎 �̂�𝑎(𝜁, 𝜁), (333)

simply adds to the 𝑙 = (0, 1) harmonic components the complex constants 𝑑𝑎, so, via Equa-
tion (261), we have the (complex) Poincaré translations,

𝜉𝑎 → ̂︀𝜉𝑎 = 𝜉𝑎 + 𝑑𝑎. (334)

The action of the homogeneous Lorentz transformations, Equation (68),

̂︀𝑢𝐵 = 𝐾𝑢𝐵 , (335)

𝐾 =
1 + 𝜁𝜁

(𝑎𝜁 + 𝑏)(𝑎𝜁 + 𝑏) + (𝑐𝜁 + 𝑑)(𝑐𝜁 + 𝑑)
, (336)

̂︀𝜁 =
𝑎𝜁 + 𝑏

𝑐𝜁 + 𝑑
; 𝑎𝑑− 𝑏𝑐 = 1. (337)

𝑒𝑖𝜆 =
𝑐𝜁 + 𝑑

𝑐𝜁 + 𝑑
(338)

is considerably more complicated. It leads to

̂︀𝑋(𝜏, ̂︀𝜁,̂︀𝜁) = 𝐾𝑋(𝜏, 𝜁, 𝜁). (339)

Before discussing the relevant effects of the Lorentz transformations on our considerations we
first digress and describe an important technical issue concerning representation of the homoge-
neous Lorentz group.

The representation theory of the Lorentz group, developed and described by Gelfand, Graev
and Vilenkin [16] used homogeneous functions of two complex variables (homogeneous of degrees,
𝑛1 − 1 and 𝑛2 − 1) as the representation space. Here we summarize these ideas via an equivalent
method [21, 15] using spin-weighted functions on the sphere as the representation spaces. In the
notation of Gelfand, Graev and Vilenkin, representations are labeled by the two numbers (𝑛1, 𝑛2)
or by (𝑠, 𝑤), with (𝑛1, 𝑛2) = (𝑤 − 𝑠+ 1, 𝑤+ 𝑠+ 1). The ‘𝑠’ is the same ‘𝑠’ as in the spin weighted
functions and ‘𝑤’ is the conformal weight [44] (sometimes called ‘boost weight’). The different
representations are written as 𝐷(𝑛1,𝑛2). The special case of irreducible unitary representations,
which occur when (𝑛1, 𝑛2) are not integers, play no role for us and will not be discussed. We
consider only the case when (𝑛1, 𝑛2) are integers so that the (𝑠, 𝑤) take integer or half integer
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values. If 𝑛1 and 𝑛2 are both positive integers or both negative integers, we have, respectively,
the positive or negative integer representations. The representation space, for each (𝑠, 𝑤), are the
functions on the sphere, 𝜂(𝑠,𝑤)(𝜁, 𝜁), that can be expanded in spin-weighted spherical harmonics,

𝑠𝑌𝑙𝑚(𝜁, 𝜁), so that

𝜂(𝑠,𝑤)(𝜁, 𝜁) =

∞∑︁
𝑙=𝑠

𝜂(𝑙𝑚) 𝑠𝑌𝑙𝑚(𝜁, 𝜁). (340)

Under the action of the Lorentz group, Equation (335), they transform as

̂︀𝜂(𝑠,𝑤)(̂︀𝜁, ̂︀𝜁) = 𝑒𝑖𝑠𝜆𝐾𝑤𝜂(𝑠,𝑤)(𝜁, 𝜁). (341)

These representations, in general, are neither irreducible nor totally reducible. For us the impor-
tant point is that many of these representations possess an invariant finite-dimensional subspace
which (often) corresponds to the usual finite dimensional tensor representation space. Under the
transformation, Equation (341), the finite number of coefficients in these subspaces transform
among themselves. It is this fact which we heavily utilize. More specifically we have two related
situations: (1) when the (𝑛1, 𝑛2) are both positive integers, (or 𝑤 ≥ |𝑠|), there will be finite di-
mensional invariant subspaces, 𝐷+

(𝑛1,𝑛2)
, which are spanned by the basis vectors 𝑠𝑌𝑙𝑚(𝜁, 𝜁), with 𝑙

given in the range, |𝑠| ≤ 𝑙 ≤ 𝑤. All the finite dimensional representations can be obtained in this
manner. And (2) when the (−𝑛1,−𝑛2) are both negative integers (i.e., we have a negative integer
representation) there will be an infinite dimensional invariant subspace, 𝐷−

(−𝑛1,−𝑛2)
, described else-

where [21]. One, however, can obtain a finite dimensional representation for each negative integer
case by the following construction: One forms the factor space, 𝐷(−𝑛1,−𝑛2)/𝐷

−
(−𝑛1,−𝑛2)

. This space

is isomorphic to one of the finite dimensional spaces associated with the positive integers. The
explicit form of the isomorphism, which is not needed here, is given in Held et al. [21, 16].

Of major interest for us is not so-much the invariant subspaces but instead their interactions
with their compliments (the full vector space modulo the invariant subspace). Under the action
of the Lorentz transformations applied to a general vector in the representation space, the com-
ponents of the invariant subspaces remain in the invariant subspace but in addition components
of the complement move into the invariant subspace. On the other hand, the components of the
invariant subspaces do not move into the complement subspace: the transformed components of
the compliment involve only the original compliment components. The transformation thus has a
non-trival Jordan form.

Rather than give the full description of these invariant subspaces we confine ourselves to the
few cases of relevance to us.

I. Though our interest is primarily in the negative integer representations, we first address the
positive integer case of the 𝑠 = 0 and 𝑤 = 1, [(𝑛1, 𝑛2) = (2, 2)], representation. The harmonics,
𝑙 = (0, 1) form the invariant subspace. The cut function, 𝑋(𝜏, 𝜁, 𝜁), for each fix values of 𝜏 , lies in
this space.

We write the GCF as

𝑢 = 𝑋(𝜉𝑎(𝜏), 𝜁, 𝜁), (342)

= 𝜉𝑎 �̂�𝑎(𝜁, 𝜁) +
∑︁

𝑙,|𝑚|≤𝑙

𝐻 𝑙𝑚(𝜉𝑎)𝑌𝑙𝑚(𝜁, 𝜁).

After the Lorentz transformation, the geometric slicings have not changed but their description
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in terms of (𝑢, 𝜁, 𝜁) has changed to that of (𝑢′, 𝜁 ′, 𝜁
′
). This leads to

𝑢′ = 𝐾𝑋, (343)

= 𝑋 ′,

= 𝜉′𝑎 �̂�′𝑎(𝜁
′, 𝜁

′
) +

∑︁
𝑙,|𝑚|≤𝑙

𝐻 ′ 𝑙𝑚(𝜉′ 𝑎)𝑌𝑙𝑚(𝜁 ′, 𝜁
′
).

Using the transformation properties of the invariant subspace and its compliment we see that
the coordinate transformation must have the form;

𝜉′𝑎 = 𝐹 𝑎(𝜉𝑏, 𝐻 𝑙𝑚(𝜉𝑏), . . .), (344)

in other words it moves the higher harmonic coefficients down to the 𝑙 = (0, 1) coefficients. The
higher harmonic coefficients transform among themselves;

𝐻 ′ 𝑙𝑚(𝜉′𝑎) = 𝐹 𝑙𝑚(. . . , 𝐻 𝑙′𝑚′
(𝜉𝑏), . . . ). (345)

Treating the 𝜉𝑎 and 𝜉′𝑎 as functions of 𝜏 , we have

𝑉 = 𝜕𝜏𝑋 = 𝑣𝑎𝑋,𝑎 = 𝑣𝑎 �̂�𝑎 + 𝑣𝑎
∑︁

𝑙,|𝑚|≤𝑙

𝐻 𝑙𝑚,𝑎 (𝜉
𝑎)𝑌𝑙𝑚(𝜁, 𝜁), (346)

𝑣𝑎 =
𝑑𝜉𝑎

𝑑𝜏
, 𝑣′ 𝑎 =

𝑑𝜉′ 𝑎

𝑑𝜏
= 𝐹 𝑎, 𝑏

𝑑𝜉𝑏

𝑑𝜏
= 𝐹 𝑎,𝑏 𝑣

𝑏,

𝑉 ′ = 𝐾𝑉,

= 𝑣′ 𝑎

⎛⎝�̂�′𝑎 + ∑︁
𝑙,|𝑚|≤𝑙

𝐻 ′ 𝑙𝑚, 𝑎𝑌𝑙𝑚(𝜁 ′, 𝜁
′
)

⎞⎠ ,

= 𝑣𝑏𝐹 𝑎, 𝑏

⎛⎝�̂�′𝑎 + ∑︁
𝑙,|𝑚|≤𝑙

𝐻 ′ 𝑙𝑚, 𝑎𝑌𝑙𝑚(𝜁 ′, 𝜁 ′)

⎞⎠ .

Our H-space coordinates, 𝑧𝑎 = 𝜉𝑎, and their 𝜏 -derivatives, 𝑣𝑎, are the coefficients of the 𝑙 = (0, 1)
harmonics in respectively the 𝑋 and the 𝑉 expansions. A Lorentz transformation induces a specific
coordinate transformation and associated vector transformation on these coefficients.

II. A second important example concerns the mass aspect, (where we have introduced the 𝑌 0
0

for simplicity of treatment of numerical factors)

Ψ ≡ Ψ(0,−3) = Ψ0𝑌 0
0 +Ψ𝑖𝑌 0

1𝑖 +Ψ𝑖𝑗𝑌 0
2𝑖𝑗 + . . . (347)

Ψ is an 𝑠 = 0 and 𝑤 = −3, [(𝑛1, 𝑛2) = (−2,−2)] quantity. The invariant subspace has a basis
set of the harmonics with 𝑙 ≥ 2. The factor space is isomorphic to the finite dimensional positive
integer space, [(𝑛1, 𝑛2) = (2, 2)] and hence the harmonic coefficients of 𝑙 = (0, 1) lie in this finite
dimensional representation space. From this isomorphism we know that functions of the form,
Ψ0𝑌 0

0 +Ψ𝑖𝑌 0
1𝑖, have four coefficients proportional to the Bondi four-momentum

𝑃 𝑎 = (𝑀𝑐,𝑃 𝑖), (348)

a Lorentzian four-vector. Note that we have rescaled the Ψ0 in Equation (347) by the 𝑌 0
0 , differing

from that of Equation (63) in order to give the spherical harmonic coefficients immediate physical
meaning without the use of the factors in equations Equation (64) and Equation (65).
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This is the justification for calling the 𝑙 = (0, 1) harmonics of the mass aspect a Lorentzian
four-vector. Technically, the Bondi four-momentum is a co-vector but we have allowed ourselves a
slight notational irregularity.

III. The Weyl tensor component, 𝜓0
1 , has 𝑠 = 1 and 𝑤 = −3, [(𝑛1, 𝑛2) = (−3,−1)]. The

associated finite dimensional factor space is isomorphic to the finite part of the 𝑠 = −1, 𝑤 =
1, [(𝑛1, 𝑛2) = (3, 1)] representation. We have that

𝜓0
1 ≡ 𝜓0

1(1,−3) = 𝜓0
1𝑖𝑌

1
1𝑖 + 𝜓0

1𝑖𝑗𝑌
1
2𝑖𝑗 + . . . (349)

leads to the finite-dimensional representation space

finite space = 𝜓0
1𝑖𝑌

−1
1𝑖 . (350)

The question of what finite tensor transformation this corresponds to is slightly more com-
plicated than that of the previous examples of Lorentzian vectors. In fact, it corresponds to the
Lorentz transformations applied to (complex) self-dual antisymmetric two-index tensors [29]. We
clarify this with an example from Maxwell theory: from a given E and B, the Maxwell tensor,
𝐹 𝑎𝑏, and then its self-dual version can be constructed:

𝑊 𝑎𝑏+ = 𝐹 𝑎𝑏 + 𝑖𝐹 *𝑎𝑏.

A Lorentz transformation applied to the tensor,𝑊 𝑎𝑏+, is equivalent [30] to the same transformation
applied to

𝜓0 𝑖
1 ↔ (E+ 𝑖B)𝑖. (351)

These observations allow us to assign Lorentzian invariant physical meaning to our identifica-
tions of the Bondi momentum, 𝑃 𝑎 and the complex mass dipole moment and angular momentum
vector, 𝐷𝑖

Mass Dipole + 𝑖𝐽 𝑖.
IV. Our last example is a general discussion of how to construct Lorentzian invariants from the

representation spaces. Though we will confine our remarks to just the cases of 𝑠 = 0, it is easy to
extend them to non-vanishing 𝑠 by having the two functions have respectively spin-weight 𝑠 and
−𝑠.

Consider pairs of conformally weighted functions (𝑠 = 0), 𝑊(𝑤), 𝐺(−𝑤−2), with weights respec-
tively, (𝑤,−𝑤 − 2). They are considered to be in dual spaces. Our claim is that the integrals of
the form

𝐼 =

∫︁
𝐺(−𝑤−2)𝑊(𝑤)𝑑Ω (352)

are Lorentz invariants.
We first point out that under the fractional linear transformation, 𝜁 ′ ↔ 𝜁, Equation (337), the

area element on the sphere

𝑑Ω =
4𝑖𝑑𝜁∧𝑑𝜁
(1 + 𝜁𝜁)2

(353)

transforms as [21]
𝑑Ω′ = 𝐾2𝑑Ω. (354)

This leads immediately to

𝐼 =

∫︁
𝐺′

(−𝑤−2)𝑊
′
(𝑤)𝑑Ω

′ (355)

=

∫︁
𝐾−𝑤−2𝐺(−𝑤−2)𝐾

𝑤𝑊(𝑤)𝐾
2𝑑Ω,

=

∫︁
𝐺(−𝑤−2)𝑊(𝑤)𝑑Ω,
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the claimed result.
There are several immediate simple applications of Equation (352). By choosing an arbitrary

𝑤 = −2, 𝑠 = 0 function, say 𝐺(−2)(𝜁, 𝜁), we immediately have a Lorentzian scalar,

𝑁 ≡
∫︁
𝐺(−2)𝑑Ω =

∫︁
𝐺′

(−2)𝑑Ω
′. (356)

If this is made more specific by chosing 𝐺(−2) = 𝑉 −2, we have the remarkable result (proved
in Appendix D) that this scalar yields the ℋ-space metric via

8𝜋(𝑔𝑎𝑏𝑣
𝑎𝑣𝑏)−1 ≡

∫︁
𝑉 −2𝑑Ω. (357)

A simple variant of this arises by taking the derivative of (357) with respect to 𝑣𝑎, and multi-
plying by an arbitrary vector, 𝑤𝑎 leading to

8𝜋𝑤𝑎𝑣𝑎(𝑔𝑐𝑑𝑣
𝑐𝑣𝑑)−2 ≡

∫︁
𝑉 −3𝑤𝑎𝑍,𝑎 𝑑Ω. (358)

Many other versions can easily be found.
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8 Discussion/Conclusion

8.1 History/background

The work reported in this document has had a very long gestation period. It began in 1965 [37]
with the publication of a paper where a complex coordinate transformation was performed on the
Schwarzschild/Reissner–Nordström solutions. This, in a precise sense, moved the ‘point source’
onto a complex world line in a complexified spacetime. It thereby led to a derivation of the spinning
and the charged-spinning particle metrics. How and why this procedure worked was considered to
be rather mysterious and a great deal of effort by a variety of people went into trying to unravel
it. In the end, the use of the complex coordinate transformation for the derivation of these metrics
appeared as if it was simply an accident, i.e., a trick with no immediate significance. Nevertheless,
the idea of a complex world line, appearing in a natural manner, was an intriguing thought, which
frequently returned. Some years later, working on an apparently unrelated subject, we studied
and found the condition [6] for an NGC, in asymptotically-flat spacetime, to have a vanishing
asymptotic shear. This condition (our previously discussed shear-free condition, Equation (174)),
was closely related to Penrose’s asymptotic twistor theory. In the flat-space case it lead to the
Kerr theorem and totally shear-free NGCs. From a different point of view, searching for shear-free
complex null surfaces, the good-cut equation was found with its four-complex parameter solution
space. This lead to the theory of ℋ-space.

Years later, the different strands came together. The shear-free condition was found to be
closely related to the good-cut equation; namely, that one equation could be transformed into the
other. The major surprise came when we discovered that the regular solutions of either equation
were generated by complex world lines in an auxiliary Minkowski space [26]. (These complex world
lines could be thought of as being complex analytic curves in the associated ℋ-space. The deeper
meaning of this remains a question still to be resolved; it is this issue which is partially addressed
in the present work.)

The complex world line mentioned above, associated with the spinning, charged and uncharged
particle metrics, now can be seen as just a special case of these regular solutions. Since these
metrics were algebraically special, among the many possible asymptotically shear-free NGCs there
was (at least) one totally shear-free (rather than asymptotically shear-free) congruence. This was
the one we first discovered in 1965, that became the complex center-of-mass world line (which
coincided with the complex center of charge in the charged case.). This observation was the clue
for how to search for the generalization of the special world line associated with algebraically-
special metrics and thus, in general, how to look for the special world line (and congruence) to be
identified with the complex center of mass.

For the algebraically-special metrics, the null tetrad system at I+ with one leg being the
tangent null vector to the shear-free congruence leads to the vanishing of the asymptotic Weyl
tensor component, i.e., 𝜓*

0 = 𝜓*
1 = 0. For the general case, no tetrad exists with that property but

one can always find a null tetrad with one leg being tangent to the shear-free congruence so that
the 𝑙 = 1 harmonics of 𝜓0*

1 vanish. It is precisely that choice of tetrad that led to our definition of
the complex center of mass.

8.2 Other choices for physical identification

The question of whether our definition of the complex center of mass is the best possible definition,
or even a reasonable one, is not easy to answer. We did try to establish a criteria for choosing
such a definition: (i) it should predict already known physical laws or reasonable new laws, (ii) it
should have a clear geometric foundation and a logical consistency and (iii) it should agree with
special cases, mainly the algebraically-special metrics or analogies with flat-space Maxwell theory.
We did try out several other possible choices [29] and found them all failing. This clearly does not

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-6

http://www.livingreviews.org/lrr-2009-6


70 Timothy M. Adamo, Carlos Kozameh and Ezra T. Newman

rule out others that we did not think of, but at the present our choice appears to be both natural
and effective in making contact with physical phenomena.

8.3 Predictions

Our equations of motion are simultaneously satisfactory and unsatisfactory: they yield the equa-
tions of motion for an isolated object with a great deal of internal structure (time-dependent
multipoles with the emission of gravitational and electromagnetic radiation) in the form of New-
ton’s second law. In addition, they contain a definition of angular momentum with an angular
momentum flux. The dipole part of the angular momentum flux agrees with classical E&M theory.
Unfortunately, there appears to be no way to study or describe interacting particles in this manner.

However, there are some areas where these ideas might be tested, though the effects would
be very small. For example, earlier we saw that there was a contribution to the Bondi mass (an
addition to the Reissner–Nordström mass) from the quadrupole moment,

𝑀B −𝑀𝑅𝑁 ≡ Δ𝑀 = −1

5
𝐺𝑐−6 Re 𝑄𝑖𝑗 ′′

Grav𝑄
𝑖𝑗 ′′′
Grav. (359)

There were predicted contributions to both the momentum and angular momentum flux from the
gravitational and electromagnetic quadrupole radiation as well as new terms in the definition of
the angular momentum, e.g., charge/magnetic-dipole coupling term

2

3
𝑞2𝑐−2𝜂𝑖 ′𝐼 =

2

3
𝑞𝑐−2𝐷𝑖 ′

𝑀 .

There are other unfamiliar terms that can be thought of as predictions of this theoretical construct.
How to possibly measure them is not at all clear.

8.4 Summary of results

1. From the asymptotic Weyl and Maxwell tensors, with their transformation properties, we
were able (via the asymptotically shear-free NGC) to obtain two complex world lines – a
complex ‘center of mass’ and ‘complex center of charge’ in the auxiliary ℋ-space. When
’viewed’ from a Bondi coordinate and tetrad system, this led to an expression for the real
center of mass of the gravitating system and a kinematic expression for the total angular
momentum (including intrinsic spin and orbital angular momentum), as seen from null in-
finity. It is interesting to observe that the kinematical expressions for the classical linear
momentum and angular momentum came directly from dynamical laws (Bianchi identities)
on the evolution of the Weyl tensor.

2. From the real parts of one of the asymptotic Bianchi identities, Equation (56), we found the
standard kinematic expression for the Bondi linear momentum, 𝑃 = 𝑀𝜉′𝑅 + . . . with extra

terms 2𝑞2

3𝑐3 𝑣
𝑘 ′
𝑅 and the Mathisson–Papapetrou spin coupling, among others. The imaginary

part was the angular momentum conservation law with a very natural looking flux expression
of the form:

Jk ′ = FluxGrav + FluxE&MQuad + FluxE&Mdipole

with

J = spin + orbital + precession + varying magnetic dipole + quadrupole terms.

The last flux term is identical to that calculated from classical electromagnetic theory.
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3. Using the kinematic expression for the Bondi momentum in a second Bianchi identity, Equa-
tion (57), we obtained a second-order ODE for the center of mass world line that could
be identified with Newton’s second law with radiation reaction forces and recoil forces,
𝑀B𝜉

′′
𝑅 = 𝐹 .

4. From Bondi’s mass/energy loss theorem we obtained the correct energy flux from the electro-
magnetic dipole and quadrupole radiation as well as the gravitational quadrupole radiation.

5. From the specialized case where the two world lines coincide and the definitions of spin and
magnetic moment, we obtained the Dirac gyromagnetic ratio, 𝑔 = 2. In addition, we find the
classical electrodynamic radiation reaction term with the correct numerical factors. In this
case we have the identifications of the meaning of the complex position vector: 𝜉𝑖 = 𝜉𝑖𝑅+ 𝑖𝜉𝑖𝐼 .

𝜉𝑖𝑅 = center-of-mass position

𝑆𝑖 =𝑀𝑐𝜉𝑖𝐼 = spin angular momentum

𝐷𝑖
𝐸 = 𝑞𝜉𝑖𝑅 = electric dipole moment

𝐷𝑖
𝑀 = 𝑞𝜉𝑖𝐼 = magnetic dipole moment

8.5 A variety of issues and questions

1. A particularly interesting issue raised by our equations is that of the run-away (unstable)
behavior of the equations of motion for a charged particle (with or without an external field).
We saw in Equation (328) that there was a driving term in the equation of motion depending
on the electric dipole moment (or the real center of charge). This driving term was totally
independent of the real center of mass and thus does not lead to the classical instability.
However, if we restrict the complex center of charge to be the same as the complex center of
mass (a severe, but very attractive restriction leading to 𝑔 = 2), then the innocuous driving
dipole term becomes the classical radiation reaction term – suggesting instability. (Note that
in this coinciding case there was no model building – aside from the coinciding lines – and
no mass renormalization.)

A natural question then is: does this unstable behavior really remain? In other words, is it
possible that the large number of extra terms in the gravitational radiation reaction or the
momentum recoil force might stabilize the situation? Answering this question is extremely
difficult. If the gravitational effects do not stabilize, then – at least in this special case –
the Einstein–Maxwell equations are unstable, since the run-away behavior would lead to an
infinite amount of electromagnetic dipole energy loss.

An alternative possible resolution to the classical run-away problem is simply to say that
the classical electrodynamic model is wrong; and that one must treat the center of charge as
different from the center of mass with its own dynamics.

2. The interpretation and analysis of the complex analytic curves associated with the shear-
free and asymptotically shear free null geodesic congruences naturally takes place in ℋ-
space. Though we get extraordinarily attractive physical results – almost all coinciding with
standard physical understanding – it nevertheless is a total mystery as to what it means or
what is the physical significance of this complex Ricci-flat four-dimensional space.

3. In our approximations, it was assumed that the complex world line yielded cuts of I+ that
were close to Bondi cuts. At the present we do not have any straightforward means of finding
the world lines and their associated cuts of I+ that are far from the Bondi cuts.
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4. As mentioned earlier, when the gravitational and electromagnetic world lines coincide we
find the rather surprising result of the Dirac value for the gyromagnetic ratio. Unfortunately,
though this appears to be a significant result, we do not have any deeper understanding of
it. It was simply there for us to observe.

5. Is it possible that the complex structures that we have been seeing and using are more than
just a technical device to organize ideas, and that they have a deeper significance? One
direction to explore this is via Penrose’s twistor and asymptotic twistor theory. It is known
that much of the material described here is closely related to twistor theory; an example is
the fact that asymptotic shear-free NGCs are really a special case of the Kerr theorem, an
important application of twistor theory (see Appendix A). This connection is being further
explored.

6. With much of the kinematics and dynamics of ordinary classical mechanics sitting in our
results, i.e., in classical GR, is it possible that ordinary particle quantization could play a
role in understanding quantum gravity? Attempts along this line have been made [14, 7] but,
so far, without much success.

7. We reiterate that, a priori, there is no reason to suspect or believe that the world lines
associated with shear-free congruences would allow the choice of a special congruence – and
a special world line – to be singled out – and that furthermore it would be so connected
with physical kinematics and dynamical laws. These results certainly greatly surprised and
pleased us.

8. As a final remark, we want to point out that there is an issue that we have ignored, namely, do
the asymptotic solutions of the Einstein equations that we have discussed and used through-
out this work really exist. By ‘really exist’ we mean the following: Are there, in sufficiently
general circumstances, Cauchy surfaces with physically-given data, such that their evolution
yields these asymptotic solutions? We have tacitly assumed throughout, with physical jus-
tification but no rigorous mathematical justification, that the full interior vacuum Einstein
equations do lead to these asymptotic situations. However, there has been a great deal of
deep and difficult analysis [13, 10, 11] showing, in fact, that large classes of solutions to the
Cauchy problem with physically-relevant data do lead to the asymptotic behavior we have
discussed. Recently there has been progress made on the same problem for the Einstein–
Maxwell equations.

9. An interesting issue, not yet explored but potentially important, is what can be said about
the structure of ℋ-space where there are special points that are related to the real cuts of
null infinity.
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A Twistor Theory

Throughout this review, the study of the asymptotic gravitational field has been at the heart
of all our investigations. Here we make contact with Penrose’s asymptotic twistor theory (see,
e.g., [51, 48, 22]). We give here a brief overview of asymptotic twistor theory and its connection
to the good-cut equation and the study of asymptotically shear-free NGCs at I+. For a more in
depth exposition of this connection, see [36].

Let ℳ be any asymptotically-flat spacetime manifold, with conformal future null infinity I+,
coordinatized by (𝑢B, 𝜁, 𝜁). We can consider the complexification of I+, referred to as I+C , which is

in turn coordinatized by (𝑢B, 𝜁, 𝜁), where now 𝑢B ∈ C and 𝜁 is different, but close to 𝜁. Assuming
analytic asymptotic Bondi shear 𝜎0(𝑢B, 𝜁, 𝜁), it can then be analytically continued to I+C , i.e., we

can consider 𝜎0(𝑢B, 𝜁, 𝜁).
We have seen in Section 4 that solutions to the good-cut equation

ð2𝐺 = 𝜎0(𝐺, 𝜁, 𝜁) (360)

yield a four complex parameter family of solutions, given by

𝑢B = 𝐺(𝑧𝑎; 𝜁, 𝜁). (361)

In our prior discussions, we interpreted these solutions as defining a four (complex) parameter
family of surfaces on I+C corresponding to each choice of the parameters 𝑧𝑎.

In order to force agreement with the conventional description of Penrose’s asymptotic twistor
theory we must use the complex conjugate good-cut equation

ð2𝐺 = 𝜎0(𝐺, 𝜁, 𝜁), (362)

whose properties are identical to that of the good-cut equation. Its solutions, written as

𝑢B = 𝐺(𝑧𝑎; 𝜁, 𝜁), (363)

define complex two-surfaces in I+C for fixed 𝑧𝑎. If, in addition to fixing the 𝑧𝑎, we fix 𝜁 = 𝜁0 ∈
C, then Equation (362) becomes an ordinary second-order differential equation with solutions
describing curves in (𝑢B, 𝜁) space. Hence, each solution to this ODE is given by specifying initial
conditions for �̃� and 𝜕𝜁�̃� at some arbitrary initial point, 𝜁 = 𝜁0. Note that it is not necessary that

𝜁0 = 𝜁0 on I+C . However, we chose this initial point to be the complex conjugate of the constant

𝜁0, i.e., we take 𝐺 and its first ̃︀𝜁 derivative at ̃︀𝜁 = 𝜁0 as the initial conditions.
Then the initial conditions for Equation (362) can be written as [36]

𝑢𝐵0 = 𝐺(𝜁0, 𝜁0), (364)

𝐿0 = ð𝐺(𝜁0, 𝜁0) = 𝑃0
𝜕𝐺

𝜕𝜁0
(𝜁0, 𝜁0),

with 𝑃0 = 1+ 𝜁0𝜁0. Asymptotic projective twistor space, denoted PT, is the space of all curves in
I+C generated by initial condition triplets (𝑢𝐵0, 𝜁0, 𝐿0) [51]: an asymptotic projective twistor is the
curve corresponding to (𝑢𝐵0, 𝜁0, 𝐿0).

A particular subspace of PT, called null asymptotic projective twistor space (PN), is the family
of curves generated by initial conditions, which lie on (real) I+; that is, at the initial point, 𝜁0 =
𝜁0, the curve should cross the real I+, i.e., should be real, 𝑢𝐵0 = �̄�𝐵0. Equivalently, an element of
PN can be said to intersect its dual curve (the solution generated by the complex conjugate initial
conditions) at 𝜁0 = 𝜁0. The effect of this is to reduce the three-dimensional complex twistor space
to five real dimensions.
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In standard notation, asymptotic projective twistors are defined in terms of their three complex
twistor coordinates, (𝜇0, 𝜇1, 𝜁) [51]. These twistor coordinates may be re-expressed in terms of the
asymptotic twistor curves by

𝜇0 = 𝑢𝐵0 − �̄�0𝜁0, (365)

𝜇1 = �̄�0 + 𝜁0𝑢𝐵0,

𝜁 = 𝜁0.

By only considering the twistor initial conditions 𝜁0 = 𝜁0, we can drop the initial value notation,
and just let 𝑢𝐵0 = 𝑢B and 𝜁 = 𝜁.

The connection of twistor theory with shear-free NGCs takes the form of the flat-space Kerr
theorem [51, 36]:

Theorem. Any analytic function on PT (projective twistor space) generates a shear-free NGC in
Minkowski space.

Any analytic function on projective twistor space generates a shear-free NGC in Minkowski
space, i.e., from 𝐹 (𝜇0, 𝜇1, 𝜁) ≡ 𝐹 (𝑢B −𝐿𝜁, 𝐿+ 𝜁𝑢B, 𝜁) = 0, one can construct a shear-free NGC in
Minkowski space. The 𝐿 = 𝐿(𝑢B, 𝜁, 𝜁), which defines the congruence, is obtained by solving the
algebraic equation

𝐹 (𝑢B − 𝐿𝜁, 𝐿+ 𝜁𝑢B, 𝜁) = 0.

It automatically satisfies the complex conjugate shear-free condition

ð𝐿+ 𝐿�̇� = 0.

We are interested in a version of the Kerr theorem that yields the regular asymptotically
shear-free NGCs. Starting with the general four-parameter solution to Equation (362), i.e., 𝑢B =
𝐺(𝑧𝑎; 𝜁, 𝜁), we chose an arbitrary world line 𝑧𝑎 = 𝜉𝑎(𝜏), so that we have

𝑢B = 𝐺(𝜉𝑎(𝜏), 𝜁, 𝜁) = 𝑋(𝜏, 𝜁, 𝜁), (366)

𝐿(𝜏, 𝜁, 𝜁) = ð(𝜏)𝑋(𝜏, 𝜁, 𝜁).

By inserting these into the twistor coordinates, Equation (365), we find

𝜇0(𝜏, 𝜁, 𝜁) = 𝑢B − �̄�𝜁 = 𝑋 − 𝜁ð̄(𝜏)𝑋, (367)

𝜇1(𝜏, 𝜁, 𝜁) = �̄�+ 𝜁𝑢B = ð̄(𝜏)𝑋 + 𝜁𝑋. (368)

The 𝜇0 and 𝜇1 are now functions of 𝜏 and 𝜁: the 𝜁 is now to be treated as a fixed quantity, the
complex conjugate of 𝜁, and not as an independent variable.

By eliminating 𝜏 in Equations (367) and (368), we obtain a single function of 𝜇0, 𝜇1, and
𝜁: namely, 𝐹 (𝜇0, 𝜇1, 𝜁) = 0. Thus, the regular asymptotically shear-free NGCs are described by
a special class of twistor functions. This is a special case of a generalized version of the Kerr
theorem [51, 36].
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B CR Structures

A CR structure on a real three manifold 𝒩 , with local coordinates 𝑥𝑎, is given intrinsically by
equivalence classes of one-forms, one real, one complex and its complex conjugate [31]. If we
denote the real one-form by 𝑙 and the complex one-form by 𝑚, then these are defined up to the
transformations:

𝑙 → 𝑎(𝑥𝑎)𝑙, (369)

𝑚→ 𝑓(𝑥𝑎)𝑚+ 𝑔(𝑥𝑎)𝑙.

The (𝑎, 𝑓, 𝑔) are functions on 𝒩 : 𝑎 is nonvanishing and real, 𝑓 and 𝑔 are complex function with 𝑓
nonvanishing. We further require that there be a three-fold linear-independence relation between
these one-forms [31]:

𝑙 ∧𝑚 ∧ �̄� ̸= 0. (370)

Any three-manifold with a CR structure is referred to as a three-dimensional CR manifold.
There are special classes (referred to as embeddable) of three-dimensional CR manifolds that can
be directly embedded into C2.

We show how the choice of any specific asymptotically shear-free NGC induces a CR structure
on I+. Though there are several ways of arriving at this CR structure, the simplest way is to look
at the asymptotic null tetrad system associated with the asymptotically shear-free NGC, i.e., look
at the (𝑙*𝑎, 𝑚*𝑎, 𝑚*𝑎, 𝑛*𝑎) of Equation (274). The associated dual one-forms, restricted to I+

(after a conformal rescaling of 𝑚), become (with a slight notational dishonesty),

𝑙* = 𝑑𝑢B − 𝐿

1 + 𝜁𝜁
𝑑𝜁 − �̄�

1 + 𝜁𝜁
𝑑𝜁, (371)

𝑚* =
𝑑𝜁

1 + 𝜁𝜁
, 𝑚* =

𝑑𝜁

1 + 𝜁𝜁
,

with 𝐿 = 𝐿(𝑢B, 𝜁, 𝜁), satisfying the shear-free condition. (This same result could have been
obtained by manipulating the exterior derivatives of the twistor coordinates, Equation (365).)

The dual vectors – also describing the CR structure – are

M = 𝑃
𝜕

𝜕𝜁
+ 𝐿

𝜕

𝜕𝑢B
= ð(𝑢

𝐵
) + 𝐿

𝜕

𝜕𝑢B
, (372)

M = 𝑃
𝜕

𝜕𝜁
+ 𝐿

𝜕

𝜕𝑢B
= ð(𝑢

𝐵
) + 𝐿

𝜕

𝜕𝑢B
,

L =
𝜕

𝜕𝑢B
.

Therefore, for the situation discussed here, where we have singled out a unique asymptotically
shear-free NGC and associated complex world line, we have a uniquely chosen CR structure induced
on I+.

To see how our three manifold, I+, can be imbedded into C2 we introduce the CR equation [32]

M𝐾 ≡ ð(𝑢B)𝐾 + 𝐿
𝜕

𝜕𝑢B
𝐾 = 0

and seek two independent (complex) solutions, 𝐾1 = 𝐾1(𝑢B, 𝜁, 𝜁),𝐾2 = 𝐾2(𝑢B, 𝜁, 𝜁) that define
the embedding of I+ into C2 with coordinates (𝐾1,𝐾2).

We have immediately that 𝐾1 = 𝜁 = 𝑥 − 𝑖𝑦 is a solution. The second solution is also easily
found; we see directly from Equation (175) [38],

ð(𝑢
𝐵
)𝑇 + 𝐿�̇� = 0, (373)
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that
𝜏 = 𝑇 (𝑢B, 𝜁, 𝜁),

the inverse to 𝑢B = 𝑋(𝜏, 𝜁, 𝜁), is a CR function and that we can consider I+ to be embedded in
the C2 of (𝜏, 𝜁).
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C Tensorial Spin-s Spherical Harmonics

Some time ago, the generalization of ordinary spherical harmonics 𝑌𝑙𝑚(𝜁, 𝜁) to spin-weighted func-
tions (𝑠)𝑌𝑙𝑚(𝜁, 𝜁) (e.g., [21, 17, 40]) was developed to allow for harmonic expansions of spin-weighted
functions on the sphere. In this paper we have instead used the tensorial form of these spin-weighted
harmonics, the tensorial spin-s spherical harmonics, which are formed by taking appropriate linear
combinations of the (𝑠)𝑌𝑙𝑚(𝜁, 𝜁) [43]:

𝑌 𝑠
𝑙 𝑖...𝑘 =

∑︁
𝐾𝑠𝑚

𝑙 𝑖...𝑘 (𝑠)𝑌𝑙𝑚,

where the indices obey |𝑠| ≤ 𝑙, and the number of spatial indices (i.e., 𝑖...𝑘) is equal to 𝑙. Explic-
itly, these tensorial spin-weighted harmonics can be constructed directly from the parameterized
Lorentzian null tetrad, Equation (74):

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁, 𝜁 + 𝜁, 𝑖𝜁 − 𝑖𝜁,−1 + 𝜁𝜁

)︀
, (374)

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
1 + 𝜁𝜁,−(𝜁 + 𝜁), 𝑖𝜁 − 𝑖𝜁, 1 + 𝜁𝜁

)︀
,

�̂�𝑎 =

√
2

2(1 + 𝜁𝜁)

(︀
0, 1− 𝜁2,−𝑖(1 + 𝜁2), 2𝜁

)︀
,

𝑃 ≡ 1 + 𝜁𝜁.

Taking the spatial parts of their duals, we obtain the one-forms

𝑙𝑖 =
−1√
2𝑃

(︀
𝜁 + 𝜁,−𝑖(𝜁 − 𝜁),−1 + 𝜁𝜁

)︀
, (375)

𝑛𝑖 =
1√
2𝑃

(︀
𝜁 + 𝜁,−𝑖(𝜁 + 𝜁),−1 + 𝜁𝜁

)︀
,

𝑚𝑖 =
−1√
2𝑃

(︀
1− 𝜁2,−𝑖(1 + 𝜁2), 2𝜁

)︀
,

𝑐𝑖 = 𝑙𝑖 − 𝑛𝑖 = −
√
2𝑖𝜖𝑖𝑗𝑘𝑚𝑗�̄�𝑘.

From this we define 𝑌 𝑙
𝑙 𝑖...𝑘 as [43]

𝑌 𝑙
𝑙 𝑖...𝑘 = 𝑚𝑖𝑚𝑗 ...𝑚𝑘, (376)

𝑌 −𝑙
𝑙 𝑖...𝑘 = �̄�𝑖�̄�𝑗 ...�̄�𝑘.

The other harmonics are determined by the action of the ð-operator on the forms, Equation (375),
(with complex conjugates) via

ð𝑙 = 𝑚, (377)

ð𝑚 = 0,

ð𝑛 = −𝑚,
ð𝑐 = 2𝑚,

ð𝑚 = 𝑛− 𝑙 = −𝑐.

Specifically, the spin-𝑠 harmonics are defined by

𝑌 𝑠
𝑙 𝑖...𝑘 = ð̄𝑙−𝑠

(︀
𝑌 𝑙
𝑙 𝑖...𝑘

)︀
, (378)

𝑌
−|𝑠|
𝑙 𝑖...𝑘 = ð𝑙−𝑠

(︀
𝑌 −𝑙
𝑙 𝑖...𝑘

)︀
.
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We now present a table of the tensorial spherical harmonics up to 𝑙 = 2, in terms of the tetrad.
Higher harmonics can be found in [43].

𝑙 = 0

𝑌 0
0 = 1

𝑙 = 1

𝑌 1
1𝑖 = 𝑚𝑖,

𝑌 0
1𝑖 = −𝑐𝑖,
𝑌 −1
1𝑖 = �̄�𝑖

𝑙 = 2

𝑌 2
2𝑖𝑗 = 𝑚𝑖𝑚𝑗 , 𝑌 1

2𝑖𝑗 = − (𝑐𝑖𝑚𝑗 +𝑚𝑖𝑐𝑗), 𝑌 0
2𝑖𝑗 = 3𝑐𝑖𝑐𝑗 − 2𝛿𝑖𝑗

𝑌 −2
2𝑖𝑗 = �̄�𝑖�̄�𝑗 , 𝑌 −1

2𝑖𝑗 = − (𝑐𝑖�̄�𝑗 + �̄�𝑖𝑐𝑗)

In addition, it is useful to give the explicit relations between these different harmonics in terms
of the ð-operator and its conjugate. Indeed, we can see generally that applying ð once raises the
spin index by one, and applying ð̄ lowers the index by one. This in turn means that

ð𝑌 𝑙
𝑙 𝑖...𝑘 = 0,

ð̄𝑌 −𝑙
𝑙 𝑖...𝑘 = 0.

Other relations for 𝑙 ≤ 2 are given by

ð̄𝑌 1
1𝑖 = 𝑌 0

1𝑖 = ð𝑌 −1
1𝑖 ,

ð𝑌 0
1𝑖 = −2𝑌 1

1𝑖,

ð̄𝑌 0
1𝑖 = −2𝑌 −1

1𝑖 ,

ð̄𝑌 2
2𝑖𝑗 = 𝑌 1

2𝑖𝑗 ,

ð̄2𝑌 2
2𝑖𝑗 = 𝑌 0

2𝑖𝑗 = ð2𝑌 −2
2𝑖𝑗 ,

ð𝑌 0
2𝑖𝑗 = −6𝑌 1

2𝑖𝑗 ,

ð𝑌 1
2𝑖𝑗 = −4𝑌 2

2𝑖𝑗 .

Finally, due to the nonlinearity of the theory, we have been forced throughout this review to
consider products of the tensorial spin-𝑠 spherical harmonics while expanding nonlinear expressions.
These products can be expanded as a linear combination of individual harmonics using Clebsch–
Gordon expansions. The explicit expansions for products of harmonics with 𝑙 = 1 or 𝑙 = 2 are
given below (we omit higher products due to the complexity of the expansion expressions). Further
products can be found in [43, 29].
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C.1 Clebsch–Gordon expansions

𝑙 = 1 with 𝑙 = 1

𝑌 1
1𝑖𝑌

0
1𝑗 =

𝑖√
2
𝜖𝑖𝑗𝑘𝑌

1
1𝑘 +

1

2
𝑌 1
2𝑖𝑗 ,

𝑌 1
1𝑖𝑌

−1
1𝑗 =

1

3
𝛿𝑖𝑗 −

𝑖
√
2

4
𝜖𝑖𝑗𝑘𝑌

0
1𝑘 − 1

12
𝑌 0
2𝑖𝑗 ,

𝑌 0
1𝑖𝑌

0
1𝑗 =

2

3
𝛿𝑖𝑗 +

1

3
𝑌 0
2𝑖𝑗

𝑙 = 1 with 𝑙 = 2

𝑌 1
1𝑖𝑌

2
2𝑖𝑗 = 𝑌 3

3𝑖𝑗𝑘,

𝑌 0
1𝑖𝑌

0
2𝑗𝑘 = −4

5
𝛿𝑘𝑗𝑌

0
1𝑖 +

6

5

(︀
𝛿𝑖𝑗𝑌

0
1𝑘 + 𝛿𝑖𝑘𝑌

0
1𝑗

)︀
+

1

5
𝑌 0
3𝑖𝑗𝑘,

𝑌 1
1𝑖𝑌

0
2𝑗𝑘 =

2

5
𝑌 1
1𝑖𝛿𝑗𝑘 − 3

5
𝑌 1
1𝑗𝛿𝑖𝑘 − 3

5
𝑌 1
1𝑘𝛿𝑖𝑗 +

𝑖√
2

(︀
𝜖𝑖𝑘𝑙𝑌

1
2𝑗𝑙 + 𝜖𝑖𝑗𝑙𝑌

1
2𝑘𝑙

)︀
+

2

5
𝑌 1
3𝑖𝑗𝑘,

𝑌 1
1𝑖𝑌

1
2𝑗𝑘 = −1

6
ð
(︀
𝑌 1
1𝑖𝑌

0
2𝑗𝑘

)︀
,

𝑌 −1
2𝑖𝑗 𝑌

1
1𝑘 =

3

10
𝑌 0
1𝑖𝛿𝑗𝑘 +

3

10
𝑌 0
1𝑗𝛿𝑖𝑘 − 1

5
𝑌 0
1𝑘𝛿𝑖𝑗 +

𝑖
√
2

12

(︀
𝜖𝑗𝑘𝑙𝑌

0
2𝑖𝑙 + 𝜖𝑖𝑘𝑙𝑌

0
2𝑙𝑗

)︀
− 1

30
𝑌 0
3𝑖𝑗𝑘,

𝑌 0
1𝑖𝑌

1
2𝑗𝑘 = −2

5
𝑌 1
1𝑖𝛿𝑗𝑘 +

3

5
𝑌 1
1𝑗𝛿𝑖𝑘 +

3

5
𝑌 1
1𝑘𝛿𝑖𝑗 −

𝑖

3
√
2

(︀
𝜖𝑖𝑘𝑙𝑌

1
2𝑗𝑙 + 𝜖𝑖𝑗𝑙𝑌

1
2𝑘𝑙

)︀
+

4

15
𝑌 1
3𝑖𝑗𝑘,

𝑌 2
2𝑖𝑗𝑌

−1
1𝑘 =

3

10
𝑌 0
1𝑖𝛿𝑗𝑘 +

3

10
𝑌 0
1𝑗𝛿𝑖𝑘 − 1

5
𝑌 0
1𝑘𝛿𝑖𝑗 −

𝑖
√
2

12

(︀
𝜖𝑗𝑘𝑙𝑌

0
2𝑖𝑙 + 𝜖𝑖𝑘𝑙𝑌

0
2𝑙𝑗

)︀
− 1

30
𝑌 0
3𝑖𝑗𝑘,

𝑌 2
2𝑖𝑗𝑌

0
1𝑘 = ð

(︀
𝑌 2
2𝑖𝑗𝑌

−1
1𝑘

)︀

𝑙 = 2 with 𝑙 = 2

The Clebsch–Gordon expansions involving two 𝑙 = 2 harmonics have been used in the text.
They are fairly long and are not given here but can be found in [43].
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D ℋ-Space Metric

In the following the derivation of the ℋ-space metric, is given.
We begin with the cut function, 𝑢B = 𝑍(𝜉𝑎(𝜏), 𝜁, 𝜁) = 𝑋(𝜏, 𝜁, 𝜁) that satisfies the good cut

eqation ð2𝑍 = 𝜎(𝑍, 𝜁, 𝜁). The (𝜁, 𝜁) are (for the time being) completely independent of each other
though 𝜁 is to be treated as being “close” the complex conjugate of 𝜁.

(Later we will introduce 𝜁* instead of 𝜁 via

𝜁* =
𝜁 +𝑊

1−𝑊𝜁
, (379)

for the purpose of simplifying an integration.)
Taking the gradient of 𝑍(𝑧𝑎, 𝜁, 𝜁), multiplied by an arbitrary four vector 𝑣𝑎, (i.e., 𝑉 = 𝑣𝑎𝑍,𝑎),

we see that it satisfies the linear Good Cut equation,

ð2𝑍,𝑎 = 𝜎,𝑍 𝑍,𝑎 (380)

ð2𝑉 = 𝜎,𝑍 𝑉.

Let 𝑉0 be a particular solution, and assume for the moment that the general solution can be written
as

𝑍,𝑎 = 𝑉0𝑙
*
𝑎 (381)

with the four components of 𝑙*𝑎 to be determined. Substituting Equation (381) into the linearized
GCE equation we have

ð2(𝑉0𝑙*𝑎) = 𝜎,𝑍 𝑉 𝑙
*
𝑎,

ð(𝑙*𝑎ð(𝑉0) + 𝑉0ð𝑙*𝑎) = 𝜎,𝑍 𝑉 𝑙
*
𝑎,

𝑙*𝑎ð2(𝑉0) + 2ð𝑉0ð𝑙*𝑎 + 𝑉0ð2𝑙*𝑎 = 𝜎,𝑍 𝑉0𝑙
*
𝑎,

2ð𝑉0ð𝑙*𝑎 + 𝑉0ð2𝑙*𝑎 = 0,

2𝑉0ð𝑉0ð𝑙*𝑎 + 𝑉 2
0 ð2𝑙*𝑎 = 0,

ð𝑉 2
0 ð𝑙*𝑎 + 𝑉 2

0 ð2𝑙*𝑎 = 0,

ð(𝑉 2
0 ð𝑙*𝑎) = 0,

which integrates immediately to
𝑉 2
0 ð𝑙*𝑎 = 𝑚*

𝑎 (382)

The 𝑚*
𝑎 are three independent 𝑙 = 1, 𝑠 = 1 functions. By taking linear combinations they can

be written as
𝑚*

𝑎 = 𝑇 𝑏
𝑎�̂�𝑏 = 𝑇 𝑏

𝑎ð�̂�𝑏

where �̂�𝑎 is our usual �̂�𝑎 =
√
2
2

(︁
1,− 𝜁+𝜁

1+𝜁𝜁
,− 𝑖(𝜁−𝜁)

1+𝜁𝜁
, 1−𝜁𝜁

1+𝜁𝜁

)︁
. The coefficients 𝑇 𝑏

𝑎 are functions only of

the coordinates, 𝑧𝑎.
Assuming that the monople term in 𝑉 2 is sufficiently large so that it has no zeros and then by

rescaling 𝑉 we can write 𝑉 −2 as a monopole plus higher harmonics in the form

𝑉 −2
0 = 1 + ð𝑊,

where 𝑊 is a spin-wt 𝑠 = −1 quantity. From Equation (382), we obtain

ð𝑙*𝑎 = 𝑉 −2
0 𝑚*

𝑎 = (1 + ð𝑊 )𝑚*
𝑎,

ð𝑙*𝑎 = 𝑚*
𝑎 + ð𝑊𝑚*

𝑎,

ð𝑙*𝑎 = 𝑚*
𝑎 + ð(𝑊𝑚*

𝑎),

ð𝑙*𝑎 = 𝑇 𝑏
𝑎ð�̂�𝑏 + 𝑇 𝑏

𝑎ð(𝑊�̂�𝑏),

ð𝑙*𝑎 = 𝑇 𝑏
𝑎ð(�̂�𝑏 +𝑊�̂�𝑏),
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which integrates to
𝑙*𝑎 = 𝑇 𝑏

𝑎(�̂�𝑎 +𝑊�̂�𝑎). (383)

The general solution to the linearized GCE is thus

𝑍,𝑎 = 𝑉0𝑙
*
𝑎 = 𝑉0𝑇

𝑏
𝑎(�̂�𝑎 +𝑊�̂�𝑎), (384)

𝑉 = 𝑣𝑎𝑍,𝑎 = 𝑉0𝑣
𝑎𝑇 𝑏

𝑎(�̂�𝑎 +𝑊�̂�𝑎).

We now demonstrate that

(𝑔𝑎𝑏𝑣
𝑎𝑣𝑏)−1 = (8𝜋)−1

∫︁
𝑉 −2𝑑Ω. (385)

𝑑Ω = 4𝑖
𝑑𝜁∧𝑑𝜁

(1 + 𝜁𝜁)2
. (386)

In the integral, (385), we replace the independent variables (𝜁, 𝜁) by

𝜁* =
𝜁 +𝑊

1−𝑊𝜁
, 𝜁

*
= 𝜁 (387)

after some algebraical manipulation we obtain

𝑑Ω* = 𝑉 −2
0 𝑑Ω, (388)

and (surprisingly)

(�̂�𝑎 +𝑊�̂�𝑎) = 𝐿*
𝑎 ≡

√
2

2

(︂
1,− 𝜁* + 𝜁

1 + 𝜁*𝜁
,− 𝑖(𝜁 − 𝜁*)

1 + 𝜁*𝜁
,
1− 𝜁*𝜁

1 + 𝜁*𝜁

)︂
, (389)

so that
𝑉 = 𝑉0𝑣

𝑎𝑇 𝑏
𝑎𝐿

*
𝑏 . (390)

Inserting Equations (387), (388) and (390) into (385) we obtain

(𝑔𝑎𝑏𝑣
𝑎𝑣𝑏)−1 = (8𝜋)−1

∫︁
(𝑉0𝑣

𝑎𝑇 𝑏
𝑎𝐿

*
𝑏)

−2𝑉 2
0 𝑑Ω

*, (391)

= (8𝜋)−1

∫︁
(𝑣𝑎𝑇 𝑏

𝑎𝐿
*
𝑏)

−2𝑑Ω*,

= (8𝜋)−1

∫︁
(𝑣*𝑏𝐿*

𝑏)
−2𝑑Ω*.

Using the form Equation (389) the last integral can be easily evaluated (most easily done using 𝜃
and 𝜙) leading to

(𝑔𝑎𝑏𝑣
𝑎𝑣𝑏)−1 = (𝜂𝑎𝑏𝑣

*𝑎𝑣*𝑏)−1 = (𝑇 𝑐
𝑎𝑇

𝑑
𝑏 𝜂𝑐𝑑𝑣

𝑎𝑣𝑏)−1, (392)

𝑔𝑎𝑏 = 𝑇 𝑐
𝑎𝑇

𝑑
𝑏 𝜂𝑦𝑐𝑑,

our sort for relationship.
We can go a step further. By taking the derivative of Equation (391) with respect to 𝑣𝑎, we

easily find the covariant form of 𝑣, namely

𝑣𝑎
(𝑔𝑎𝑏𝑣𝑎𝑣𝑏)2

=
𝑔𝑎𝑏𝑣

𝑏

(𝑔𝑎𝑏𝑣𝑎𝑣𝑏)2
= (8𝜋)−1

∫︁
(𝑣𝑎𝑇 𝑏

𝑎𝐿
*
𝑏)

−3𝑇 𝑏
𝑎𝐿

*
𝑏𝑑Ω

*.
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