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Abstract

The sensitivity of present ground-based gravitational wave antennas is too low to detect
many events per year. It has, therefore, been planned for years to build advanced detectors
allowing actual astrophysical observations and investigations. In such advanced detectors, one
major issue is to increase the laser power in order to reduce shot noise. However, this is useless
if the thermal noise remains at the current level in the 100 Hz spectral region, where mirrors
are the main contributors. Moreover, increasing the laser power gives rise to various spurious
thermal effects in the same mirrors. The main goal of the present study is to discuss these
issues versus the transverse structure of the readout beam, in order to allow comparison. A
number of theoretical studies and experiments have been carried out, regarding thermal noise
and thermal effects. We do not discuss experimental problems, but rather focus on some
theoretical results in this context about arbitrary order Laguerre–Gauss beams, and other
“exotic” beams.
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On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors 7

1 Introduction

Gravitational waves (GWs) are a prediction of Einstein’s general theory of relativity, which extends
the theory of gravitation by renouncing the instantaneous action at a distance that was shocking to
Isaac Newton himself and had already became unacceptable after the special theory of relativity.
The gravitational interaction is now carried by a wave messenger at the speed of light, a gravi-
tational wave. However, the efficiency of the conversion of any kind of energy into gravitational
radiation is extremely weak, so that emitting and/or detecting such waves has for decades been
considered well outside experimental possibilities. The situation changed after the technological
expansion in the 1960s. Joseph Weber was the first to propose an experiment aiming to detect
GWs of astrophysical origin. However, the initial Weber experiment was still too simple to detect
anything of astrophysical interest. This motivated theorists to work out more accurate estimates
of the GW signals produced by astrophysical cataclysms such as supernovae, binary coalescences,
fast spinning neutron stars etc. . . Readers interested in this part of the history of the field can
consult the review by Thorne [37]. Is was soon noted that optical interferometers of the Michelson
type had exactly the right topology with respect to the gravitational wave polarization, had a large
potential sensitivity and were able to produce electrical signals analog to the gravitational wave-
forms, being intrinsically wide-band transducers. After several prototypes of various sizes were
built (U.S.A., U.K., Germany), and following the pioneering work of Ronald Drever of Caltech,
Rainer Weiss of MIT was the first to study the technological issues specific to large size interfero-
metric antennas and to determine the general principles of ground based antennas. This was the
seed of the LIGO project in the U.S.A. [27], of the British-German GEO, unfortunately aborted,
and of the French-Italian Virgo [41]. Despite these efforts and after construction of kilometer size
antennas, GWs have yet to be detected because of the still too low sensitivity of present antennas
(LIGO, Virgo). It was foreseen from the beginning that technological breakthroughs would allow
the sensitivity to be enhanced in the near future. This is the present situation, and the R&D of
“advanced detectors” has already begun. One aspect of these advanced detectors is an improved
use of light for reading the tiny apparent variations of distances between test masses.

Ground-based interferometers for GW detection are made of silica pieces (the substrates of the
mirrors) hanging in a vacuum. Detection of GWs requires the continuous measurement of the flight
time of photons between two mirrors facing each other, or, in other words, the reflected phase off
a Fabry–Pérot cavity. A passing GW is expected to have a differential effect on the phases of two
orthogonal cavities. This is why the Michelson configuration is well adapted to GW antennas. It
is classically shown that the sensitivity of a Michelson interferometer ultimately depends on the
square root of the light source’s power. This is a strong reason to increase the input laser power.
However, there are at least four issues to solve before such an improvement can be made. The
first is that, even with high quality materials, a fraction of the power is absorbed by the material
(either in the bulk or on the coating); this gives rise to a source of heat at the surface or in the
bulk, and there is consequently a temperature field in the material, which results in turn in a
refractive index field and a thermal distortion of the substrate. These defects cause mismatching
of the interferometer, and therefore, already in the present status of LIGO-Virgo, require complex
thermal compensation systems. Before increasing the incident power, some new ideas would be
welcome. The second issue comes from the fact that in the region of 100 Hz, the sensitivity is
not limited by shot noise, but rather by the thermal noise of mirrors. Mirror substrates may be
viewed as elastodynamical oscillators, whose modes are excited at room temperature resulting in
a fluctuating reflecting face. Increasing the laser power will be of no use in this strategic spectral
region unless a means of reducing the effect of thermal noise is found. There is still another
source of noise, called thermoelastic, due to temperature fluctuations in the material. The fourth
issue is the effect of radiation pressure on the suspended mirrors. Increasing the laser power will
cause increasing fluctuations in the radiation pressure, so that there is an optimum in the laser
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8 Jean-Yves Vinet

power, dependant on the cavity parameters, giving the standard quantum limit. In the context of
the R&D of advanced detectors, several ways of reducing the thermal noise have been proposed:
using new high-Q materials [34], cooling to cryogenic temperatures [39] or active correction [10].
Changing the geometry of the readout beam, in order to reduce the optical coupling with surface
fluctuations, has also been proposed. Regarding this track, there was a proposal [11, 40] to go
towards nonspherical mirrors generating a more-or-less homogeneous light-intensity profile. There
was another proposal [31] in the same spirit but keeping spherical mirrors and using high-order
Gaussian modes. Some other proposals are also considered.

Thermal effects, the various thermal noises (Brownian, thermoelastic, thermorefractive) have
been extensively studied and reported in the literature. We focus here on their dependence to the
transverse structure of the optical readout beam and try particularly to give general formulas for
arbitrary order Laguerre–Gauss modes.

Further material will be added to the present review with coming developments, especially
regarding experimental results. But we think it is useful to present already available results during
the present R&D phase.
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On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors 9

2 Modes of Fabry–Pérot Cavities and Readout Beams

It is well known that a Fabry–Pérot cavity has eigenmodes corresponding to eigenfrequencies
determined by its length and geometries defined by the shape of the mirrors. It is also well known
that cavities with spherical mirrors are resonant for Hermite–Gauss or Laguerre–Gauss modes.
Recently more exotic shapes have been proposed in order to reduce the thermal noise.

2.1 Laguerre–Gauss beams

Because we are developing models based on axisymmetry, we pay special attention to cylindrical
coordinates, and consequently to the Laguerre–Gauss family of modes. If 𝑧 is the coordinate along
the optical axis, 𝑟 the radial coordinate and 𝜙 the azimuthal, a Laguerre–Gauss mode (LG𝑛,𝑚) of
parameter 𝑤 has the following complex amplitude at 𝑧 (the wavelength is 𝜆 and 𝑘 ≡ 2𝜋/𝜆):

Ψ(𝑛)
𝑚 (𝑟, 𝜙, 𝑧) = 𝑅(𝑛)

𝑚 (𝑟)1/2
{︂

cos(𝑛𝜙)
sin(𝑛𝜙)

}︂
e𝑖𝑘𝑧 e𝑖(2𝑚+𝑛+1)𝐺(𝑧), (2.1)

where 𝐺(𝑧) is the Gouy phase,
𝐺(𝑧) = tan−1(𝑧/𝑧𝑅), (2.2)

𝑧𝑅 ≡ 𝜋𝑤2
0/𝜆 is the Rayleigh parameter, and 𝑤 = 𝑤0

√︀
1 + (𝑧/𝑧𝑅)2 is the beam width at 𝑧. Pa-

rameter 𝑤0 represents the minimum width (waist) of the beam, localized at abscissa 𝑧 = 0. The
normalized radial function 𝑅(𝑛)

𝑚 (𝑟) is given by

𝑅(𝑛)
𝑚 (𝑟, 𝜙, 𝑧) =

4
(1 + 𝛿𝑛,0)𝜋𝑤2

𝑚!
(𝑛+𝑚)!

(︂
2𝑟2

𝑤2

)︂𝑛
𝐿(𝑛)
𝑚

(︂
2𝑟2

𝑤2

)︂2

exp
(︂
−2𝑟2

𝑤2

)︂
. (2.3)

𝐿
(𝑛)
𝑚 (𝑋) are the generalized Laguerre polynomials. Figure 1 shows the intensity pattern of a

nonaxisymmetric Laguerre–Gauss mode of cosine angular parity. Obviously the origin of angles is
arbitrary, so that we can replace the cosine by a sine, and even combine a cosine mode with a sine
mode to obtain a mode having an axisymmetric intensity. For such an axisymmetric (in intensity)
mode, the normalization is slightly different, so that

𝑅(𝑛)
𝑚 (𝑟, 𝜙, 𝑧) =

2
𝜋𝑤2

𝑚!
(𝑛+𝑚)!

(︂
2𝑟2

𝑤2

)︂𝑛
𝐿(𝑛)
𝑚

(︂
2𝑟2

𝑤2

)︂2

exp
(︂
−2𝑟2

𝑤2

)︂
. (2.4)

See Figure 2 for the intensity pattern of such a readout beam.

2.2 Mesa and flat beams

We shall see in a following Section 8 that thermal noise is reduced by widening the beam on a
mirror in such a way that the fluctuations of the surface are significantly cancelled by averaging
on the readout beam cross section. A way of obtaining almost “flat” beam profiles was proposed
by a Caltech team led by Thorne and O’Shaughnessy [12, 33, 11]. To understand the proposal, we
start from a fundamental mode LG0,0 at its waist (𝑧 = 0)

𝜑(𝑥, 𝑦, 0) =

√︃
2
𝜋𝑤2

0

exp(−𝑟2/𝑤2
0) (𝑟2 = 𝑥2 + 𝑦2), (2.5)

and we take the convolution product with the characteristic function of a centered disk Δ of radius
𝑏𝑓

Ψ(𝑥, 𝑦, 0) =
𝜅

𝜋𝑏2𝑓

∫︁
Δ

𝜑(𝑥− 𝑥0, 𝑦 − 𝑦0, 0) 𝑑𝑥0 𝑑𝑦0, (2.6)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


10 Jean-Yves Vinet

-0.175 -0.125 -0.075 -0.025  0.025  0.075  0.125  0.175

-0.175

-0.125

-0.075

-0.025

 0.025

 0.075

 0.125

 0.175

Figure 1: Intensity distribution in an LG5,5 mode of width parameter 𝑤 = 3.5 cm. Dashed circle: edge
of a mirror of radius 17.5 cm.
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Figure 2: Intensity distribution in an axisymmetric LG5,5 mode of width parameter 𝑤 = 3.5 cm. Dashed
circle: edge of a mirror of radius 17.5 cm.
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12 Jean-Yves Vinet

where 𝜅 is a constant to be determined by normalization. This mode of construction allows one to
compute the propagated mode. Because Ψ is a linear combination of modes, its propagated value
is nothing but the same combination of propagated elementary modes

Ψ(𝑥, 𝑦, 𝑧) =
𝜅

𝜋𝑏2𝑓

∫︁
Δ

𝜑(𝑥− 𝑥0, 𝑦 − 𝑦0, 𝑧) 𝑑𝑥0 𝑑𝑦0, (2.7)

so that the mode is defined at any abscissa 𝑧 by

Ψ(𝑥, 𝑦, 𝑧) =
𝜅

𝜋𝑏2𝑓

√︂
2
𝜋𝑤2

exp(−𝑖 tan−1(𝑧/𝑧𝑅))∫︁
Δ

exp
{︂
− 𝑍

𝑤2

[︀
(𝑥− 𝑥0)2 + (𝑦 − 𝑦0)2

]︀}︂
𝑑𝑥0 𝑑𝑦0, (2.8)

where 𝑧𝑅 ≡ 𝜋𝑤2
0/𝜆 is the Rayleigh parameter, 𝑍 ≡ 1 − 𝑖𝑧/𝑧𝑅 and 𝑤 ≡ 𝑤0

√
𝑍𝑍. After some

algebra, the result being axisymmetric, this is equivalent to

Ψ(𝑟, 𝑧) =
2𝜅
𝑏2𝑓

√︂
2𝑤2

𝜋
exp(−𝑖 tan−1(𝑧/𝑧𝑅))∫︁ 𝑏/𝑤

0

exp
[︀
−𝑍(𝑟/𝑤 − 𝑥)2

]︀
exp(−2𝑍𝑟𝑥/𝑤) 𝐼0(2𝑍𝑟𝑥/𝑤)𝑥 𝑑𝑥. (2.9)

Normalization is easier to compute in the Fourier space. We have, after the Plancherel theorem

‖ Ψ ‖2= 2𝜋
∫︁ ∞

0

|Ψ(𝑟, 𝑧)|2𝑟 𝑑𝑟 =
1
2𝜋

∫︁ ∞

0

|Ψ̃(𝜌, 𝑧)|2𝜌 𝑑𝜌. (2.10)

Now, the Fourier transform of the mode is nothing but the product of the Fourier transform of the
elementary mode by the Fourier transform of the characteristic function of the disk. The Fourier
transform of the mode at 𝑧 = 0 is

𝜑(𝜌, 0) =
√︁

2𝜋𝑤2
0 exp

[︂
−𝑤

2
0𝜌

2

4

]︂
, (2.11)

whereas the Fourier transform of the disk is

ℱ̃Δ(𝜌) =
2𝐽1(𝑏𝑓𝜌)
𝑏𝑓𝜌

, (2.12)

where 𝐽1(𝑥) is a Bessel function. Thus, we have

‖ Ψ ‖2= 𝜅2

2𝜋

∫︁ ∞

0

|𝜑(𝜌, 0)ℱ̃Δ(𝜌)|2𝜌 𝑑𝜌 =
4𝑤2

0𝜅
2

𝑏2𝑓

∫︁ ∞

0

𝐽1(𝑥)2 exp

[︃
−𝑤

2
0𝑥

2

2𝑏2𝑓

]︃
𝑑𝑥

𝑥
=

2𝑤2
0𝜅

2

𝑏2𝑓
𝑀, (2.13)

where
𝑀 ≡ 1− exp(−𝑏2𝑓/𝑤2

0)
[︀
𝐼0(𝑏2𝑓/𝑤

2
0) + 𝐼1(𝑏2𝑓/𝑤

2
0)
]︀

(2.14)

and {𝐼𝑛(𝑥), 𝑛 = 0, 1, 2, ...} are the modified Bessel functions. Therefore, we have

𝜅 =
𝑏𝑓

𝑤0

√
2𝑀

, (2.15)
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so that the normalized mode is simply

Ψ(𝑟, 𝑧) =
2𝑍

𝑏𝑓
√
𝜋𝑀

∫︁ 𝑏𝑓/𝑤

0

exp
[︀
−𝑍(𝑟/𝑤 − 𝑥)2

]︀
exp(−2𝑍𝑟𝑥/𝑤) 𝐼0(2𝑍𝑟𝑥/𝑤)𝑥 𝑑𝑥, (2.16)

which is straightforward to numerically integrate, the function e−𝑋𝐼0(𝑋), {𝑋 ∈ C,ℜ(𝑋) > 0 }
having a simply form. One sees that the intensity profile is flat at the waist, with sharp wings
(depending on the parameter 𝑤0), and that the propagated mode is also almost flat. The beam’s
intensity profile (see Figure 3) is similar to a flat bump with rather sharp edges, so that the beam
was called “mesa” by the previously mentioned Caltech team. The same mode propagated over
kilometer-long distances exhibits a very weak distortion of its intensity profile despite diffraction.
In foregoing numerical examples, we shall assume a symmetric cavity having a pair of identical
mirrors matched to that kind of mode. The wavefront at 1.5 km from the waist in a 3 km long
cavity determines the mirror’s shape (see Figure 4). This particular construction scheme gives a
nearly flat mirror, apart from a small departure. This kind of mirror has been tested for the issues
of angular alignment requirements and not found satisfactory [35]; this is why a new version has
been proposed starting from spherical wave fronts in a nearly concentric cavity geometry. There is
a duality relation, found by Savov et al. [35], which allows one to map the properties of this kind
of beam to that of a “mesa” beam. In particular the intensity profile is identical on the mirror
coating, so that the analysis we propose here is valid for the mesa beam model presented above
and for the “nearly concentric cavity mode” as well (see Equation (16) in [3]).

We choose the parameters 𝑤0 and 𝑏 in order to have 1 ppm clipping losses. It is possible to
reduce clipping losses either by a smaller 𝑤0 or by a smaller 𝑏. However, reducing 𝑤0 too much
leads to distorted wavefronts and unfeasible mirrors. We have found a possible compromise with
𝑤0 = 3.2 cm and 𝑏𝑓 = 10.7 cm, giving exactly 1 ppm clipping losses on both 35 cm diameter
mirrors.
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Figure 3: Solid line: Intensity profile of a normalized mesa mode of parameters 𝑏𝑓 = 10.7 cm, 𝑤0 = 3.2 cm.
Dashed line: nearest flat beam profile (𝑏 = 9.1 cm).

For most of our purposes regarding thermal problems, a crude model (flat), reduced to the
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Figure 4: Surface of a mirror matching the mesa beam of parameters 𝑏𝑓 = 10.7 cm, 𝑤0 = 3.2 cm

characteristic function of the disk, namely an intensity function of the form

𝐼(𝑟) =
1
𝜋𝑏2

{︂
1 (𝑟 ≤ 𝑏)
0 (𝑟 > 𝑏) , (2.17)

is sufficient. However, if need be, we will check that the conclusions drawn from the crude model
(flat) are still valid for the realistic model (mesa), defined by Equation (2.16). However, in some
specific cases (e.g., thermodynamical noise), the crude model leads to mathematical problems and
cannot be used at all; thus, we must work with Equation (2.16). The value of 𝑏 is chosen such
that the flat beam gives the darkest fringe when interfering with the mesa beam (minimizing the
Hermitian distance). This gives, for the mesa beam described above, an effective value 𝑏 = 9.1 cm
(see Figure 3).

Throughout the following discussions, we shall numerically treat three examples. The first,
“Ex1”, is the current situation for the Virgo input mirrors, i.e., an LG0,0 mode of 𝑤 = 2 cm. The
second, “Ex2”, is the flat mode described above of 𝑏 = 9.1 cm, or, when needed, the mesa mode
with 𝑏𝑓 = 10.7 cm (1 ppm clipping loss). The third, “Ex3”, is the LG5,5 mode of 𝑤 = 3.5 cm
(1 ppm clipping loss). However, the analytic expressions are general.

2.3 Other exotic modes

Several other types of modes have been or could be proposed in the same spirit of reducing the
Brownian thermal noise and/or the thermoelastic noise.

2.3.1 Bessel beams

The search for weakly diffracting beams leads naturally to nondiffractive beams. There is an
obvious solution to Helmholtz’s equation in cylindrical coordinates;

𝜓𝑛(𝑟, 𝜙, 𝑧) = exp(𝑖𝛽𝑧)𝐽𝑛(𝛼𝑟) exp(𝑖𝑛𝜙), (2.18)
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where 𝑛 is an arbitrary integer, 𝐽𝑛(𝑥) a Bessel function, and 𝛼 and 𝛽 are numbers such that
𝛼2 + 𝛽2 = 𝑘2 (𝑘 ≡ 2𝜋/𝜆). This was first noted (in the case 𝑛 = 0) by Durnin [16] and is thus
called a “Durnin” beam by some. We feel that for clarity it is more appropriate to call it the
“Bessel” beam. The case of 𝑛 = 0 is particularly interesting in the context of hyper-resolution, for
instance, due to the sharp central peak when 𝛼 is large, but it is forbidden in our case for the same
reason. The transverse structure of such a wave is independent on 𝑧 and similar to a wave guided
in the core of a cylindrical fiber (in the cladding, there is a different solution smoothly matched
and of finite extension). However, the energy carried by a Bessel beam is infinite, exactly as in
the case of a plane wave. In fact, the wavefront is flat in the case of 𝑛 = 0. The impossibility
of generating waves of infinite extension leads to truncated waves having diffractive behavior and
consequent clipping losses. The result depends on the method of truncation. The wavefront of such
a truncated Bessel wave after propagation is hardly compatible with a reasonable mirror shape
anyway.

2.3.2 Conical-mirror or Gauss–Bessel beams

The best way of truncating a Bessel beam is to make the following construction;

Ψ𝑛(𝑥, 𝑦, 0) =
1
2𝜋

∫︁ 2𝜋

0

𝜑(𝑥, 𝑦, 0) e𝑖𝑘𝜃(𝑥 cos𝜓+𝑦 sin𝜓) 𝑑𝜓, (2.19)

where 𝜑(𝑥, 𝑦, 𝑧) refers to a TEM00 mode of width parameter 𝑤0. In words, we add elementary
Gaussian waves whose propagation axes generate a cone of small aperture 𝜃, having its axis along
the 𝑧 direction and its vertex at 𝑧 = 0. We assume that this is the situation at the middle of a
3 km cavity, and are interested in the amplitude at the end (or input) mirror. A sum of elementary
Gaussian beams may be propagated by propagating each component separately and summing up
at the end. We get, up to some phase factors irrelevant for expressing the intensity, the following
amplitude for the mode at any abscissa 𝑧;

Ψ𝑛(𝑟, 𝜙, 𝑧) = 𝜅 exp
[︂
−𝑍(𝑟2 + 𝜃2𝑧2)

𝑤(𝑧)2

]︂
𝐽0

(︂
𝑘𝑟𝜃

𝑍

)︂
, (2.20)

where 𝑧𝑅 ≡ 𝜋𝑤2
0/𝜆 and 𝑍 ≡ 1 − 𝑖𝑧/𝑧𝑅 (as above). 𝜅 is a normalization factor. We have the

standard relation 𝑤(𝑧) = 𝑤0

√
𝑍𝑍. This formula makes it clear that this solution is a Bessel mode

truncated by a Gaussian envelope. We therefore call these “Gauss–Bessel” modes. The intensity
pattern of such modes depend obviously on the width parameter 𝑤0 and on the aperture angle
𝜃. Combinations of these exist such that the intensity pattern is spread on the mirror surface,
apart from a central peak. An example is shown in Figure 5. The wavefront is nearly conical (see
Figure 6).

Bondarescu et al. [4] have carried out an optimization of coating thermal noise by combining
LG modes. Using the better series of coefficients, they reach a wave analogous to a Gauss–Bessel
mode and with a conical wavefront of the same kind. We intend to include these kinds of modes
in an update to this review. To be specific, we give, in the section related to coating thermal noise
(8.3.2), the figure of merit of the mode described in Figures 5 and 6, which is not optimal, but
already exhibits a good value, regarding coating thermal noise in the infinite mirror approximation
(see Section 8.3).
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Figure 5: Power distribution of a Gauss–Bessel mode of parameters 𝜃 = 54 𝜇Rd , 𝑤0 = 5.2 cm, 𝑧 = 1.5 km
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Figure 6: Surface of a mirror matching a Gauss–Bessel mode of parameters 𝜃 = 54 𝜇Rd , 𝑤0 = 5.2 cm,
𝑧 = 1.5 km
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3 Heating and Thermal Effects in the Steady State

We consider here the direct effects resulting from absorption of light in the mirrors (either on
the reflecting surface or in the bulk material) and the indirect effects, such as thermal lensing
and thermal distortions. First, we discuss the steady state (the principles are given in [20]), then
the quasi-static case (heating from an initial uniform temperature [21]), and finally the general
dynamical case. We consider the case of cavity mirrors storing large optical power, heated partially
by thermalization of light at the coated face. There is also heating by propagation losses inside
the substrate. We assume thermal equilibrium by thermal radiation; the mirror being suspended
by thin wires in a vacuum, there is no convection loss and we neglect conduction loss. We further
assume a small relative excess of temperature, justified by the good quality of the coatings and of
the bulk silica. With these assumptions, the problem becomes linear and we can treat separately
the contribution to heating caused by the coating and the bulk substrate. We consider a cylindrical
mirror of diameter 2𝑎 and of thickness ℎ (see Figure 7). The coordinates are radial 0 ≤ 𝑟 ≤ 𝑎,
azimuthal 0 ≤ 𝜙 ≤ 2𝜋 and longitudinal −ℎ/2 ≤ 𝑧 ≤ ℎ/2.

z

a h

Figure 7: Notations for a cylindrical mirror

3.1 Steady temperature field

3.1.1 Coating absorption

Let us briefly recall that in the steady state with no internal source of heat, the Heat (Fourier)
equation reads: (︂

𝜕2
𝑟 +

1
𝑟
𝜕𝑟 +

1
𝑟2
𝜕2
𝜙 + 𝜕2

𝑧

)︂
𝑇 (𝑟, 𝜙, 𝑧) = 0 (3.1)

so that the temperature field is a harmonic function. A harmonic function is, for example,

𝑇𝑛(𝑟, 𝜙, 𝑧) = e±𝑘𝑧𝐽𝑛(𝑘𝑟)e𝑖𝑛𝜙 (3.2)

where {𝐽𝑛(𝑥), 𝑛 = 0, 1, ..} are Bessel functions of the first kind, 𝑛 is an arbitrary integer and 𝑘
an arbitrary constant. We assume the readout beam reflected by the coating has an intensity
distribution of the form

𝐼(𝑟, 𝜑) = 𝐼𝑛(𝑟) cos(𝑛𝜙+ 𝜙𝑛), (3.3)
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(𝜙𝑛 is an arbitrary constant) and thus having a simple angular parity (possibly one term of a
Fourier series). Therefore, we define the temperature field as

𝑇𝑛(𝑟, 𝜙, 𝑧) = e±𝑘𝑧𝐽𝑛(𝑘𝑟) cos(𝑛𝜙+ 𝜙𝑛). (3.4)

The boundary conditions describe the heat flows on the faces and on the edge. The powerful light
beam is assumed to be reflected at 𝑧 = −ℎ/2. If 𝐾 denotes the thermal conductivity and 𝑇0

the (homogeneous) temperature of the surrounding walls of the vacuum vessel, and if we consider
𝑇𝑛(𝑟, 𝜙, 𝑧) as the excess of temperature with respect to 𝑇0, we have, at thermal equilibrium, the
following balance on the irradiated face;

−𝐾
[︂
𝜕𝑇𝑛(𝑟, 𝜙, 𝑧)

𝜕𝑧

]︂
𝑧=−ℎ/2

= −𝜎f

(︁
[𝑇0 + 𝑇𝑛(𝑟, 𝜙,−ℎ/2)]4 − 𝑇 4

0

)︁
+ 𝜖𝐼𝑛(𝑟) cos(𝑛𝜙+ 𝜙𝑛), (3.5)

where the left-hand side represents the power lost by the substrate and the first term of the
right-hand side represents the power flow of thermal radiation according to Stefan’s law. 𝜎f is
the Stefan–Boltzmann (SB) constant (𝜎f ∼ 5.67 10−8 W m−1 K−4) corrected for the emissivity of
silica; accounting for a possible special processing of the edge (e.g., some thin metallic layer), we
shall allow different values of the SB constant on the faces, 𝜎f , and on the edge, 𝜎edge. The second
term of the right-hand side is the density of power received from the light beam. 𝜖 represents the
relative loss at reflection. After linearization (i.e., assuming 𝑇𝑛 ≪ 𝑇0), we get

−𝐾
[︂
𝜕𝑇𝑛(𝑟, 𝜙, 𝑧)

𝜕𝑧

]︂
𝑧=−ℎ/2

= −4𝜎f𝑇
3
0 𝑇𝑛(𝑟, 𝜙,−ℎ/2) + 𝜖𝐼𝑛(𝑟, 𝜙). (3.6)

On the opposite face, we have a similar condition (the radiation flow is in the opposite direction)

−𝐾
[︂
𝜕𝑇𝑛(𝑟, 𝜙, 𝑧)

𝜕𝑧

]︂
𝑧=ℎ/2

= 4𝜎f𝑇
3
0 𝑇𝑛(𝑟, 𝜙, ℎ/2), (3.7)

whereas on the edge, the boundary condition is

−𝐾
[︂
𝜕𝑇𝑛(𝑟, 𝜙, 𝑧)

𝜕𝑟

]︂
𝑟=𝑎

= 4𝜎edge𝑇
3
0 𝑇𝑛(𝑟, 𝜙, 𝑎). (3.8)

This last condition is relative to the radial function and gives

−𝐾𝑘𝐽 ′𝑛(𝑘𝑎) = 4𝜎edge𝑇
3
0 𝐽𝑛(𝑘𝑎) (3.9)

or, by introducing the reduced radiation constant 𝜒𝑒 ≡ 4𝜎edge𝑇
3
0 𝑎/𝐾,

𝑘𝑎 𝐽 ′𝑛(𝑘𝑎) + 𝜒𝑒 𝐽𝑛(𝑘𝑎) = 0. (3.10)

An equation of the form
𝜁𝐽 ′𝑛(𝜁) + 𝜒𝑒𝐽𝑛(𝜁) = 0 (3.11)

has an infinite and discrete family of solutions {𝜁𝑛,𝑠, 𝑠 = 1, 2, ...}. Therefore, a sufficiently general
solution of the Heat equation having a given angular parity will be taken as a series,

𝑇𝑛(𝑟, 𝜙, 𝑧) =
∑︁
𝑠>0

𝑇𝑛,𝑠(𝑧) 𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎) cos(𝑛𝜙+ 𝜙𝑛). (3.12)

Moreover, after the Sturm–Liouville theorem, the family of functions {𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎), 𝑠 = 1, 2, ...}
is orthogonal and complete on the interval [0, 𝑎]. The normalization factor is (see, for instance,
Equation (11.4.5) in [1])∫︁ 1

0

𝑥𝐽𝑛(𝜁𝑝,𝑠𝑥)𝐽𝑛(𝜁𝑝,𝑠′𝑥) 𝑑𝑥 = 𝛿𝑠,𝑠′
1

2𝜁2
𝑛,𝑠

(︀
𝜒2
𝑒 + 𝜁2

𝑛,𝑠 − 𝑛2
)︀
𝐽𝑛(𝜁𝑛,𝑠)2. (3.13)
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The first consequence is that it is possible to express the radial intensity function 𝐼𝑛(𝑟) of integrated
power 𝑃 in the form of a Fourier–Bessel (FB) series,

𝐼𝑛(𝑟) =
𝑃

𝜋𝑎2

∑︁
𝑠>0

𝑝𝑛,𝑠𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎). (3.14)

The dimensionless FB coefficients {𝑝𝑛,𝑠, 𝑠 = 1, 2, ...} being obtained by

𝑝𝑛,𝑠 =
2𝜋𝜁2

𝑛,𝑠

𝑃
(︀
𝜒2
𝑒 + 𝜁2

𝑛,𝑠 − 𝑛2
)︀
𝐽𝑛(𝜁𝑛,𝑠)2

∫︁ 𝑎

0

𝐼𝑛(𝑟) 𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎) 𝑟 𝑑𝑟. (3.15)

Now the longitudinal function is of the form

𝑇𝑛,𝑠(𝑧) = 𝐴𝑛,𝑠 exp(𝜁𝑛,𝑠𝑧/𝑎) +𝐵𝑛,𝑠 exp(−𝜁𝑛,𝑠𝑧/𝑎) (3.16)

and the constants 𝐴𝑛,𝑠 and 𝐵𝑛,𝑠 are determined by the boundary conditions (3.6) and (3.7).
Finally, one finds

𝑇𝑛,𝑠(𝑧) =
𝜖 𝑃

𝜋𝐾𝑎
𝑝𝑛,𝑠 e−𝜁𝑛,𝑠ℎ/2𝑎

(𝜁𝑛,𝑠 − 𝜒)e−𝜁𝑛,𝑠(ℎ−𝑧)/𝑎 + (𝜁𝑛,𝑠 + 𝜒)e−𝜁𝑛,𝑠𝑧/𝑎

(𝜁𝑛,𝑠 + 𝜒)2 − (𝜁𝑛,𝑠 − 𝜒)2e−2𝜁𝑛,𝑠ℎ/𝑎
, (3.17)

where 𝜒 is the reduced radiation constant for faces (i.e., 𝜒 ≡ 4𝜎f𝑇
3
0 𝑎/𝐾). This completely deter-

mines the temperature field through Equation (3.12), once the zeroes 𝜁𝑛,𝑠 are known by solving
Equation (3.11), and once the coefficients 𝑝𝑛,𝑠 are computed by the integration (3.15). This last
point will be treated in Section 3.1.3 below. We can write Equation (3.17) in a more compact form
exhibiting the symmetric and antisymmetric parts,

𝑇𝑛,𝑠(𝑧) =
𝜖 𝑃

2𝜋𝐾𝑎
𝑝𝑛,𝑠

[︂
cosh(𝜁𝑛,𝑠𝑧/𝑎)

𝑑1,𝑛,𝑠
− sinh(𝜁𝑛,𝑠𝑧/𝑎)

𝑑2,𝑛,𝑠

]︂
(3.18)

with the following definitions (used in all parts of this review),{︂
𝑑1,𝑛,𝑠 = 𝜁𝑛,𝑠 sinh 𝛾𝑛,𝑠 + 𝜒 cosh 𝛾𝑛,𝑠
𝑑2,𝑛,𝑠 = 𝜁𝑛,𝑠 cosh 𝛾𝑛,𝑠 + 𝜒 sinh 𝛾𝑛,𝑠

, (3.19)

where 𝛾𝑛,𝑠 ≡ 𝜁𝑛,𝑠ℎ/2𝑎. Note that if the heat source is located on the opposite face of the mirror, as
in the case (to be treated later) of a thermal compensation beam, the preceding formula becomes
simply

𝑇𝑛,𝑠(𝑧) =
𝜖 𝑃

2𝜋𝐾𝑎
𝑝𝑛,𝑠

[︂
cosh(𝜁𝑛,𝑠𝑧/𝑎)

𝑑1,𝑛,𝑠
+

sinh(𝜁𝑛,𝑠𝑧/𝑎)
𝑑2,𝑛,𝑠

]︂
. (3.20)

3.1.2 Bulk absorption

Let us now assume that the heat source results from the loss of optical power by the beam inside
the mirror substrate due to weak absorption. The beam intensity propagating inside the substrate
is, strictly speaking, of the form

𝐼(𝑟, 𝑧) = 𝐼(𝑟) exp[−𝛽(𝑧 + ℎ/2)], (3.21)

where 𝐼(𝑟) is the incoming intensity. However, the linear absorption 𝛽 is assumed to be so weak
that there is no significant change in amplitude of the beam along the optical path. Thus the heat
source in the bulk material is 𝛽𝐼(𝑟) (Wm−3). For any given angular parity, the Heat equation
becomes (︂

𝜕2
𝑟 +

1
𝑟
𝜕𝑟 +

1
𝑟2
𝜕2
𝜙 + 𝜕2

𝑧

)︂
𝑇 (𝑟, 𝜙, 𝑧) = − 𝛽

𝐾
𝐼𝑛(𝑟) cos(𝑛𝜙+ 𝜙𝑛). (3.22)
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We will look for a solution of the same form as Equation (3.12). The boundary condition on
the edge is identical to Equation (3.8), so that the family of orthogonal functions is unchanged.
The coefficients 𝑝𝑛,𝑠 allowing expansion of the intensity function are also identical. Now we shall
express the relevant solution as the sum of a special solution of Equation (3.22) and a more general
solution of the homogeneous equation (identical to Equation (3.1)). Using the Bessel differential
equation, the special solution of Equation (3.22) is found with

𝑇𝑛,1(𝑟, 𝜙) =
𝛽𝑃

𝜋𝐾

∑︁
𝑠>0

𝑝𝑛,𝑠
𝜁2
𝑛,𝑠

𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎) cos(𝑛𝜙+ 𝜙𝑛). (3.23)

The solution of the homogeneous equation will be symmetric in 𝑧, owing to the independence of
the heat source in 𝑧,

𝑇𝑛,2(𝑟, 𝜙) =
∑︁
𝑠>0

𝐴𝑛,𝑠 cosh(𝜁𝑛,𝑠𝑧/𝑎) 𝐽𝑛(𝜁𝑛,𝑠𝑟/𝑎) cos(𝑛𝜙+ 𝜙𝑛). (3.24)

The arbitrary constants 𝐴𝑛,𝑠 are determined by the boundary condition (3.7. Boundary condi-
tion (3.6) disappears, being identical to the preceding, due to symmetry. One finally finds a series
analogous to Equation (3.12), except that the longitudinal function 𝑇𝑛,𝑠(𝑧) is now

𝑇𝑛,𝑠(𝑧) =
𝛽𝑃

𝜋𝐾

𝑝𝑛,𝑠
𝜁2
𝑛,𝑠

[︂
1− 𝜒 cosh(𝜁𝑛,𝑠𝑧/𝑎)

𝑑1,𝑛,𝑠

]︂
. (3.25)

3.1.3 Fourier–Bessel expansion of the readout beam intensity

We address now the central point of the calculation of the FB coefficients 𝑝𝑛,𝑠 of the intensity. The
LG𝑚,𝑛 mode of integrated power 𝑃 has the following intensity function

𝐼(𝑛)
𝑚 (𝑟, 𝜙) = 2𝜇𝑛𝑅(𝑛)

𝑚 (𝑟) cos(𝑛𝜙+ 𝜙𝑛)2, (3.26)

with 𝜇𝑛 ≡ 1/(1 + 𝛿𝑛,0), and

𝑅(𝑛)
𝑚 (𝑟) =

2𝑃
𝜋𝑤2

𝑚!
(𝑛+𝑚)!

(︂
2𝑟2

𝑤2

)︂𝑛
𝐿(𝑛)
𝑚

(︂
2𝑟2

𝑤2

)︂2

exp
(︂

2𝑟2

𝑤2

)︂
, (3.27)

where the functions 𝐿(𝑝)
𝑞 (𝑋) are the generalized Laguerre polynomials. The function can be split

into two terms of simple angular parity,

𝐼(𝑛)
𝑚 (𝑟, 𝜙) = 𝜇𝑛𝑅

(𝑛)
𝑚 (𝑟) + 𝜇𝑛𝑅

(𝑛)
𝑚 cos(2𝑛𝜙+ 2𝜙𝑛), (3.28)

so that the FB series of the intensity will be two-fold,

𝐼(𝑛)
𝑚 (𝑟, 𝜙) =

∑︁
𝑠>0

𝑝0,𝑠 𝐽0(𝜁0,𝑠𝑟/𝑎) +
∑︁
𝑠>0

𝑝𝑛,𝑠 𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎) cos(2𝑛𝜙+ 2𝜙𝑛) (3.29)

where {𝜁0,𝑠} are all solutions of
𝜁𝐽 ′0(𝜁) + 𝜒𝑒𝐽0(𝜁) = 0, (3.30)

whereas {𝜁𝑛,𝑠} are all solutions of

𝜁𝐽 ′2𝑛(𝜁) + 𝜒𝑒𝐽2𝑛(𝜁) = 0. (3.31)

The 𝑝0,𝑠 are given by [see Equation (3.15)]

𝑝0,𝑠 =
2𝜋𝜁2

0,𝑠

𝑃 (𝜒2
𝑒 + 𝜁2

0,𝑠)𝐽0(𝜁0,𝑠)2

∫︁ 𝑎

0

𝑅(𝑛)
𝑚 (𝑟) 𝐽0(𝜁0,𝑠𝑟/𝑎) 𝑟 𝑑𝑟. (3.32)
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In fact, the intensity is necessarily negligible near the edge, so that the upper bound of the
integral may be replaced by +∞ without appreciably changing the result. The integral then
becomes explicitly computable, and one finds

𝑝0,𝑠 =
𝜁2
0,𝑠

(𝜒2
𝑒 + 𝜁2

0,𝑠)𝐽0(𝜁0,𝑠)2
e−𝑦0,𝑠𝐿𝑚(𝑦0,𝑠)𝐿𝑛+𝑚(𝑦0,𝑠), (3.33)

where

𝑦0,𝑠 ≡
𝜁2
0,𝑠𝑤

2

8𝑎2
(3.34)

and the functions 𝐿𝑁 (𝑋) are the (ordinary) Laguerre polynomials. In the same way, the
coefficients 𝑝𝑛,𝑠 are obtained by

𝑝𝑛,𝑠 =
2𝜋𝜁2

𝑛,𝑠

𝑃 (𝜒2
𝑒 + 𝜁2

𝑛,𝑠 − 4𝑛2)𝐽2𝑛(𝜁𝑛,𝑠)2

∫︁ 𝑎

0

𝑅(𝑛)
𝑚 (𝑟) 𝐽2𝑛(𝜁2𝑛,𝑠𝑟/𝑎) 𝑟 𝑑𝑟. (3.35)

We can again replace the upper bound by +∞, which allows explicit calculation,

𝑝𝑛,𝑠 =
𝜁2
𝑛,𝑠

(𝜒2
𝑒 + 𝜁2

𝑛,𝑠 − 4𝑛2)𝐽2𝑝(𝜁𝑝,𝑠)2
𝑚!

(𝑛+𝑚)!
e−𝑦𝑛,𝑠 (𝑦𝑛,𝑠)𝑛𝐿(𝑛)

𝑚 (𝑦𝑛,𝑠)2 (3.36)

with the notation

𝑦𝑛,𝑠 ≡
𝜁2
𝑛,𝑠𝑤

2

8𝑎2
. (3.37)

In the latter case we see that the Hankel transform maps the square of a Laguerre–Gauss
function onto the same function with a different argument, up to a scaling factor. The temperature
field is now completely known. Let us add that the Fourier–Bessel series are rapidly convergent so
that the reconstruction of the intensity is obtained with excellent accuracy with only 50 terms. In
Figure 8 we show the difference between the original intensity and the reconstructed one.

In the case of an ideally flat mode of radius 𝑏, the integral (3.15) is trivial, and we have the
following FB coefficients:

𝑝f𝑙𝑎𝑡,𝑠 =
2𝑎
𝑏

𝜁0,𝑠
(𝜒2 + 𝜁2

0,𝑠)𝐽
2
0 (𝜁0,𝑠)

𝐽1(𝜁0,𝑠𝑏/𝑎). (3.38)

The reconstruction of the flat mode from a limited number of Fourier–Bessel coefficients is not
perfect, owing to the generation of high frequencies by the sharp edges. But the heat field itself
is rapidly convergent because of the regularizing effect of integration, so that even with a small
number of terms, the FB series are accurate. In cases where the ideally flat model is forbidden,
the FB coefficients must be computed using Equation (2.16) via a numerical integration.

See Figure 9 for the reconstructed intensity profile of a Laguerre–Gauss mode LG5,5.

3.1.4 Numerical results on temperature fields

If we assume a mirror of the Virgo input mirrors size, made of synthetic silica, we can take the
parameters of Table 1.

A cut of the temperature field in the 𝜙 = 0 plane can be seen in Figures 10, 12, and 14 for
heating by coating absorption, and in Figures 11, 13, and 15 for heating by dissipation in the
substrate.

The temperature map of the coating 𝑧 = −ℎ/2 is shown in Figure 16 (heating by coating
absorption).
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Figure 8: Error in intensity reconstruction (50 Fourier–Bessel terms) for LG0,0, 𝑤 = 2 cm (black curve)
and LG5,5, 𝑤 = 3.5 cm (red curve); Cut: 𝜙 = 0
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Figure 9: Reconstructed intensity (FB series) for LG5,5 mode (𝜙 = 0)
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Table 1: Physical constants used in this paper

Symbol Parameter Value units

𝑎 half diameter 0.175 m
ℎ thickness 0.1 m
𝜌 density 2,202 kg m−3

𝐾 thermal conductivity 1.38 Wm−1 K−1

𝐶 specific heat cap. 745 J kg−1 K−1

𝛼 thermal expansion coef. 5.4× 10−7 K−1

𝛽 linear absorption 10−5 m−1

𝑌 Young’s modulus 7.3× 1010 Nm−2

𝜎 Poisson ratio 0.17 dimensionless
𝑑𝑛/𝑑𝑇 thermal refractive ind. 1.1× 10−5 K−1
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Figure 10: Temperature field in the substrate, 1 W dissipated in the coating, mode LG0,0, 𝑤 = 2 cm
(𝜙 = 0) [logarithmic scale]
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Figure 11: Temperature field in the substrate, 1 W dissipated in the bulk substrate, mode LG0,0, 𝑤 = 2 cm
(𝜙 = 0) [logarithmic scale]
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Figure 12: Temperature field in the substrate, 1 W dissipated in the coating, flat mode, 𝑏 = 9.1 cm
(𝜙 = 0) [logarithmic scale]
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Figure 13: Temperature field in the substrate, 1 W dissipated in the bulk substrate, flat mode, 𝑏 = 9.1 cm
(𝜙 = 0) [logarithmic scale]
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Figure 14: Temperature field in the substrate, 1 W dissipated in the coating, mode LG5,5, 𝑤 = 3.5 cm
(𝜙 = 0) [logarithmic scale]
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Figure 15: Temperature field in the substrate, 1 W dissipated in the bulk substrate, mode LG5,5,
𝑤 = 3.5 cm (𝜙 = 0) [logarithmic scale]

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors 29

-0.175 -0.125 -0.075 -0.025  0.025  0.075  0.125  0.175

-0.175

-0.125

-0.075

-0.025

 0.025

 0.075

 0.125

 0.175

Figure 16: Nonaxisymmetric mode LG5,5, 𝑤 = 3.5 cm, temperature on the coating (coating absorption)
(𝑧 = −ℎ/2)
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The temperature map of the meridian plane (𝑧 = 0) of the substrate (heating by internal
dissipation) is shown in Figure 17, where one can see the effect of thermal conduction, which
generates a practically axisymmetric temperature field, despite the cos2 signature of the incoming
light beam.
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Figure 17: Nonaxisymmetric mode LG5,5, 𝑤 = 3.5 cm. Temperature in the meridian plane (bulk
absorption) (𝑧 = 0)

The dependence of the temperature field on the longitudinal variable 𝑧 is shown in Figures 18
and 19.

3.2 Steady thermal lensing

The temperature field inside the substrate has, as a first effect, to change the refractive index by
an amount

𝛿𝑛(𝑟, 𝑧) =
𝑑𝑛

𝑑𝑇
𝑇 (𝑟, 𝑧), (3.39)

where 𝑑𝑛/𝑑𝑇 is the temperature index coefficient [23]. Therefore, the resulting index field, not
being homogeneous, causes focusing effects on light called thermal lensing. The thermal lens is the
integrated excess optical path (EOP) for a light ray crossing the substrate. Neglecting diffraction
over the thickness of the mirror substrate, the EOP can be evaluated using

𝑍(𝑟) =
𝑑𝑛

𝑑𝑇

∫︁ ℎ/2

−ℎ/2
𝑇 (𝑟, 𝑧) 𝑑𝑧. (3.40)
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Figure 18: Temperature at various depths in the substrate (coating absorption) case of LG5,5 (𝜙 = 0)
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Figure 19: Temperature at various depths in the substrate (flat mode, bulk absorption) (𝜙 = 0)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


32 Jean-Yves Vinet

It is easy to obtain the result in the two cases discussed above.

3.2.1 Thermal lensing from coating absorption

From Equation (3.18) we obtain the thermal lens caused by coating absorption:

𝑍coat(𝑟) =
𝑑𝑛

𝑑𝑇

𝜖𝑃

𝜋𝐾

∑︁
𝑠

𝑝𝑛,𝑠
𝜁𝑛,𝑠

sinh 𝛾𝑛,𝑠
𝑑1,𝑛,𝑠

𝐽𝑛(𝑘𝑛,𝑠𝑟/𝑎) (3.41)

3.2.2 Thermal lens from bulk absorption

From Equation (3.25), one finds

𝑍bulk(𝑟) =
𝑑𝑛

𝑑𝑇

𝛽ℎ𝑃

𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜁2
𝑛,𝑠

[︂
1− (2𝜒𝑎/𝜁𝑛,𝑠ℎ) sinh 𝛾𝑠

𝑑1,𝑛,𝑠

]︂
𝐽𝑛(𝑘𝑛,𝑠𝑟/𝑎). (3.42)

3.2.3 Equivalent paraboloid

In order to study the consequences of the focusing properties of the thermal lens, we can compute
the nearest paraboloid, defined by the apex equation :

𝑍(𝑟) = 𝑐𝑟2 + 𝑑, (3.43)

where 𝑐 is the curvature parameter, related to the mean curvature radius 𝑅𝑐 of the lens by 𝑐 =
1/2𝑅𝑐. 𝑑 is called a piston. We define the nearest paraboloid by requiring the new lens −𝑍 to
carry out the best correction to the wavefront distorted by 𝑍. If 𝜓(𝑟, 𝜙) is the normalized mode
amplitude, the Hermitian scalar product 𝑆 of the perfect incoming field with the distorted-corrected
one is

𝑆 = ⟨𝜓,𝐶𝜓⟩, (3.44)

where
𝐶(𝑟, 𝜑) = exp[𝑖𝑘(𝑍(𝑟, 𝜙)− 𝑍(𝑟)] (𝑘 ≡ 2𝜋/𝜆) (3.45)

(𝜆 being the laser wavelength). For a small difference, this is, at second order,

𝑆 = 1 + 𝑖𝑘

∫︁
R2

[𝑍(𝑟, 𝜙)− 𝑍(𝑟)]|𝜓(𝑟, 𝜙)|2𝑟 𝑑𝑟 𝑑𝜙− 𝑘2

2

∫︁
R2

[𝑍(𝑟, 𝜙)− 𝑍(𝑟)]2|𝜓(𝑟, 𝜙)|2𝑟 𝑑𝑟 𝑑𝜙. (3.46)

The first integral represents a phase that can always be cancelled out by a suitable choice of
𝑑. The second integral represents the coupling loss due to imperfect correction of the wavefront.
Parameters 𝑐 and 𝑑 are found by requiring a minimum loss. If we define the average < 𝑓 > of any
function 𝑓(𝑟, 𝜙) by

< 𝑓 >=
∫︁

R2
𝑓(𝑟, 𝜙)|𝜓(𝑟, 𝜙)|2𝑟 𝑑𝑟 𝑑𝜙. (3.47)

In words, if all averages are performed with the weighting function |𝜓(𝑟, 𝜙)|2 (i.e., the normalized
beam intensity), then the determination of the best paraboloid amounts to the classical least-
squares formulas:

𝑐 =
< 𝑍𝑟2 > − < 𝑟2 >< 𝑍 >

< 𝑟4 > − < 𝑟2 >2
(3.48)

𝑑 =< 𝑍 > −𝑐 < 𝑟2 > . (3.49)
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3.2.3.1 Averaging with LG modes

In the case of Laguerre–Gauss beams, the weighting function in the averaging process, is of
the form (see Equation (3.27))

|𝜓(𝑟, 𝜙)|2 = 𝑅(𝑛)
𝑚 (𝑟) +𝑅(𝑛)

𝑚 (𝑟) cos(2𝑛𝜙+ 2𝜙𝑛), (3.50)

whereas the thermal lens is of the form (see Equation (3.29)

𝑍(𝑟, 𝜙) = 𝑍0(𝑟) + 𝑍𝑛,𝑚(𝑟) cos(2𝑛𝜙+ 2𝜙𝑛). (3.51)

with
𝑍0(𝑟) =

∑︁
𝑠>0

𝑍0,𝑠𝐽0(𝜁0,𝑠𝑟/𝑎) (3.52)

𝑍𝑛,𝑚(𝑟) =
∑︁
𝑠>0

𝑍𝑛,𝑚,𝑠𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎). (3.53)

We have the following intermediate results:

< 𝑟2 >= 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟) 𝑟3 𝑑𝑟 =

𝑤2

2
(2𝑚+ 𝑛+ 1) (3.54)

< 𝑟4 >= 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟) 𝑟5 𝑑𝑟 =

𝑤4

4
[6𝑚(𝑛+𝑚+ 1) + (𝑛+ 1)(𝑛+ 2)] (3.55)

so that

< 𝑟4 > − < 𝑟2 >2=
𝑤4

4
[2𝑚(𝑚+ 𝑛+ 1) + 𝑛+ 1]. (3.56)

Now,

< 𝑍 >= 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝑍0(𝑟) 𝑟 𝑑𝑟 + 𝜋

∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝑍𝑛(𝑟) 𝑟 𝑑𝑟, (3.57)

making clear that we need the two integrals

ℐ0 =< 𝐽0(𝜁0,𝑠𝑟/𝑎) >= 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝐽0(𝜁0,𝑠𝑟/𝑎) 𝑟 𝑑𝑟 (3.58)

ℐ𝑛,𝑚 =< 𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎) >= 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎) 𝑟 𝑑𝑟. (3.59)

These two integrals are analogous to those giving the FB coefficients of the intensity (see Equa-
tions (3.33) and (3.36)), so that we have immediately

ℐ0 = e−𝑦0,𝑠 𝐿𝑚(𝑦0,𝑠)𝐿𝑛+𝑚(𝑦0,𝑠) (3.60)

ℐ𝑛,𝑚 =
𝑚!

(𝑛+𝑚)!
(𝑦𝑛,𝑠)𝑛e−𝑦𝑛,𝑠 𝐿(𝑛)

𝑚 (𝑦𝑛,𝑠)2. (3.61)

To compute < 𝑍𝑟2 >, we need the integrals

𝒦0 = 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝐽0(𝜁0,𝑠𝑟/𝑎) 𝑟3 𝑑𝑟 (3.62)

𝒦𝑛,𝑚 = 2𝜋
∫︁ ∞

0

𝑅(𝑛)
𝑚 (𝑟)𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎) 𝑟3 𝑑𝑟. (3.63)
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These are easily obtained from the preceding definitions of ℐ0, and ℐ𝑛,𝑚 using the Bessel differential
equation; namely, we have, for arbitrary 𝜅,

< 𝐽0(𝜅𝑟)𝑟2 >= −
(︂
𝜕2
𝜅 +

1
𝜅
𝜕𝜅

)︂
< 𝐽0(𝜅𝑟) > (3.64)

< 𝐽2𝑛(𝜅𝑟)𝑟2 >= −
(︂
𝜕2
𝜅 +

1
𝜅
𝜕𝜅 −

4𝑛2

𝜅2

)︂
< 𝐽2𝑛(𝜅𝑟) > . (3.65)

Let us note that

𝑐0,𝑠 =
< 𝐽0(𝜁0,𝑠𝑟/𝑎)𝑟2 > − < 𝑟2 >< 𝐽0(𝜁0,𝑠𝑟/𝑎) >

< 𝑟4 > − < 𝑟2 >2
(3.66)

𝑐𝑛,𝑚,𝑠 =
< 𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎)𝑟2 > − < 𝑟2 >< 𝐽2𝑛(𝜁𝑛,𝑠𝑟/𝑎) >

< 𝑟4 > − < 𝑟2 >2
. (3.67)

After some algebra, we get (here 𝑦 ≡ 𝑦0,𝑠)

𝑐0,𝑠 =
2

[2𝑚(𝑛+𝑚+ 1) + 𝑛+ 1]𝑤2
e−𝑦 [(2𝑚+ 𝑛+ 2− 𝑦)𝐿𝑚(𝑦)𝐿𝑛+𝑚(𝑦)

+(𝑚+ 1)
(︁
𝐿𝑚+1(𝑦)𝐿

(1)
𝑛+𝑚−1(𝑦)− 𝐿𝑚(𝑦)𝐿(1)

𝑛+𝑚(𝑦)
)︁

+(𝑛+𝑚+ 1)
(︁
𝐿𝑚−1(𝑦)𝐿

(1)
𝑛+𝑚+1(𝑦)− 𝐿(1)

𝑚 (𝑦)𝐿𝑛+𝑚(𝑦)
)︁]︁

(3.68)

and (here, 𝑦 ≡ 𝑦𝑛,𝑠)

𝑐𝑛,𝑚,𝑠 =
2

[2𝑚(𝑛+𝑚+ 1) + 𝑛+ 1]𝑤2
𝑦𝑛 e−𝑦[︁

(2𝑛− 𝑦)𝐿(𝑛)
𝑚 (𝑦)2 + 4(𝑛+𝑚− 𝑦)𝐿(𝑛)

𝑚 (𝑦)𝐿(𝑛+1)
𝑚−1 (𝑦)−

2(𝑛+𝑚)
(︁
𝐿(𝑛)
𝑚 (𝑦)𝐿(𝑛+1)

𝑚−2 (𝑦) + 𝐿
(𝑛+1)
𝑚−1 (𝑦)𝐿(𝑛)

𝑚−1(𝑦)
)︁]︁

(3.69)

(with the convention 𝐿(𝑛)
𝑚 ≡ 0 [𝑚 < 0]). Now the curvature coefficient is simply

𝑐 =
∑︁
𝑠>0

[︂
𝑐0,𝑠𝑍0,𝑠 +

1
2
𝑐𝑛,𝑚,𝑠𝑍𝑛,𝑚,𝑠

]︂
. (3.70)

3.2.3.2 Averaging with flat modes In the case of an ideally flat mode (crude model) of
radius 𝑏, we get

V[𝑟2] =
𝑏4

12
(3.71)

< 𝐽0(𝜁0,𝑠𝑟/𝑎) >=
2𝐽1(𝜁0,𝑠𝑏/𝑎)
𝜁0,𝑠𝑏/𝑎

(3.72)

and

< 𝐽0(𝜁0,𝑠𝑟/𝑎)𝑟2 > − < 𝑟2 >< 𝐽0(𝜁0,𝑠𝑟/𝑎) > =
𝑎2

𝜁2
𝑠

[4𝐽0(𝜁𝑠𝑏/𝑎)+

(𝜁𝑠𝑏/𝑎− 8𝑎/𝑏𝜁𝑠) 𝐽1(𝜁𝑠𝑏/𝑎)] . (3.73)
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The result for the curvature is
𝑐 =

∑︁
𝑠>0

𝑐(𝐹 )
𝑠 𝑍0,𝑠 (3.74)

with

𝑐(𝐹 )
𝑠 =

12𝑎2

𝑏4𝜁2
0,𝑠

[︂
4𝐽0

(︂
𝜁0,𝑠𝑏

𝑎

)︂
+
(︂
𝜁0,𝑠𝑏

𝑎
− 8𝑎
𝜁0,𝑠𝑏

)︂
𝐽1

(︂
𝜁0,𝑠𝑏

𝑎

)︂]︂
. (3.75)

3.2.4 Coupling losses

The differences in thermal lensing between axisymmetric and nonaxisymmetric high-order beams
are very small, because diffusion of heat rapidly produces a quasihomogeneous temperature with
respect to the polar angle. This is why we now restrict the discussions to axisymmetric modes.
Existence of a thermal lens 𝑍(𝑟) causes a mismatching of the beam, which has passed through
the lens, with the ideal one. The amplitude coupling coefficient is given by the Hermitian scalar
product

⟨Ψ, e𝑖𝑘𝑍Ψ⟩ =< e𝑖𝑘𝑍 >, (3.76)

where the average < ... > is weighted, as usual, by the normalized intensity of the readout beam.
Mismatching results in turn in coupling losses due to the distortion of the wavefront of the trans-
mitted beam. These distortions have been summarized by a spurious radius of curvature for which
we have given formulas in the preceding paragraph (??). But it is clear from the shape of the
lenses that the distortion is not parabolic. In general, there is some departure of the wavefront
from a parabola. Thus, we have two contributions to coupling losses: a harmonic part (by reference
to the harmonic oscillator potential) and a nonharmonic part. It is possible to compare the two
contributions. For the parabolic or harmonic part, we have the following coupling coefficient 𝛾 for
a spurious curvature radius 𝑅:

𝛾 = 2𝜋
∫︁ 𝑎

0

e𝑖𝑘𝑟
2/2𝑅|Ψ(𝑟)|2𝑟 𝑑𝑟. (3.77)

In the case of LG modes, we can be more specific:

𝛾𝑛,𝑚 =
𝑚!

(𝑛+𝑚)!
4
𝑤2

∫︁ 𝑎

0

e𝑖𝑘𝑟
2/2𝑅(2𝑟2/𝑤2)𝑛𝐿(𝑛)

𝑚 (2𝑟2/𝑤2)2e−2𝑟2/𝑤2
𝑟 𝑑𝑟. (3.78)

Assuming negligible clipping losses, we can replace the upper integration bound by +∞ and take:

𝛾𝑛,𝑚 =
𝑚!

(𝑛+𝑚)!

∫︁ ∞

0

𝑥𝑛𝐿(𝑛)
𝑚 (𝑥)2 e−(1−𝑖𝐹 )𝑥 𝑑𝑥, (3.79)

(with 𝐹 ≡ 𝜋𝑤2/2𝜆𝑅) so that we obtain

𝛾𝑛,𝑚 =
1

(1− 𝑖 𝐹 )2𝑚+𝑛+1

𝑚∑︁
𝑠=0

(︂
𝑚
𝑠

)︂(︂
𝑛+𝑚
𝑠

)︂
(−𝐹 2)𝑠. (3.80)

In the case of a flat mode, the integral is trivial and we get:

|𝛾flat|2 = sinc(𝜋𝑏2/2𝜆𝑅)2, (3.81)

while the power coupling losses are simply

𝐿 = 1− |𝛾|2. (3.82)
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In Figure 20, we have plotted the evolution of the coupling losses versus the dissipated power
on the coating of a mirror. The solid and dashed curves correspond respectively to the total losses
by a numerical integration of Equation (3.76) with the overall thermal lens and to harmonic losses.
We see that all modes have almost only harmonic losses for weak dissipated losses (roughly below
100 mW). The anharmonicity appears soon for the LG00 mode of width 2 cm, and for a fraction
of W, nonharmonic losses are significant. For Ex2 and Ex3, we see that the coupling losses are
weaker and practically harmonic. The curve for LG55 is practically identical to the curve of the
flat mode, which is why we did not plot it.
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Figure 20: Coupling losses as functions of the dissipated power on the coating. Solid line: total losses,
numerical integration of Equation (3.76). Dashed line: harmonic losses after Equation (3.80).

For weak dissipated power, in the case of LG modes we use the lowest-order approximation of
Equation (3.80), so that we get

𝐿𝑛,𝑚 = [2𝑚(𝑚+ 𝑛+ 1) + 𝑛+ 1]
(︂
𝜋𝑤2

2𝜆𝑅

)︂2

+𝒪(𝑅−4). (3.83)

We note that, owing to Equation (3.56), this is nothing but a variance of (weighted by the intensity
profile)

𝐿𝑛,𝑚 =
(︁ 𝜋

𝜆𝑅

)︁2

𝑉 [𝑟2] = 𝑉

[︂
𝜋𝑟2

𝜆𝑅

]︂
. (3.84)

Now for the flat mode, we get

𝐿flat =
1
3

(︂
𝜋𝑏2

2𝜆𝑅

)︂2

+𝒪(𝑅−4), (3.85)

which is again

𝐿flat = 𝑉

[︂
𝜋𝑟2

𝜆𝑅

]︂
. (3.86)

NB: The curvature radii are expressed in m.W, the losses in W−2.
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Table 2: Thermal lensing from coating and bulk absorption (abs.)

results (coating abs.) LG0,0 𝑤 = 2 cm Flat 𝑏 = 9.1 cm LG5,5 𝑤 = 3.5 cm

curvature radius 328 mW 9,682 mW 27,396 mW
piston 3.23 𝜇m/W 1.43 𝜇m/W 1.08 𝜇m/W

coupling losses 3.24 /W2 0.53 /W2 0.51 /W2

results (bulk abs.) LG0,0 𝑤 = 2 cm Flat 𝑏 = 9.1 cm LG5,5 𝑤 = 3.5 cm

curvature radius 317 mW 9,164 mW 25,926 mW
piston 3.39 𝜇m/W 1.52 𝜇m/W 1.15 𝜇m/W

coupling losses 3.47 /W2 0.59 /W2 0.56 /W2

3.2.5 Numerical results

The thermal lensing is almost identical for 1 W coating or bulk absorption. In Figure 21, we have
plotted the thermal lens profile and the best fit paraboloid 𝑍(𝑟) for the case of heating by internal
absorption.
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Figure 21: Thermal lens, heating by 1 W bulk absorption. The dashed line is the nearest paraboloid
𝑍(𝑟) (in the sense of least squares, weighted by the normalized beam intensity).

Some numerical results can be seen in Table 2. The losses are computed from the parabolic
approximation [see Equations (3.83) and (3.85)] valid for weak dissipated power.

Table 3 contains results for some LG modes having 𝑤 parameters tuned for 1 ppm clipping
losses on a 35 cm diameter mirror.

The difference between the flat beam and the mesa beam, regarding thermal lensing, is shown
in Figure 22. One sees that using the crude flat beam yields a small overestimation of the lensing.
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Table 3: Thermal lensing curvature radii (𝑅𝑐) for LG modes having 1 ppm clipping losses, and associated
coupling losses (L) in the weak power approximation [Equation (3.83)] (mirror diameter: 35 cm)

order (𝑝, 𝑞) w [cm] 𝑅𝑐 [mW] (coat. abs.) L [W−2] 𝑅𝑐 [mW] (bulk abs.) L [W−2]

(0,0) 6.65 4,400 2.20 4,184 2.43

(0,1) 5.56 8,566 1.42 8,139 1.57
(1,0) 6.06 8,130 0.89 7,713 0.99

(0,2) 4.93 12,113 1.14 11,497 1.27
(1,1) 5.23 11,608 0.97 11,006 1.08
(2,0) 5.65 11,414 0.51 10,822 0.57

(0,3) 4.49 14,870 1.00 14,106 1.11
(1,2) 4.70 14,430 0.92 13,677 1.02
(2,1) 4.97 14,499 0.70 13,736 0.78
(3,0) 5.35 14,484 0.34 13,729 0.38

(0,4) 4.17 17,219 0.91 16,328 1.01
(1,3) 4.32 16,731 0.87 15,855 0.97
(2,2) 4.52 16,889 0.73 15,997 0.82
(3,1) 4.76 17,237 0.53 16,324 0.59
(4,0) 5.11 17,368 0.25 16,462 0.27

(0,5) 3.91 19,117 0.85 18,123 0.95
(1,4) 4.03 18,686 0.82 17,705 0.92
(2,3) 4.18 18,787 0.74 17,792 0.82
(3,2) 4.36 19,204 0.60 18,182 0.67
(4,1) 4.58 19,790 0.42 18,738 0.46
(5,0) 4.91 20,104 0.19 19,055 0.21
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Figure 22: Thermal lens for 1 W absorbed from the mesa mode (solid line) and the flat mode (dashed
line)
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3.3 Thermal distortions in the steady state

We assume from now on that the temperature field is axisymmetric. Due to the temperature field,
at the same time, thermal expansion of the material causes a change of the shape of the mirror
and a distortion of the reflecting face. If we call �⃗�(𝑟, 𝑧) the displacement vector, i.e., the difference
between the coordinates of a given atom before and after heating, the classical relevant quantities
are the strain tensor 𝐸𝑖𝑗 and the stress tensor Θ𝑖𝑗 . In the presence of a temperature field 𝑇 , the
two tensors are related by the generalized Hooke law for isotropic media via the Lamé coefficients
𝜆, 𝜇:

Θ𝑖𝑗 = 𝛿𝑖𝑗(𝜆𝐸 − 𝜈𝑇 ) + 2𝜇𝐸𝑖𝑗 , (3.87)

where 𝜈 is the stress temperature modulus and 𝐸 the trace of the strain tensor. 𝛿𝑖𝑗 is the Kronecker
tensor. In cylindrical coordinates (𝑟, 𝜑, 𝑧), assuming cylindrical symmetry, the displacement vector
has only two components, 𝑢𝑟(𝑟, 𝑧) and 𝑢𝑧(𝑟, 𝑧). Then the strain tensor has four components:

𝐸𝑟𝑟(𝑟, 𝑧) =
𝜕𝑢𝑟
𝜕𝑟

(𝑟, 𝑧) , 𝐸𝜑𝜑(𝑟, 𝑧) =
𝑢𝑟(𝑟, 𝑧)

𝑟
,

𝐸𝑧𝑧(𝑟, 𝑧) =
𝜕𝑢𝑧
𝜕𝑧

(𝑟, 𝑧) , 𝐸𝑟𝑧 =
1
2

[︂
𝜕𝑢𝑟
𝜕𝑧

(𝑟, 𝑧) +
𝜕𝑢𝑧
𝜕𝑟

(𝑟, 𝑧)
]︂
. (3.88)

The relation (3.87) is, in detail,⎧⎪⎪⎨⎪⎪⎩
Θ𝑟𝑟 = −𝜈𝑇 + 𝜆𝐸 + 2𝜇𝐸𝑟𝑟
Θ𝜑𝜑 = −𝜈𝑇 + 𝜆𝐸 + 2𝜇𝐸𝜑𝜑
Θ𝑧𝑧 = −𝜈𝑇 + 𝜆𝐸 + 2𝜇𝐸𝑧𝑧
Θ𝑟𝑧 = 2𝜇𝐸𝑟𝑧

, (3.89)

where, as above, 𝑇 (𝑟, 𝑧) is the excess temperature field given by the generic FB expansion

𝑇 (𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝑧)𝐽0(𝜁𝑠𝑟/𝑎). (3.90)

The stress tensor must obey the homogeneous divergence equation in the absence of external
applied forces (static equilibrium), i.e., a special case of the Navier–Cauchy equations,{︂

𝜕𝑟Θ𝑟𝑟 + (Θ𝑟𝑟 −Θ𝜑𝜑)/𝑟 + 𝜕𝑧Θ𝑟𝑧 = 0
(𝜕𝑟 + 1/𝑟)Θ𝑟𝑧 + 𝜕𝑧Θ𝑧𝑧 = 0 . (3.91)

Moreover, the following boundary conditions must be satisfied:

Θ𝑧𝑧(𝑟,±ℎ/2) = 0, Θ𝑟𝑧(𝑎, 𝑧) = 0, Θ𝑟𝑧(𝑟,±ℎ/2) = 0, Θ𝑟𝑟(𝑎, 𝑧) = 0. (3.92)

It is more convenient, at the end of the calculations, to express the results in terms of the Poisson
ratio 𝜎 and Young’s modulus 𝑌 , using the correspondence

𝜆 =
𝑌 𝜎

(1 + 𝜎)(1− 2𝜎)
, 𝜇 =

𝑌

2(1 + 𝜎)
,

𝜈

2(𝜆+ 𝜇)
= 𝛼(1 + 𝜎), (3.93)

where 𝛼 is the linear thermal expansion coefficient.

3.3.1 Thermal expansion from thermalization on the coating

In the case of a heat source localized on the reflecting face, so that the temperature field 𝑇 (𝑟, 𝑧)
is known, it is possible to satisfy Equation (3.91) and all but one of the boundary conditions in
Equation (3.92) by a displacement vector of the form

𝑢𝑟(𝑟, 𝑧) =
𝜈

2(𝜆+ 𝜇)
1
𝑟

∫︁ 𝑟

0

𝑇 (𝑟′, 𝑧) 𝑟′ 𝑑𝑟′ (3.94)
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𝑢𝑧(𝑟, 𝑧) =
𝜈

2(𝜆+ 𝜇)

[︃∫︁ 𝑧

−ℎ/2
𝑇 (𝑟, 𝑧′)𝑑𝑧′ + Φ(𝑟)

]︃
, (3.95)

where Φ(𝑟) is a function to be determined. It can be checked that Θ𝑧𝑧 = 0. The equilibrium
equations then reduce to {︂

𝜕𝑧Θ𝑟𝑧 = 0
(𝜕𝑟 + 1/𝑟)Θ𝑟𝑧 = 0 . (3.96)

We have
𝜕Θ𝑟𝑧

𝜕𝑧
(𝑟, 𝑧) =

𝜈𝜇

2(𝜆+ 𝜇)

[︂
𝜕𝑇

𝜕𝑟
(𝑟, 𝑧) +

1
𝑟

∫︁ 𝑟

0

𝜕2𝑇

𝜕𝑧2
(𝑟′, 𝑧) 𝑟′ 𝑑𝑟′

]︂
. (3.97)

But let us recall that 𝑇 is harmonic [see Equation (3.1)], so that

𝜕2𝑇

𝜕𝑧2
= − 1

𝑟

𝜕

𝜕𝑟

(︂
𝑟
𝜕𝑇

𝜕𝑟

)︂
(3.98)

and consequently the first equilibrium equation (3.96) is identically satisfied

𝜕Θ𝑟𝑧

𝜕𝑧
(𝑟, 𝑧) = 0. (3.99)

Now we have

(𝜕𝑟 + 1/𝑟)Θ𝑟𝑧 =
𝜈𝜇

2(𝜆+ 𝜇)

[︂
Φ′′(𝑟) +

1
𝑟
Φ′(𝑟) +

𝜕𝑇

𝜕𝑧
(𝑟,−ℎ/2)

]︂
. (3.100)

Therefore, in order to satisfy the second equilibrium equation (3.96), we take

Φ(𝑟) = −
∫︁ 𝑟

0

𝑑𝑟′

𝑟′

∫︁ 𝑟′

0

𝜕𝑇

𝜕𝑧
(𝑟′′,−ℎ/2) 𝑟′′ 𝑑𝑟′′ + 𝐶, (3.101)

where 𝐶 is an arbitrary constant. The stress component Θ𝑟𝑧 is now explicitly known

Θ𝑟𝑧(𝑟, 𝑧) =
𝜈𝜇

2(𝜆+ 𝜇)

[︃∫︁ 𝑧

−ℎ/2

𝜕𝑇

𝜕𝑟
(𝑟, 𝑧′) 𝑑𝑧′ +

1
𝑟

∫︁ 𝑟

0

(︂
𝜕𝑇

𝜕𝑧
(𝑟′, 𝑧)− 𝜕𝑇

𝜕𝑧
(𝑟′,−ℎ/2)

)︂
𝑟′ 𝑑𝑟′

]︃
(3.102)

making clear that Θ𝑟𝑧(𝑟,−ℎ/2) = 0, and since it has been shown that 𝜕𝑧Θ𝑟𝑧(𝑟, 𝑧) = 0, we have,
simply,

Θ𝑟𝑧 = 0. (3.103)

Two more boundary conditions are satisfied. At this point, the only remaining unsatisfied condition
is the vanishing of Θ𝑟𝑟 on the edge. Indeed, we have

Θ𝑟𝑟(𝑟, 𝑧) = − 𝜈𝜇

𝜆+ 𝜇

1
𝑟2

∫︁ 𝑟

0

𝑇 (𝑟′, 𝑧) 𝑟′ 𝑑𝑟′ (3.104)

or explicitly

Θ𝑟𝑟(𝑟, 𝑧) = − 𝜈𝜇

𝜆+ 𝜇

∑︁
𝑠>0

𝑇𝑠(𝑧)
𝑎

𝜁𝑠𝑟
𝐽1

(︂
𝜁𝑠𝑟

𝑎

)︂
, (3.105)

so that

Θ𝑟𝑟(𝑎, 𝑧) = − 𝜈𝜇

𝜆+ 𝜇

∑︁
𝑠>0

𝑇𝑠(𝑧)
𝐽1(𝜁𝑠)
𝜁𝑠

. (3.106)
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It is easy to check numerically that the function Θ𝑟𝑟(𝑎, 𝑧) is almost linear for any type of beam.
Therefore, it can be almost cancelled by an opposite linear stress on the edge. Such a stress can
be induced by the following extra displacement vector:

𝛿𝑢𝑟(𝑟, 𝑧) =
𝜆+ 2𝜇

2𝜇(3𝜆+ 2𝜇)
(𝜔0𝑟 + 𝜔1𝑟𝑧) (3.107)

𝛿𝑢𝑧(𝑟, 𝑧) = − 𝜆

𝜇(3𝜆+ 2𝜇)
(𝜔0𝑧 + 𝜔1𝑧

2/2)− 𝜆+ 2𝜇
4𝜇(3𝜆+ 2𝜇)

𝜔1𝑟
2, (3.108)

where 𝜔0 and 𝜔1 are arbitrary constants. One can check that this vector firstly satisfies the
equilibrium equations (3.91), secondly has identically null stress components Θ𝑟𝑧 and Θ𝑧𝑧, and
finally produces a radial edge stress:

𝛿Θ𝑟𝑟(𝑎, 𝑧) = 𝜔0 + 𝜔1𝑧. (3.109)

The constants 𝜔0 and 𝜔1 can now be chosen in order to minimize the quadratic error:

𝑄(𝜔0, 𝜔1) =
∫︁ ℎ/2

−ℎ/2
[Θ𝑟𝑟(𝑎, 𝑧) + 𝜔0 + 𝜔1 𝑧]

2
𝑑𝑧. (3.110)

After using the classical mean-squares formulas, this cancels the mean force and the mean torque
on the edge:

𝜔0 = − 1
ℎ

∫︁ ℎ/2

−ℎ/2
Θ𝑟𝑟(𝑎, 𝑧) 𝑑𝑧 (3.111)

𝜔1 = −12
ℎ3

∫︁ ℎ/2

−ℎ/2
Θ𝑟𝑟(𝑎, 𝑧) 𝑧 𝑑𝑧. (3.112)

The complete displacement �⃗� ≡ �⃗�+ 𝛿�⃗� now satisfies the Navier–Cauchy equations, all constraints
on the faces, and induces null mean force and torque on the edge. Owing to the principle of
de Saint-Venant [38], we can conclude that the displacement is correct almost everywhere in the
bulk material, except possibly near the edge. But any effective optical beam has a vanishing
intensity near the edge in order to prevent diffraction losses, so that the solution �⃗� is relevant for
our purpose. If we use Young’s modulus 𝑌 , the Poisson ratio 𝜎 and the linear thermal expansion
coefficient 𝛼 instead of 𝜆, 𝜇, 𝜈, we find

𝜔0 =
𝛼𝑌 𝜒𝜖𝑃

𝜋𝐾 ℎ

∑︁
𝑠

𝑝𝑠
𝐽0(𝜁𝑠)
𝜁3
𝑠

sinh 𝛾𝑠
𝑑1,𝑠

, (3.113)

with 𝛾𝑠 ≡ 𝜁𝑠ℎ/2𝑎. The FB coefficients 𝑝𝑠 are identical to the 𝑝0,𝑠 computed in Section 3.1.3 and

𝜔1 = −12𝛼𝑌 𝜒𝜖𝑎𝑃
𝜋𝐾 ℎ3

∑︁
𝑠>0

𝑝𝑠
𝐽0(𝜁𝑠)
𝜁4
𝑠

𝛾𝑠 cosh 𝛾𝑠 − sinh 𝛾𝑠
𝑑2,𝑠

. (3.114)

With the same notation, we have, explicitly, the components of the displacement:

𝑢𝑟(𝑟, 𝑧) = 𝛼(1 + 𝜎)𝑎
∑︁
𝑠>0

𝑇𝑠(𝑧)
𝜁𝑠

𝐽1(𝜁𝑠𝑟/𝑎) (3.115)

𝛿𝑢𝑟(𝑟, 𝑧) =
1− 𝜎

𝑌
(𝜔0 + 𝜔1𝑧)𝑟 (3.116)
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𝑢𝑧(𝑟, 𝑧) =
𝛼(1 + 𝜎)𝜖𝑃

2𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜁𝑠

[︂
1
𝑑2,𝑠

+
(︂

sinh(𝜁𝑠𝑧/𝑎)
𝑑1,𝑠

− cosh(𝜁𝑠𝑧/𝑎)
𝑑2,𝑠

)︂
𝐽0(𝜁𝑟/𝑎)

]︂
(3.117)

𝛿𝑢𝑧(𝑟, 𝑧) = −2𝜎
𝑌

[︂
𝜔0 +

1
2
𝜔1𝑧

]︂
𝑧 − (1− 𝜎)

2𝑌
𝜔1 𝑟

2. (3.118)

The displacement vector is defined up to a constant vector. We have chosen the constant in such a
way that the displacement is zero at (𝑟 = 0, 𝑧 = 0). We can see in Figure 23 the global deformation
of the mirror in the cases Ex1, Ex2 and Ex3.

LG:p=0,q=0
w=2 cm

Flat
b=9.1 cm

LG:p=5,q=5
w=3.5 cm

Figure 23: Thermal deformation of the mirror under three types of readout beams (1 W absorbed power
in the coating and exaggerated by a factor of 2×105)

For the deformation of the coating, we have

𝑢𝑧(𝑟,−ℎ/2) = 𝛼(1 + 𝜎)Φ(𝑟) (3.119)

or, in detail,
𝑢𝑧(𝑟,−ℎ/2) =

∑︁
𝑠>0

𝑈𝑠 [1− 𝐽0(𝜁𝑠𝑟/𝑎)] (3.120)

with

𝑈𝑠 =
𝛼(1 + 𝜎)𝜖𝑃

2𝜋𝐾
𝑝𝑠
𝜁𝑠

(︂
sinh 𝛾𝑠
𝑑1,𝑠

+
cosh 𝛾𝑠
𝑑2,𝑠

)︂
. (3.121)

(The displacement has now been taken to be zero at the center of the reflecting face), and

𝛿𝑢𝑧(𝑟,−ℎ/2) = −1− 𝜎

2𝑌
𝜔1𝑟

2. (3.122)

The geometrical effects of heating (see Figure 23) are mainly a thermally-induced aberration due
to the change of the reflecting surface by 𝑢𝑧(𝑟,−ℎ/2) + 𝛿𝑢𝑧(𝑟), then a change of the optical path
through the substrate by a quantity

𝛿𝑍(𝑟) = (𝑛𝑅 − 1)
∫︁ ℎ/2

−ℎ/2
𝐸𝑧𝑧(𝑟, 𝑧) 𝑑𝑧 = 𝛼(1 + 𝜎)(𝑛𝑅 − 1)

∫︁ ℎ/2

−ℎ/2
𝑇 (𝑟, 𝑧) 𝑑𝑧 (3.123)
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(𝑛𝑅 being the nominal refractive index), which can be directly included in the thermal lens expres-
sion [Equation (3.40)], which has the same dependence on temperature. Note that the Saint-Venant
correction contributes a constant (independent on 𝑟), so that we can ignore it in a lensing study.
Thus, the global thermal lens is identical to the result found in Section 3, up to the correction

𝑑𝑛

𝑑𝑇
→ 𝑑𝑛

𝑑𝑇
+ 𝛼(1 + 𝜎)(𝑛𝑅 − 1). (3.124)

Estimations of the weighted curvature of the distorted surface are obtained with the same technique
as in Section 3. For Laguerre–Gauss modes, we obtain

𝑐 = −
∑︁
𝑠>0

𝑐(𝐿𝐺)
𝑠 𝑈 (𝐿𝐺)

𝑠 − 1− 𝜎

2𝑌
𝜔

(𝐿𝐺)
1 . (3.125)

For a flat mode, this is

𝑐 = −
∑︁
𝑠>0

𝑐(𝐹 )
𝑠 𝑈 (𝐹 )

𝑠 − 1− 𝜎

2𝑌
𝜔

(𝐹 )
1 , (3.126)

where the coefficients 𝑐𝑠 have been defined by Equations (3.70) and (3.75).
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Figure 24: Deformation of the reflecting coating for three types of readout beams (coating absorption).
Dashed line: best parabolic fit �̂�𝑧 + 𝛿�̂�𝑧 = 𝑐𝑟2 + 𝑑 (weighted by the intensity profile) giving the effective
curvature radius

We can see in Figure 24 the distorted reflecting face of the mirror in our three examples. The
results in terms of curvature radius are

∙ Ex1 (LG0,0, 𝑤 = 2 cm): 𝑅𝑐 = 5,842 mW

∙ Ex2 (Flat, 𝑏 = 9.1 cm): 𝑅𝑐 = 165,485 mW

∙ Ex3 (LG5,5, 𝑤 = 3.5 cm): 𝑅𝑐 = 477,565 mW .

We see in the case of axisymmetry that the use of unconventional modes (either flat or high-
order LG) allows one to dramatically reduce spurious thermal effects in mirrors to be installed in
advanced GW detectors, where high light-power flows are planned. Up to two orders of magnitude
can be gained with respect to the present Virgo configuration for thermal lensing, or for thermal
deformation of the coating. As in the thermal lens Section 3, we give some results (see Table 4)
for LG modes having the same (1 ppm) clipping losses.
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Table 4: Curvature radii from thermal expansion due to coating absorption for modes having 1 ppm
clipping losses

order (𝑝, 𝑞) w [cm] 𝑅𝑐 of th. aberr. [kmW]

(0,0) 6.65 77

(0,1) 5.56 149
(1,0) 6.06 141

(0,2) 4.93 210
(1,1) 5.23 201
(2,0) 5.65 197

(0,3) 4.49 258
(1,2) 4.70 250
(2,1) 4.97 250
(3,0) 5.35 250

(0,4) 4.17 299
(1,3) 4.32 290
(2,2) 4.52 292
(3,1) 4.76 298
(4,0) 5.11 300

(0,5) 3.91 332
(1,4) 4.03 324
(2,3) 4.18 326
(3,2) 4.36 332
(4,1) 4.58 342
(5,0) 4.91 348
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3.3.2 Thermal expansion from internal absorption

When the linear absorption of light through the bulk material results in an internal heat source,
the temperature field is no longer harmonic, and we are bound to solve explicitly the thermo-elastic
equations (3.91) and (3.92). As seen earlier, the case of internal absorption leads to a symmetric
temperature field. However, we shall derive the general thermoelastic solution, which will also
prove useful in Section 4 below.

The temperature field is assumed to be of the generic form (𝑘𝑠 ≡ 𝜁/𝑎)

𝑇 (𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝑧) 𝐽0(𝑘𝑠𝑟). (3.127)

We consider a displacement vector of the form{︂
𝑢𝑟(𝑟, 𝑧) =

∑︀
𝑠𝐴𝑠(𝑧)𝐽1(𝑘𝑠𝑟)

𝑢𝑧(𝑟, 𝑧) =
∑︀
𝑠𝐵𝑠(𝑧)𝐽0(𝑘𝑠𝑟).

(3.128)

The equilibrium equations (3.91) reduce to a system of ordinary differential equations,

(𝜆+ 2𝜇)
[︀
𝜕2
𝑧𝐴𝑠 − 𝑘2

𝑠𝐴𝑠
]︀
− (𝜆+ 𝜇)𝜕𝑧(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠) = −𝑘𝑠𝜈 𝑇𝑠(𝑧) (3.129)

(𝜆+ 2𝜇)
[︀
𝜕2
𝑧𝐵𝑠 − 𝑘2

𝑠𝐵𝑠
]︀
+ (𝜆+ 𝜇)𝑘𝑠(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠) = 𝜈 𝜕𝑧𝑇𝑠(𝑧), (3.130)

so that, by a basic combination of these two, we get[︀
𝜕2
𝑧 − 𝑘2

𝑠

]︀
(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠) = 0, (3.131)

a solution of which is

𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠 = 𝑘𝑠𝐶𝑠 cosh(𝑘𝑠𝑧) + 𝑘𝑠𝐷𝑠 sinh(𝑘𝑠𝑧), (3.132)

where 𝐶𝑠 and 𝐷𝑠 are arbitrary constants. By substituting in Equation (3.129) we get

[︀
𝜕2
𝑧 − 𝑘2

𝑠

]︀
𝐴𝑠 =

𝜆+ 𝜇

𝜆+ 2𝜇
𝑘2
𝑠 (𝐶𝑠 sinh(𝑘𝑠𝑧) +𝐷𝑠 cosh(𝑘𝑠𝑧)) .− 𝑘𝑠

𝜈

𝜆+ 2𝜇
𝑇𝑠(𝑧) (3.133)

A solution of which is

𝐴𝑠(𝑧) = 𝑀𝑠 sinh(𝑘𝑠𝑧) +𝑁𝑠 cosh(𝑘𝑠𝑧) +
𝜆+ 𝜇

2(𝜆+ 2𝜇)

[︁
𝐶𝑠 𝑘𝑠𝑧 cosh(𝑘𝑠𝑧) +𝐷𝑠 𝑘𝑠𝑧 sinh(𝑘𝑠𝑧)

]︁
− 𝜈𝒯𝑠
𝑘𝑠(𝜆+ 2𝜇)

, (3.134)

where 𝑀𝑠 and 𝑁𝑠 are two arbitrary constants and 𝒯𝑠(𝑧) is a special solution of[︀
𝜕2
𝑧 − 𝑘2

𝑠

]︀
𝒯𝑠(𝑧) = 𝑇𝑠(𝑧). (3.135)

We can now find 𝐵𝑠 from Equation (3.132)

𝐵𝑠(𝑧) = [𝐶𝑠 −𝑀𝑠] cosh(𝑘𝑠𝑧) + [𝐷𝑠(𝑧)−𝑁𝑠(𝑠)] sinh(𝑘𝑠𝑧)

+
𝜆+ 𝜇

2(𝜆+ 2𝜇)

[︁
𝐶𝑠

(︁
cosh(𝑘𝑠𝑧) + 𝑘𝑠𝑧 sinh(𝑘𝑠𝑧)

)︁
+𝐷𝑠

(︁
sinh(𝑘𝑠𝑧) + 𝑘𝑠𝑧 cosh(𝑘𝑠𝑧)

)︁]︁
+

𝜈

𝜆+ 2𝜇
𝜕𝒯𝑠
𝜕𝑧

(𝑧). (3.136)
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The boundary conditions,
Θ𝑟𝑧(±ℎ/2) = Θ𝑧𝑧(±ℎ/2) = 0, (3.137)

lead to the system (we return to the Poisson ratio and to the linear thermal expansion coefficient)

4𝛼(1 + 𝜎)
𝜕𝒯𝑠
𝜕𝑧

(ℎ/2) = [𝛾𝑠 sinh 𝛾𝑠 − (1− 2𝜎) cosh 𝛾𝑠]𝐶𝑠 + [𝛾𝑠 cosh 𝛾𝑠 − (1− 2𝜎) sinh 𝛾𝑠]𝐷𝑠

+4(1− 𝜎)𝑀𝑠 cosh 𝛾𝑠 + 4(1− 𝜎)𝑁𝑠 sinh 𝛾𝑠 (3.138)

4𝛼(1 + 𝜎)
𝜕𝒯𝑠
𝜕𝑧

(−ℎ/2) = [𝛾𝑠 sinh 𝛾𝑠 − (1− 2𝜎) cosh 𝛾𝑠]𝐶𝑠 − [𝛾𝑠 cosh 𝛾𝑠 − (1− 2𝜎) sinh 𝛾𝑠]𝐷𝑠

+4(1− 𝜎)𝑀𝑠 cosh 𝛾𝑠 − 4(1− 𝜎)𝑁𝑠 sinh 𝛾𝑠 (3.139)

− 4𝛼(1 + 𝜎) 𝑘𝑠𝒯𝑠(ℎ/2) = [2(1− 𝜎) sinh 𝛾𝑠 − 𝛾𝑠 cosh 𝛾𝑠]𝐶𝑠 + [2(1− 𝜎) cosh 𝛾𝑠 − 𝛾𝑠 sinh 𝛾𝑠]𝐷𝑠

−4(1− 𝜎)𝑀𝑠 sinh 𝛾𝑠 − 4(1− 𝜎)𝑁𝑠 cosh 𝛾𝑠 (3.140)

− 4𝛼(1 + 𝜎) 𝑘𝑠𝒯𝑠(−ℎ/2) = − [2(1− 𝜎) sinh 𝛾𝑠 − 𝛾𝑠 cosh 𝛾𝑠]𝐶𝑠 + [2(1− 𝜎) cosh 𝛾𝑠 − 𝛾𝑠 sinh 𝛾𝑠]𝐷𝑠 +
4(1− 𝜎)𝑀𝑠 sinh 𝛾𝑠 − 4(1− 𝜎)𝑁𝑠 cosh 𝛾𝑠 (3.141)

with 𝛾𝑠 ≡ 𝑘𝑠ℎ/2 ≡ 𝜁𝑠ℎ/2𝑎. It is easy to combine these equations to find

𝐶𝑠 =
4𝛼(1 + 𝜎)

Γ′′𝑠
(𝑒′𝑠 sinh 𝛾𝑠 − 𝑘𝑠𝑜𝑠 cosh 𝛾𝑠) (3.142)

𝐷𝑠 =
4𝛼(1 + 𝜎)

Γ′𝑠
(𝑜′𝑠 cosh 𝛾𝑠 − 𝑘𝑠𝑒𝑠 sinh 𝛾𝑠) (3.143)

𝑀𝑠 =
𝛼(1 + 𝜎)
(1− 𝜎)Γ′′𝑠

[︁
(2(1− 𝜎) sinh 𝛾𝑠 − 𝛾𝑠 cosh 𝛾𝑠) 𝑒′𝑠 + (𝛾𝑠 sinh 𝛾𝑠 − (1− 2𝜎) cosh 𝛾𝑠) 𝑘𝑠𝑜𝑠

]︁
(3.144)

𝑁𝑠 =
𝛼(1 + 𝜎)
(1− 𝜎)Γ′𝑠

[︁
(2(1− 𝜎) cosh 𝛾𝑠 − 𝛾𝑠 sinh 𝛾𝑠) 𝑜′𝑠 + (𝛾𝑠 cosh 𝛾𝑠 − (1− 2𝜎) sinh 𝛾𝑠) 𝑘𝑠𝑒𝑠

]︁
(3.145)

with the notation
Γ′𝑠 ≡ sinh 𝛾𝑠 cosh 𝛾𝑠 + 𝛾𝑠, (3.146)

Γ′′𝑠 ≡ sinh 𝛾𝑠 cosh 𝛾𝑠 − 𝛾𝑠. (3.147)

We have also used the symmetrized coefficients (even and odd parts)⎧⎪⎪⎨⎪⎪⎩
𝑒𝑠 = 1

2 (𝒯𝑠(ℎ/2) + 𝒯𝑠(−ℎ/2))
𝑜𝑠 = 1

2 (𝒯𝑠(ℎ/2)− 𝒯𝑠(−ℎ/2))
𝑒′𝑠 = 1

2 (𝜕𝑧𝒯𝑠(ℎ/2) + 𝜕𝑧𝒯𝑠(−ℎ/2))
𝑜′𝑠 = 1

2 (𝜕𝑧𝒯𝑠(ℎ/2)− 𝜕𝑧𝒯𝑠(−ℎ/2)).

(3.148)

The radial stress is

Θ𝑟𝑟(𝑟, 𝑧) =
∑︁
𝑠

Θ(1)
𝑟𝑟,𝑠(𝑧)𝐽0(𝑘𝑠𝑟)−

∑︁
𝑠

Θ(2)
𝑟𝑟,𝑠(𝑧)

𝐽1(𝑘𝑠𝑟)
𝑘𝑠𝑟

(3.149)
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with

Θ(1)
𝑟𝑟,𝑠(𝑧) = −𝜈𝑇𝑠(𝑧) + (𝜆+ 2𝜇)𝑘𝑠𝐴𝑠(𝑧) + 𝜆

𝜕𝐵𝑠
𝜕𝑧

(𝑧) (3.150)

Θ(2)
𝑟𝑟,𝑠(𝑧) = 2𝜇𝑘𝑠𝐴𝑠(𝑧). (3.151)

It can be checked that Θ(1)
𝑟𝑟,𝑠(𝑧) gives a null contribution to the mean force and to the mean torque

on the edge, i.e., ∫︁ ℎ/2

−ℎ/2
Θ(1)
𝑟𝑟,𝑠(𝑧) 𝑑𝑧 =

∫︁ ℎ/2

−ℎ/2
Θ(1)
𝑟𝑟,𝑠(𝑧) 𝑧 𝑑𝑧 = 0. (3.152)

Therefore these two mean moments can be computed with 𝐴𝑠(𝑧). We have

1
ℎ

∫︁ ℎ/2

−ℎ/2
𝐴𝑠(𝑧) 𝑑𝑧 = 𝛼

1 + 𝜎

1− 𝜎

2𝜎
Γ′𝑠

sinh 𝛾𝑠
𝛾𝑠

[𝑘𝑠𝑒𝑠 sinh 𝛾𝑠 − 𝑜′𝑠 cosh 𝛾𝑠]

+𝛼
1 + 𝜎

1− 𝜎

1
𝑘𝑠ℎ

∫︁ ℎ/2

−ℎ/2
𝒯𝑠(𝑧) 𝑑𝑧 (3.153)

1
ℎ

∫︁ ℎ/2

−ℎ/2
𝐴𝑠(𝑧)𝑧 𝑑𝑧 = 𝛼

1 + 𝜎

1− 𝜎

2𝜎
Γ′′𝑠

(︂
sinh 𝛾𝑠
𝛾𝑠

− cosh 𝛾𝑠

)︂
[𝑒′𝑠 sinh 𝛾𝑠 − 𝑘𝑠𝑜𝑠 cosh 𝛾𝑠]

+𝛼
1 + 𝜎

1− 𝜎

1
𝑘𝑠ℎ

∫︁ ℎ/2

−ℎ/2
𝒯𝑠(𝑧) 𝑧 𝑑𝑧. (3.154)

In the special case of bulk absorption, we have, due to symmetry,

𝑜𝑠 = 𝑒′𝑠 = 0 (3.155)

and

𝑒𝑠 = −𝛽𝑎
2𝑃𝑝𝑠

𝜋𝐾𝜁4

[︂
1 +

𝜒𝛾𝑠 sinh 𝛾𝑠
2𝑑1,𝑠

]︂
(3.156)

𝑜′𝑠 = −𝛽𝑎𝑃𝑝𝑠
𝜋𝐾𝜁3

(sinh 𝛾𝑠 + 𝛾𝑠 cosh 𝛾𝑠) . (3.157)

The explicit expression for functions 𝐴𝑠(𝑧) and 𝐵𝑠(𝑧) is, finally,

𝐴𝑠(𝑧) = 𝛼𝑎
1 + 𝜎

1− 𝜎

𝛼𝑎𝛽𝑃

𝜋𝐾𝜁3
𝑠

[︂
1 +

sinh 𝛾𝑠
Γ𝑠

𝑘𝑠𝑧 sinh(𝑘𝑠𝑧)

−
(︂
𝛾𝑠 cosh 𝛾𝑠 − (1− 2𝜎) sinh 𝛾𝑠

Γ𝑠
+ (1− 𝜎)

𝜒

𝑑1,𝑠

)︂
cosh(𝑘𝑠𝑧)

]︂
(3.158)

𝐵𝑠(𝑧) = 𝛼𝑎
1 + 𝜎

1− 𝜎

𝛼𝑎𝛽𝑃

𝜋𝐾𝜁3
𝑠

[︂
− sinh 𝛾𝑠

Γ𝑠
𝑘𝑠𝑧 cosh(𝑘𝑠𝑧)

+
(︂
𝛾𝑠 cosh 𝛾𝑠 + 2(1− 𝜎) sinh 𝛾𝑠

Γ𝑠
− (1− 𝜎)

𝜒

𝑑1,𝑠

)︂
sinh(𝑘𝑠𝑧)

]︂
(3.159)
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Two boundary conditions have been forgotten. We need vanishing Θ𝑟𝑟 and Θ𝑟𝑧 on the edge
𝑟 = 𝑎. However, a numerical investigation shows that Θ𝑟𝑟(𝑎, 𝑧) is practically constant, having an
average value of

𝜃 ≡ ⟨Θ𝑟𝑟(𝑎, 𝑧)⟩ = − 𝛼𝑎𝑃𝑌 𝜒

(1− 𝜎)𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜁4
𝑠

[︂
1− sinh 𝛾𝑠

𝛾𝑠

(︂
(1− 𝜎)

𝜒

𝑑1,𝑠
+

2𝜎 sinh 𝛾𝑠
Γ𝑠

)︂]︂
𝐽0(𝜁𝑠). (3.160)

In the same spirit as in the preceding case (Saint-Venant correction) we can add an extra displace-
ment

𝛿𝑢𝑟(𝑟, 𝑧) = −1− 𝜎

𝑌
𝜃 𝑟 (3.161)

𝛿𝑢𝑧(𝑟, 𝑧) =
2𝜎
𝑌
𝜃 𝑧, (3.162)

which induces null 𝛿Θ𝑟𝑧 and 𝛿Θ𝑧𝑧 extra stresses, trivially satisfies the equilibrium equations, and
produces a constant 𝛿Θ𝑟𝑟 = −𝜃. Now the Θ𝑟𝑧 stress component is antisymmetric with respect to
𝑧

Θ𝑟𝑧(𝑟, 𝑧) =
𝛼𝑌

1− 𝜎

∑︁
𝑠

𝑇𝑠
Γ𝑠

[︁
𝑘𝑠𝑧 cosh(𝑘𝑠𝑧) sinh 𝛾𝑠 − 𝛾𝑠 cosh 𝛾𝑠 sinh(𝑘𝑠𝑧)

]︁
𝐽1(𝑘𝑠𝑟), (3.163)

so that it is zero at 𝑧 = ±ℎ/2 with a vanishing average value on the edge 𝑧 ∈ [−ℎ/2, ℎ/2]. Moreover,
it can be checked that the values taken on the edge are weak compared to other places and other
components. Therefore, the sum

�⃗�+ 𝛿𝑢, (3.164)

satisfies exactly the equilibrium equations, exactly the boundary conditions on the faces, and on
average on the edge. The displacement vector at 𝑧 = −ℎ/2 represents the deformation of the
reflecting face. We have

𝑍(𝑟) = 𝑢𝑧(𝑟,−ℎ/2) + 𝛿𝑢𝑧(𝑟,−ℎ/2)

=
𝛼(1 + 𝜎)𝛽𝑃𝑎

𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜁3
𝑠

sinh 𝛾𝑠

[︂
2 sinh 𝛾𝑠

Γ′𝑠
− 𝜒

𝑑1,𝑠

]︂
𝐽0(𝜁𝑠𝑟/𝑎) +

2𝜎
𝑌
𝜃 𝑧. (3.165)

One can see in Figure 25 the distorted shape of the mirror in three situations. The thermally-
induced curvature radius can be computed as usual. (See Figure 26 for the profiles of the reflecting
surface in three situations and the best fitted paraboloid.) For our three examples, we obtain the
following figures

∙ Ex1 (LG0,0, 𝑤 = 2 cm): 𝑅𝑐 = 22 kmW

∙ Ex2 (flat, 𝑏 = 9.1 cm): 𝑅𝑐 = 325 kmW (mesa: 361 kmW)

∙ Ex3 (LG5,5, 𝑤 = 3.5 cm): 𝑅𝑐 = 937 kmW

See Table 5 for several other LG modes.
In Table 6 we give numerical results for our three examples.
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Table 5: Curvature radii from thermal expansion due to bulk absorption for modes having 1 ppm clipping
losses

order (𝑝, 𝑞) 𝑤 [cm] 𝑅𝑐 of th. aberr. [kmW]

(0,0) 6.65 165

(0,1) 5.56 318
(1,0) 6.06 290

(0,2) 4.93 440
(1,1) 5.23 410
(2,0) 5.65 404

(0,3) 4.49 533
(1,2) 4.70 507
(2,1) 4.97 504
(3,0) 5.35 512

(0,4) 4.17 613
(1,3) 4.32 586
(2,2) 4.52 585
(3,1) 4.76 597
(4,0) 5.11 615

(0,5) 3.91 677
(1,4) 4.03 654
(2,3) 4.18 650
(3,2) 4.36 661
(4,1) 4.58 684
(5,0) 4.91 713

LG:p=0,q=0
w=2 cm

Flat
b=9.1 cm

LG:p=5,q=5
w=3.5 cm

Figure 25: Thermal expansion of the mirror under three types of readout beams (heating by 1 W internal
absorption of light, exaggerated by a factor of 2× 105)
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Figure 26: Thermal aberration caused by internal heating for 1 W absorbed power. Dashed lines: nearest
paraboloid (weighted by the intensity distribution)

Table 6: Thermal aberrations from coating and bulk absorption

results (coating abs.) LG0,0 𝑤 = 2 cm flat 𝑏 = 9.1 cm LG5,5 𝑤 = 3.5 cm

Curvature radius 5.8 km W 167 km W 478 km W
Coupling losses 4.3× 10−2/W2 4.4× 10−3/W2 6.7× 10−3/W2

results (bulk abs.) LG0,0 𝑤 = 2 cm flat 𝑏 = 9.1 cm LG5,5 𝑤 = 3.5 cm

Curvature radius 22 km W 327 kmW 937 kmW
Coupling losses 3.0× 10−3/W2 2.2× 10−3/W2 1.8× 10−3/W2
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3.4 Expansion on Zernike polynomials

It is convenient to express the thermal lensing and the mirror distortions in terms of Zernike
polynomials. This synthesizes the algebraic results already obtained and allows one to use the
results, for instance, in optical simulation codes like the E2E by Caltech, Finesse at Birmingham
(U.K.) and DarkF in Virgo. It is easy to find the coefficients of these polynomials. Recall that the
axisymmetric Zernike polynomials 𝑅0

2𝑛(𝜌) are functions of 𝜌 = 𝑟/𝑎, and that the first ones are

𝑅0
0(𝜌) = 1, 𝑅0

2(𝜌) = 2𝜌2 − 1, 𝑅0
4(𝜌) = 6𝜌4 − 6𝜌2 + 1 (3.166)

corresponding respectively to the piston, curvature, and spherical aberration. A recurrence relation
allows one to compute any order

𝑅0
2𝑛(𝜌) =

1
𝑛

[︀
(2𝑛− 1)(2𝜌2 − 1)𝑅0

2𝑛−2 − (𝑛− 1)𝑅0
2𝑛−2

]︀
. (3.167)

An important relation is [6] ∫︁ 1

0

𝑅0
2𝑛(𝜌)𝐽0(𝜁𝜌) = (−)𝑛

𝐽2𝑛+1(𝜁)
𝜁

, (3.168)

which allows one to immediately create the Zernike expansion of any thermal lens. Assume a
thermal lens of the generic FB form

𝑍(𝑟) =
∑︁
𝑠

𝑍𝑠 𝐽0(𝜁𝑠𝑟/𝑎). (3.169)

It can also be represented by a series of Zernike polynomials as

𝑍(𝑟) =
∑︁
𝑛

𝑐𝑛𝑅
0
2𝑛(𝑟/𝑎), (3.170)

where the coefficients 𝑐𝑛, 𝑛 = 0, 1, 2... are given by

𝑐𝑛 = (−)𝑛2(2𝑛+ 1)
∑︁
𝑠

𝑍𝑠
𝐽2𝑛+1(𝜁𝑠)

𝜁𝑠
. (3.171)

In the case of Ex1 (LG00, 𝑤 = 2 cm), we give, in order to be specific, some values of 𝑐𝑛 (see
Table 7). The number of terms for a good reconstruction of the lenses and of the surface is about
15. The 𝑐1 coefficient gives the mean curvature over the whole circular aperture of the mirror.
Thus there is no relation between 𝑐1 and the curvature averaged and weighted by the intensity
profile.

Reconstruction of an LG00 mode requires many polynomials due to the sharp and far-from-
spherical power profile of the beam. For higher-order modes and a fortiori for a flat or mesa mode,
the reconstruction is achieved with fewer polynomials. In Table 8 we give the results of our LG55

mode (Ex3), and in Table 9 for the mesa mode (the figures are quite similar for the flat mode).
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Table 7: Zernike coefficients 𝑐𝑛 for LG00 𝑤 = 2 cm

lensing: lensing: aberration: aberration:
heating heating heating heating
by bulk by coating by coating by bulk

𝑛 𝜇m/W 𝜇m/W nm/W nm/W

0 0.940 0.873 140.76 25.85
1 −0.633 −0.599 34.79 −17.45
2 0.470 −0.447 −25.60 12.25
3 −0.333 −0.319 17.95 −7.80
4 0.250 0.239 −13.42 5.06
5 −0.192 −0.185 10.38 −3.35
6 0.151 0.146 −8.17 2.27
7 −0.120 −0.116 6.50 −1.57
8 0.095 0.092 −5.19 1.10
9 −0.076 −0.074 4.14 −0.79

10 0.060 0.059 −3.30 0.57
11 −0.048 −0.047 2.61 −0.41
12 0.038 0.037 −2.06 −0.30
13 −0.029 −0.029 1.61 −0.21
14 0.023 0.022 −1.25 0.16

Table 8: Zernike coefficients 𝑐𝑛 for LG55 𝑤 = 3.5 cm

lensing: lensing: aberration: aberration:
heating heating heating heating
by bulk by coating by coating by bulk

𝑛 𝜇m/W 𝜇m/W nm/W nm/W

0 0.817 0.865 16.48 24.21
1 −0.229 −0.242 13.00 −6.64
2 0.044 0.046 −2.67 1.38
3 −0.019 −0.019 1.058 −0.42
4 0.021 0.022 −1.198 0
5 −0.002 −0.003 0.135 0
6 −0.006 −0.006 0.314 0
7 0.001 0.001 −0.047 0
8 −0.002 −0.002 0.091 0
9 0.006 0.007 −0.356 0

10 −0.006 −0.006 0.315 0
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Table 9: Zernike coefficients 𝑐𝑛 for the mesa mode

lensing: lensing: aberration: aberration:
heating heating heating heating
by bulk by coating by coating by bulk

𝑛 𝜇m/W 𝜇m/W nm/W nm/W

0 0.845 0.895 30.81 25.05
1 −0.387 −0.408 22.25 −11.19
2 0.147 0.155 −8.55 4.12
3 −0.185 −0.020 0 0
4 −0.011 −0.012 0 0
5 0.008 0.008 0 0

4 On Thermal Compensation Systems

It is easily seen that in the case of a TEM00 readout beam, even with the largest possible 𝑤 allowed
by clipping losses, the resulting thermal lens is currently a serious spurious effect and will be even
greater in advanced interferometers. For a fundamental mode with a width of 6.65 cm on the
cavity input mirrors, the curvature radius of the thermal lens is about 4 km for 1 W thermalized,
on the same order as the nominal curvature radius of the mirror.

This is why thermal compensation systems (TCS) have been designed. The general principle
is to use an auxiliary source of heat for heating the cold parts of the mirror in order to achieve
a more homogeneous temperature distribution. The source of heat may be a classical radiator
able to radiate infrared energy in a vacuum, for instance, a hot ring near the rear face of the
mirror [30, 25, 13, 14, 22, 43]. It may also be an auxiliary laser projector, which can be programmed
to scan the mirror surface to produce a given power mask [42].

4.1 Heating the rear face of a mirror

Technical issues make it difficult to install any device in front of the cavity input mirrors. Thus, it
has generally been proposed that one heat the rear face of these mirrors, which is more accessible
from the central part of the vacuum tank. The heating is due to infrared radiation produced either
by a hot material or by a CO2 auxiliary laser, but in both cases, the wavelength of the heating
radiator is such that absorption by the silica substrate occurs in a thin layer. If we assume another
heat source located on the rear face of a mirror, we must modify the model developed above. The
extension is straightforward. For instance, let us consider the case in which the thermal lens to be
compensated for is caused by thermalization on the coating of the intracavity-stored power 𝑃 . As
usual, we denote by 𝑝𝑠 the FB coefficients related to the main readout beam and by 𝑃 and 𝑝𝐶,𝑠
the FB coefficients of the power distribution of the compensation system, radiating an integrated
power 𝑃𝐶 . We get the following temperature field

𝑇 (𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝑧) 𝐽0(𝑘𝑠𝑟) (4.1)

with

𝑇𝑠(𝑧) =
1

𝜋𝑎𝐾

1
(𝜁𝑠 + 𝜒)2 − (𝜁𝑠 + 𝜒)2e−4𝛾𝑠

×
{︀
e−𝛾𝑠

[︀
(𝜁𝑠 − 𝜒)e𝑘𝑠𝑧−2𝛾𝑠 + (𝜁𝑠 + 𝜒)e−𝑘𝑠𝑧

]︀
𝑃𝑝𝑠

+e−3𝛾𝑠
[︀
(𝜁𝑠 + 𝜒)e𝑘𝑠𝑧+2𝛾𝑠 + (𝜁𝑠 − 𝜒)e−𝑘𝑠𝑧

]︀
𝑃𝐶𝑝𝐶,𝑠

}︀
. (4.2)
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(For brevity, we have set 𝑘𝑠 ≡ 𝜁𝑠/𝑎 and 𝛾𝑠 ≡ 𝑘𝑠ℎ/2, with 𝜁𝑠 defined as before). By integrating
Equation (4.2) on the thickness, we get the thermal lens

𝑍(𝑟) =
𝑑𝑛

𝑑𝑇

∫︁ ℎ/2

−ℎ/2
𝑇 (𝑟, 𝑧)𝑑𝑧, (4.3)

which yields
𝑍(𝑟) =

∑︁
𝑠

𝑍𝑠𝐽0(𝑘𝑠𝑟) (4.4)

with

𝑍𝑠 =
𝑑𝑛

𝑑𝑇

1
𝜋𝐾

sinh 𝛾𝑠
𝜁𝑠

𝑃 𝑝𝑠 + 𝑃𝐶 𝑝𝐶,𝑠
𝑑1,𝑠

(4.5)

with 𝑑1,𝑠 = 𝜁𝑠 sinh 𝛾𝑠 + 𝜒 cosh 𝛾𝑠. As expected, this shows that the global thermal lens is simply
the sum of the primary lens (caused by the stored light) plus the compensation lens. Thus, it is
possible to imagine power profiles compensating for the primary lens. This is the starting point
for thermal compensation systems.

4.2 Simple model of a radiator

Now assume a compensation system based on a ring radiator of radius 𝑏𝐶 , at a distance 𝐷𝐶 from
the face, placed behind the rear face of the mirror. Assume a total radiated power of 𝑃𝑅. A
small element of length 𝑑𝑙 of the ring (assumed very thin) radiates the elementary power 𝑑𝑃 =
𝑃𝐶 × 𝑑𝑙/2𝜋𝑏𝐶 . The radiated intensity at a distance 𝜌 is

𝑑𝐼 =
𝑑𝑃

4𝜋𝜌2
=

𝑃𝑅 𝑑𝑙

8𝜋2𝑏𝐶𝜌2
. (4.6)

Now the distance of the considered element, having the angular coordinate 𝜑 on the ring to any
point A on the mirror surface of coordinates 𝐴(𝑟,Φ), is such that

𝜌2 = 𝑏2𝐶 +𝐷2
𝐶 + 𝑟2 − 2𝑏𝐶𝑟 cos(𝜑− Φ), (4.7)

so that the global intensity at A, integrated on the ring, is

𝐼(𝑟) =
𝑃𝑅
8𝜋2

∫︁ 2𝜋

0

𝑑𝜑

𝑏2𝐶 +𝐷2
𝐶 + 𝑟2 + 2𝑏𝐶𝑟 cos𝜑

, (4.8)

which gives

𝐼(𝑟) =
𝑃𝑅
4𝜋

1√︀
(𝑏2𝐶 +𝐷2

𝐶)2 − 2(𝑏2𝐶 −𝐷2
𝐶)𝑟2 + 𝑟4

. (4.9)

The fraction of the total radiated power, which is absorbed by the rear face of the mirror, is

Δ𝑃 = 2𝜋
∫︁ 𝑎

0

𝐼(𝑟) 𝑟 𝑑𝑟 =
1
4
𝑃𝑅 ln

⎧⎨⎩ 𝑏𝐶
𝐷𝐶

⎡⎣√︃(︂𝑎2 +𝐷2
𝐶 − 𝑏2𝐶

2𝑏𝐶𝐷𝐶

)︂2

+ 1 +
𝑎2 +𝐷2

𝐶 − 𝑏2𝐶
2𝑏𝐶𝐷𝐶

⎤⎦⎫⎬⎭ , (4.10)

(provided that 𝑏𝑐 > 𝐷𝐶) This allows one to normalize the intensity distribution to 𝑃𝐶 integrated
on the mirror:

𝐼(𝑟) = 𝑃𝐶
𝐼0√︀

(𝑏2𝐶 +𝐷2
𝐶)2 − 2(𝑏2𝐶 −𝐷2

𝐶)𝑟2 + 𝑟4
(4.11)
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Figure 27: Normalized intensity 𝐼(𝑟) on the mirror rear face from a ring radiator

Table 10: Thermal compensation with a heating ring: LG0,0 mode of 𝑤 = 2 cm.

dissipated power initial losses compensation power minimal losses wavefront curvature

10 mW 350 ppm 2.7 W 24 ppm ∞
20 mW 1,400 ppm 5.3 W 96 ppm ∞
30 mW 3,100 ppm 8.0 W 220 ppm ∞

100 mW 34,300 ppm 26.5 W 2392 ppm ∞

with

1
𝐼0

= 𝜋 ln

⎧⎨⎩ 𝑏𝐶
𝐷𝐶

⎡⎣√︃(︂𝑎2 +𝐷2
𝐶 − 𝑏2𝐶

2𝑏𝐶𝐷𝐶

)︂2

+ 1 +
𝑎2 +𝐷2

𝐶 − 𝑏2𝐶
2𝑏𝐶𝐷𝐶

⎤⎦⎫⎬⎭ (4.12)

See Figure 27 to get an idea of the intensity profile.
The FB coefficients of 𝐼(𝑟) can easily be numerically computed. The resulting profile of the

thermal lens is shown for a particular case in Figure 28.
The power in the compensation lens must be adjusted in order to get zero curvature when

added to the heat source coming from the readout beam. For small readout-beam dissipation
(less than a few mW), this minimizes the matching losses. An example is given in Figure 29 in
which one tries to compensate for the thermal lens caused by an LG00 mode of width 𝑤 = 2 cm
dissipating either 10, 20 or 30 mW on the coating. One sees that, by increasing the compensation
power, it is possible to reduce the coupling losses from their initial (uncompensated) values by a
factor of about 15 (see Table 10). However, it can be seen that the residual loss is proportional
to the dissipated power, which means that, in the case of cavities storing about 1 MW, even with
thermalization rates on the order of 1 ppm, the system is useless. For 100 mW dissipated, one can
see that the TCS is able to reduce the initial losses of almost 3.5% to about 0.24 %, which is still
much too high, and at the price of 26.5 W TCS power dissipated.

In the latter case, we see in Figure 30 that even if the mean curvature radius is infinite, it does
not mean that the lens is exactly flat, so that, even if the focusing effect is suppressed, some losses
are to be expected due to departure of the lens from a plane (or from a sphere having a large
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Figure 28: Thermal lensing from a ring radiator. Red dashed curve: nearest paraboloid (weighted by the
readout beam intensity). The readout beam is TEM00 with 𝑤 = 2 cm. The curvature is weakly dependent
on the beam width: 87 kmW for 𝑤 = 2 cm, 95 kmW for 𝑤 = 6.65 cm. Green dashed curve: Zernike
expansion of the lens
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Figure 29: Thermal compensation with a ring radiator: minimization of coupling losses
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Table 11: Thermal compensation with a heating ring: LG5,5 mode of 𝑤 = 3.5 cm.

dissipated power initial losses compensation power minimal losses wavefront curvature

10 mW 56 ppm 50 mW 6 ppm ∞
20 mW 213 ppm 100 mW 11 ppm ∞
30 mW 474 ppm 130 mW 15 ppm ∞

100 mW 5,218 ppm 450 mW 122 ppm ∞

radius). Only six Zernike polynomials are required to retrieve this special TCS lens:

𝑐0 = 0.759𝜇m/𝑊, 𝑐1 = 0.016𝜇m/𝑊, 𝑐2 = −0.044𝜇m/𝑊,

𝑐3 = −0.011𝜇m/𝑊, 𝑐4 = 0.002𝜇m/𝑊, 𝑐5 = 0.004𝜇m/𝑊. (4.13)
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Figure 30: Ring radiator: correction of the thermal lensing caused by a TEM00 beam of width 𝑤 = 2 cm
dissipating 100 mW on the coating. Dashed line: nearest paraboloid (flat for the optimal TCS power of
26.5 W)

It is probably possible to enhance these results up to a certain extent by tuning the parameters
𝑏𝐶 and 𝐷𝐶 , but not to seriously change the orders of magnitude. However, results are better with
higher-order modes (see Table 11).

4.3 Axicon systems

Some systems use CO2 laser beams focused by a conical lens. This configuration, called “axicon”,
generates a ring-shaped intensity profile on the mirror. We do not attempt to compute an analytical
model of the compensation power flow. We use numerical intensity measurements carried out by
the Virgo/Rome team [15]. The FB coefficients of the optical power flow are computed numerically.
The profile of the corresponding thermal lens can be seen in Figure 31.

We can see (Table 12) that the performance of the axicon system is better than that of the
heating ring (lower compensating powers, lower optimal losses), but not by orders of magnitude.
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Figure 31: Thermal lens profile created by an axicon system
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Figure 32: Thermal compensation with an axicon: minimization of coupling losses. Solid line, short
dashed, long dashed: resp. 10 mW, 20 mW, 30 mW, dissipated by the readout beam.

Table 12: Thermal compensation with an axicon system

dissipated power initial losses compensation power minimal losses wavefront curvature

10 mW 350 ppm 1.2 W 5 ppm ∞
20 mW 1,400 ppm 2.4 W 19 ppm ∞
30 mW 3,100 ppm 3.6 W 43 ppm ∞

100 mW 34,300 ppm 12 W 481 ppm ∞
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4.4 CO2 laser compensation by scanning

By scanning the rear face with a powerful CO2 laser, it is possible, in principle, to obtain any
given intensity profile. In particular, it is possible to obtain an intensity distribution giving a flat
thermal lens over a large central part of the mirror. Consider an intensity profile of the form

𝐼(𝑟) = 𝑃𝐶
cosh

(︀
𝑟2/𝑤2

𝐶

)︀
𝜋𝑤2

𝐶 sinh (𝑎2/𝑤2
𝐶)

(4.14)

depending on the only parameter 𝑤𝐶 and normalized to 𝑃𝐶 W (see Figure 33 for the case of
𝑤𝐶 = 16.9 cm).
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Figure 33: Source of heat on the mirror rear face for a power mask according to Equation (4.14) with
𝑤𝐶 = 16.9 cm (normalized to 1 W)

The resulting thermal lens has a perfect flatness in the central region. The goal is to create a
profile such that, combined with the readout beam heat source, it gives that ideal profile. Consider,
for instance, an intensity mask of the form

𝐼𝐶(𝑟) =
2𝑃𝐿
𝜋𝑤2

[︀
cosh(𝑟2/𝑤2

𝐶)− exp(−𝑟2/𝑤2)
]︀
, (4.15)

see the profile on Figure 34. This is nothing but the complement to a source of heat corresponding
to a TEM00 mode dissipating 𝑃𝐿 W on the coating. The resulting global thermal lens (thus
corrected) can be seen in Figure 35.

The price to pay is to provide the correcting power. According to Equation (4.15), the integrated
power of the mask is

𝑃𝐶 = 2𝜋
∫︁ 𝑎

0

𝐼𝐶(𝑟) 𝑟 𝑑𝑟 = 2𝑃𝐿

[︂
𝑤2
𝐶

𝑤2
sinh(𝑎2/𝑤2

𝐶)− 1
]︂
. (4.16)

We see in this rather academic case (Table 13) that the residual losses are much less than in
the preceding case (by a factor of about 20), but at the price of higher TCS power. The expansion
in terms of Zernike polynomials is given in Table 14.
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Figure 34: Source of heat on the mirror rear face for a power mask according to Equation (4.15) with
𝑤𝐶 = 16.9 cm for 1 W dissipated by the readout beam
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Figure 35: Corrected thermal lens by a power mask according to Equation (4.15) with 𝑤𝐶 = 16.9 cm for
100 mW dissipated by the readout LG00 beam (𝑤 = 2 cm)

Table 13: Thermal compensation with a scanning CO2 beam for LG00 mode (𝑤 = 2 cm)

dissipated power initial losses compensation power minimal losses wavefront curvature

10 mW 350 ppm 1.9 W 0.7 ppm ∞
20 mW 1,400 ppm 3.8 W 3 ppm ∞
30 mW 3,100 ppm 5.6 W 6.4 ppm ∞

100 mW 34,300 ppm 18.8 W 71 ppm ∞
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Table 14: Zernike coefficients for three TCS systems compensating LG00 mode (𝑤 = 2 cm)

heating ring Axicon CO2 scan
𝑐𝑛 𝜇m/W 𝜇m/W 𝜇m/W

0 0.759 0.018 0.774
1 0.016 −0.008 −0.058
2 −0.044 0.003 −0.016
3 −0.012 0.001 0.001
4 0.002 −0.001 −0.002
5 0.004 0.001 0.002
6 0.002 0 −0.001
7 0 0 0.001
8 −0.001 0 −0.001

5 Heating in the Quasistatic Regime: Heating from Cold

It is interesting to study the temperature evolution of a mirror, assuming a constant light power
flux switched on at 𝑡 = 0.

5.1 Transient temperature field

We consider the time-dependent heat equation with an internal source of heat (bulk absorption of
light) and a surface source on the coating. The Fourier equation is

[𝜌𝐶𝜕𝑡 −𝐾Δ]𝑇 (𝑡, 𝑟, 𝑧) = 𝑆1(𝑟), (5.1)

where 𝜌 is the density of the material and 𝐶 its specific heat. 𝑆1 accounts for the dissipation
of light passing through the substrate. As in the static case, it is independent on 𝑧 because the
attenuation of the beam is extremely weak; moreover, we assume it is independent of time. In
a recycling interferometer, we would expect the transient lens to change the reflectance of the
cavity, the recycling rate, in turn, and eventually the source 𝑆1, so that 𝑆1 is a function of 𝑡.
But we consider here an isolated mirror. The case of a complex system with feedback can be
treated sequentially (see [19]) using any propagation code, but this is beyond our present goal.
For instance, we assume some servo loop acting to maintain a constant power flow. The boundary
conditions are still

−𝐾
[︂
𝜕𝑇

𝜕𝑧

]︂
𝑟,𝑧=−ℎ/2

= −4𝜎f𝑇
3
0 𝑇 (𝑟,−ℎ/2) + 𝑆2(𝑟), (5.2)

where 𝑆2 accounts for the dissipation of light on the reflective coating. The next two boundary
conditions are

−𝐾
[︂
𝜕𝑇

𝜕𝑧

]︂
𝑟,𝑧=ℎ/2

= 4𝜎f𝑇
3
0 𝑇 (𝑟, ℎ/2) (5.3)

and

−𝐾
[︂
𝜕𝑇

𝜕𝑟

]︂
𝑟=𝑎,𝑧

= 4𝜎edge𝑇
3
0 𝑇 (𝑎, 𝑧). (5.4)

We already know the steady state solution 𝑇∞ for coating or bulk dissipation in the general form

𝑇∞(𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝑧)𝐽0(𝑘𝑠𝑟), (5.5)
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where 𝑘𝑠 ≡ 𝜁𝑠/𝑎 and {𝜁𝑠 : 𝑠 = 1, 2, ..} have the same definition as in Equation (3.11). 𝑇∞(𝑟, 𝑧)
satisfies all boundary conditions plus the inhomogeneous heat equation. Thus, it is a special
solution of Equation (5.1). We now look for a general time-dependent solution of the homogeneous
heat equation

[𝜌𝐶𝜕𝑡 −𝐾Δ]𝑇tr(𝑡, 𝑟, 𝑧) = 0 (5.6)

and satisfying homogeneous boundary conditions. We search this transient temperature field under
the form

𝑇tr(𝑡, 𝑟, 𝑧) =
∑︁
𝑠,𝑗

[︀
𝜃′𝑠,𝑗(𝑡) cos(𝜅′𝑗𝑧) + 𝜃′′𝑠,𝑗(𝑡) sin(𝜅′′𝑗 𝑧)

]︀
𝐽0(𝑘𝑛𝑟), (5.7)

so that the general solution of Equation (5.1) will be

𝑇 (𝑡, 𝑟, 𝑧) = 𝑇∞(𝑟, 𝑧) + 𝑇tr(𝑡, 𝑟, 𝑧). (5.8)

Now, the time functions 𝜃′𝑠,𝑗(𝑡) and 𝜃′′𝑠,𝑗(𝑡) must satisfy

𝜕𝜃′𝑠,𝑗
𝜕𝑡

+
𝐾

𝜌𝐶

(︀
𝑘2
𝑛 + 𝜅′2𝑗

)︀
𝜃′𝑠,𝑗 = 0 (5.9)

and
𝜕𝜃′′𝑠,𝑗
𝜕𝑡

+
𝐾

𝜌𝐶

(︀
𝑘2
𝑛 + 𝜅′′2𝑗

)︀
𝜃′′𝑠,𝑗 = 0, (5.10)

whose solutions are
𝜃′𝑠,𝑗(𝑡) = 𝜃′𝑠,𝑗 exp(−𝑡/𝜏 ′𝑠,𝑗) (5.11)

𝜃′′𝑠,𝑗(𝑡) = 𝜃′′𝑠,𝑗 exp(−𝑡/𝜏 ′′𝑠,𝑗), (5.12)

where the time constants are, respectively,

𝜏 ′𝑠,𝑗 =
𝜏

𝛾2
𝑠 + 𝑢2

𝑘

(5.13)

𝜏 ′′𝑠,𝑗 =
𝜏

𝛾2
𝑠 + 𝑣2

𝑗

(5.14)

with the main time constant

𝜏 ≡ 𝜌𝐶ℎ2

4𝐾
(5.15)

(about 0.8 h for a regular Virgo mirror substrate). The boundary conditions on the faces lead to
the following equations:

𝜅′𝑗
ℎ

2
sin
(︂
𝜅′𝑗
ℎ

2

)︂
− 4𝜎𝑓𝑇 3

0 ℎ

2𝐾
cos
(︂
𝜅′𝑗
ℎ

2

)︂
= 0 (5.16)

𝜅′′𝑗
ℎ

2
cos
(︂
𝜅′′𝑗
ℎ

2

)︂
+

4𝜎𝑓𝑇 3
0 ℎ

2𝐾
sin
(︂
𝜅′′𝑗
ℎ

2

)︂
= 0. (5.17)

In terms of the reduced radiation constant 𝜒′ = 𝜒ℎ/2𝑎, the first equation is of the form

𝑢 sin𝑢− 𝜒′ cos𝑢 = 0. (5.18)

This equation admits an infinite discrete family of solutions {𝑢𝑗 , 𝑗 ∈ N*}, giving us 𝜅′l = 2𝑢𝑗/ℎ. In
the same way, we have 𝜅′′𝑗 = 2𝑣𝑗/ℎ, where the constants {𝑣𝑗 , 𝑗 ∈ N*} are all solutions of

𝑣 cos 𝑣 + 𝜒′ sin 𝑣 = 0. (5.19)
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Owing again to the Sturm–Liouville theorem, the functions {cos(2𝑢𝑗𝑧/ℎ), 𝑗 ∈ N*} form a com-
plete orthogonal set, and a basis for symmetric functions of 𝑧 defined in [−ℎ/2, ℎ/2]. Functions
{sin(2𝑣𝑗𝑧/ℎ), 𝑗 ∈ N*} form also a complete and orthogonal set for antisymmetric functions on
[−ℎ/2, ℎ/2]. The two sets are obviously mutually orthogonal. Moreover, we have∫︁ ℎ/2

−ℎ/2
cos(𝜅′𝑗𝑧) cos(𝜅′𝑗′𝑧) 𝑑𝑧 = 𝑔′𝑗𝛿𝑗𝑗′ (5.20)

with the normalization constant

𝑔′𝑗 =
ℎ

2

[︂
1 +

sin(2𝑢𝑗)
2𝑢𝑗

]︂
(5.21)

and in the same way ∫︁ ℎ/2

−ℎ/2
cos(𝜅′′𝑗 𝑧) cos(𝜅′′𝑗′𝑧) 𝑑𝑧 = 𝑔′′𝑗 𝛿𝑗𝑗′ (5.22)

with

𝑔′′𝑗 =
ℎ

2

[︂
1− sin(2𝑣𝑗)

2𝑣𝑗

]︂
. (5.23)

At this point, all constants have been determined, except 𝜃′𝑠,𝑗 and 𝜃′′𝑠,𝑗 . This is done depending on
the initial conditions on the temperature. The total temperature field being

𝑇 (𝑡, 𝑟, 𝑧) = 𝑇∞(𝑟, 𝑧) + 𝑇tr(𝑡, 𝑟, 𝑧)

=
∑︁
𝑠

⎡⎣ 𝑇𝑠(𝑧) +
∑︁
𝑗

(︀
𝜃′𝑠,𝑗(𝑡) cos(𝜅′𝑗𝑧) + 𝜃′′𝑠,𝑗(𝑡) sin(𝜅′′𝑗 𝑧)

)︀⎤⎦ 𝐽0(𝑘𝑠𝑟), (5.24)

Thus, the initial temperature is

𝑇 (0, 𝑟, 𝑧) = 𝑇∞(𝑟, 𝑧) + 𝑇tr(𝑡, 𝑟, 𝑧)

=
∑︁
𝑠

⎡⎣ 𝑇𝑠(𝑧) +
∑︁
𝑗

(︀
𝜃′𝑠,𝑗 cos(𝜅′𝑗𝑧) + 𝜃′′𝑠,𝑗 sin(𝜅′′𝑗 𝑧)

)︀⎤⎦ 𝐽0(𝑘𝑠𝑟), (5.25)

and if we require heating from room temperature, i.e., 𝑇 (0, 𝑟, 𝑧) = 0, considering the orthogonality
of the functions 𝐽0(𝑘𝑠𝑟), we are led to the equation

𝑇𝑠(𝑧) +
∑︁
𝑗

[︁
𝜃′𝑠,𝑗 cos(𝜅′𝑗) + 𝜃′′𝑠,𝑗 sin(𝜅′′𝑗 )

]︁
= 0 (5.26)

giving

𝜃′𝑠,𝑗 = − 1
𝑔′𝑗

∫︁ ℎ/2

−ℎ/2
𝑇𝑠(𝑧) cos(𝜅′𝑗𝑧) 𝑑𝑧 (5.27)

𝜃′′𝑠,𝑗 = − 1
𝑔′′𝑗

∫︁ ℎ/2

−ℎ/2
𝑇𝑠(𝑧) sin(𝜅′′𝑗 𝑧) 𝑑𝑧, (5.28)

which completes the determination. Finally, the temperature field is

𝑇 (𝑡, 𝑟, 𝑧) = −
∑︁
𝑠,𝑗

[︁
𝜃′𝑠,𝑗

(︁
1− e−𝑡/𝜏

′
𝑠,𝑗

)︁
cos(𝜅′𝑗𝑧) + 𝜃′′𝑠,𝑗

(︁
1− e−𝑡/𝜏

′′
𝑠,𝑗

)︁
sin(𝜅′′𝑗 𝑧)

]︁
𝐽0(𝑘𝑠𝑟). (5.29)

It is now possible to specialize the result to the two cases of coating and bulk absorption.
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5.1.1 Transient temperature from coating absorption

In the case of coating absorption, we know from Equation (3.18) specialized to axisymmetry that

𝑇𝑠(𝑧) =
𝜖𝑃

2𝜋𝐾𝑎
𝑝𝑠

[︂
cosh(𝜁𝑠𝑧/𝑎)

𝑑1,𝑠
− sinh(𝜁𝑠𝑧/𝑎)

𝑑2,𝑠

]︂
, (5.30)

(𝛾𝑠 ≡ 𝜁𝑠ℎ/2𝑎). After some elementary algebra, we have

𝜃′𝑠,𝑗 = − 𝜖𝑃ℎ𝑝𝑠
2𝜋𝐾𝑎2

cos𝑢𝑗
1 + sin(2𝑢𝑗)/2𝑢𝑗

1
𝑢2
𝑗 + 𝛾2

𝑠

(5.31)

𝜃′′𝑠,𝑗 =
𝜖𝑃ℎ𝑝𝑠
2𝜋𝐾𝑎2

sin 𝑣𝑗
1− sin(2𝑣𝑗)/2𝑣𝑗

1
𝑣2
𝑗 + 𝛾2

𝑠

(5.32)

so that the final result for the transient temperature field is

𝑇 (𝑡, 𝑟, 𝑧) =
𝜖𝑃ℎ

2𝜋𝐾𝑎2

∑︁
𝑠,𝑗

𝑝𝑠

[︃
cos(𝑢𝑗)

(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝑢2
𝑗 + 𝛾2

𝑠 )

(︁
1− e−𝑡/𝜏

′
𝑠,𝑗

)︁
cos(𝜅′𝑗𝑧)

− sin(𝑣𝑗)
(1− sin(2𝑣𝑗)/2𝑣𝑗)(𝑣2

𝑗 + 𝛾2
𝑠 )

(︁
1− e−𝑡/𝜏

′′
𝑠,𝑗

)︁
sin(𝜅′′𝑗 𝑧)

]︃
𝐽0(𝑘𝑠𝑟) (5.33)

The transient thermal lens is

𝑍(𝑡, 𝑟) =
𝑑𝑛

𝑑𝑇

∫︁ ℎ/2

−ℎ/2
𝑇 (𝑡, 𝑟, 𝑧) 𝑑𝑧

=
𝑑𝑛

𝑑𝑇

𝜖𝑃ℎ2

2𝜋𝐾𝑎2

∑︁
𝑠,𝑗

𝑝𝑠
sin(2𝑢𝑗)/2𝑢𝑗

(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝑢2
𝑗 + 𝛾2

𝑠 )

(︁
1− e−𝑡/𝜏

′
𝑠,𝑗

)︁
𝐽0(𝑘𝑠𝑟). (5.34)

Figures 36, 37, and 38 show the time evolution of the thermal lens. The time constant for temper-
ature evolution is very long, several hours, but the time constant of the focal length of the thermal
lens is much shorter because the final profile of the lens is reached within about 1/2 h, after which
the temperature keeps growing uniformly without changing the gradients.

5.1.2 Transient temperature from bulk absorption

In the case of internal absorption, we have

𝑇𝑠(𝑧) =
𝛽𝑃

𝜋𝐾

𝑝𝑠
𝜁2
𝑠

[︂
1− 𝜒 cosh(𝑘𝑠𝑧).𝑝𝑛𝑔

𝑑1,𝑠

]︂
. (5.35)

We have, obviously, 𝜃′′𝑠,𝑗 = 0 and, after some algebra, we find

𝜃′𝑠,𝑗 = −𝛽𝑃𝑝𝑠ℎ
2

2𝜋𝐾𝑎2

sin𝑢𝑗/𝑢𝑗
(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2

𝑠 + 𝑢2
𝑗 )
, (5.36)

so that the temperature field is

𝑇 (𝑡, 𝑟, 𝑧) =
𝛽𝑃ℎ2

2𝜋𝐾𝑎2

∑︁
𝑠,𝑗

𝑝𝑠
sin𝑢𝑗/𝑢𝑗

(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2
𝑠 + 𝑢2

𝑗 )

(︁
1− e−𝑡/𝜏

′
𝑠,𝑗

)︁
cos(𝜅′𝑗𝑧) 𝐽0(𝑘𝑠𝑟) (5.37)
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Figure 36: Time evolution of the thermal lens from room temperature to the steady state limit. Heating
from coating absorption, LG0,0 mode, 𝑤 = 2 cm
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Figure 37: Time evolution of the thermal lens from room temperature to steady state limit. Heating
from coating absorption, LG5,5 mode, 𝑤 = 3.5 cm
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Figure 38: Time evolution of the thermal lens from room temperature to the steady state limit. Heating
from coating absorption, Flat mode, 𝑏 = 9.1 cm
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Figure 39: Coating absorption: time evolution of the curvature radius of the thermal lens LG0,0 mode,
𝑤 = 2 cm
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Figure 40: Coating absorption: time evolution of the curvature radius of the thermal lens, LG5,5 mode,
𝑤 = 3.5 cm
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Figure 41: Coating absorption: time evolution of the curvature radius of the thermal lens, flat mode,
𝑏 = 9.1 cm
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Figure 42: Coating absorption: time evolution of the curvature radii of thermal lenses for three examples

and the transient thermal lens is

𝑍(𝑡, 𝑟) =
𝑑𝑛

𝑑𝑇

𝛽𝑃ℎ3

2𝜋𝐾𝑎2

∑︁
𝑠,𝑗

𝑝𝑠
(sin𝑢𝑗/𝑢𝑗)2

(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2
𝑠 + 𝑢2

𝑗 )

(︁
1− e−𝑡/𝜏

′
𝑠,𝑗

)︁
𝐽0(𝑘𝑠𝑟). (5.38)

The time evolution curves are practically identical to those shown in Figures 36, 37, and 38. See,
for example, Figure 43; in the same way, the final lens profile is reached long before the temperature
reaches the steady state.

5.2 Transient thermal distortions

In the quasistatic regime, the time scale for temperature evolution is clearly too long to generate
inertial effects in the material. Thus, the elastodynamic equations reduce to elastic. The equilib-
rium equations are therefore unchanged with respect to Equation (3.91). The displacement vector
is unchanged in form with respect to the static case, except that the time enters as an evolution
parameter through temperature. The temperature field being, as usual,

𝑇 (𝑡, 𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝑡, 𝑧)𝐽0(𝑘𝑠𝑟). (5.39)

The generic thermoelastic longitudinal displacement is of the form

𝑢𝑧(𝑡, 𝑟, 𝑧) =
∑︁
𝑠

𝐵𝑠(𝑡, 𝑧) 𝐽0(𝜁𝑠𝑟/𝑎). (5.40)

We are interested in the displacement of the reflecting surface, and the general solution gives

𝐵𝑠(𝑡,−ℎ/2) = 2𝛼(1 + 𝜎)
{︂

cosh 𝛾𝑠
Γ′′𝑠

[𝑒′𝑠(𝑡) sinh 𝛾𝑠 − 𝑘𝑠𝑜𝑠 cosh 𝛾𝑠]

sinh 𝛾𝑠
Γ′𝑠

[𝑜′𝑠(𝑡) cosh 𝛾𝑠 − 𝑘𝑠𝑒𝑠 sinh 𝛾𝑠]
}︂
, (5.41)
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Figure 43: Bulk absorption: Time evolution of the thermal lens curvature radii for three examples

where the function 𝒯𝑠(𝑡, 𝑧) is a special solution of

(𝜕2
𝑧 − 𝑘2

𝑠)𝒯𝑠(𝑡, 𝑧) = 𝑇𝑠(𝑡, 𝑧) (5.42)

and where the notation of Equation (3.148) has been employed.

5.2.1 Case of coating absorption

In the case of a heat source on the coating, we have found the temperature field from Equa-
tion (5.33), so that we have

𝒯𝑠(𝑡, 𝑧) = −𝜖𝑃ℎ
3𝑝𝑠

8𝜋𝐾𝑎2

∑︁
𝑗

[︃
cos𝑢𝑗

(︀
1− exp(−𝑡/𝜏 ′𝑠,𝑗)

)︀
(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2

𝑠 + 𝑢2
𝑗 )2

cos(𝜅𝑗𝑧)

−
sin 𝑣𝑗

(︀
1− exp(−𝑡/𝜏 ′′𝑠,𝑗)

)︀
(1− sin(2𝑣𝑗)/2𝑣𝑗)(𝛾2

𝑠 + 𝑣2
𝑗 )2

sin(𝜅𝑗𝑧)

]︃
(5.43)

and consequently

𝑘𝑠𝑒𝑠(𝑡) = −𝜖ℎ
3𝑝𝑠

8𝐾𝑎
𝜁𝑠𝑈𝑠,𝑗(𝑡) (5.44)

𝑘𝑠𝑜𝑠(𝑡) =
𝜖ℎ3𝑝𝑠
8𝐾𝑎

𝜁𝑠𝑉𝑠,𝑗(𝑡) (5.45)

𝑒′𝑠(𝑡) = −𝜖ℎ
3𝑝𝑠

8𝐾𝑎
𝜒𝑉𝑠,𝑗(𝑡) (5.46)

𝑒′𝑠(𝑡) =
𝜖ℎ3𝑝𝑠
8𝐾𝑎

𝜒𝑈𝑠,𝑗(𝑡) (5.47)
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with

𝑈𝑠,𝑗(𝑡) =
cos2 𝑢𝑗

(︀
1− exp(−𝑡/𝜏 ′𝑠,𝑗

)︀
(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2

𝑠 + 𝑢2
𝑗 )2

(5.48)

𝑉𝑠,𝑗(𝑡) =
sin2 𝑣𝑗

(︀
1− exp(−𝑡/𝜏 ′′𝑠,𝑗

)︀
(1− sin(2𝑣𝑗)/2𝑣𝑗)(𝛾2

𝑠 + 𝑣2
𝑗 )2

, (5.49)

so that finally

𝐵𝑠(𝑡,−ℎ/2) = −𝛼(1 + 𝜎)𝜖𝑃ℎ3

4𝜋𝐾𝑎3
𝑝𝑠
∑︁
𝑗

[︂
𝑑1,𝑠 sinh 𝛾𝑠𝑈𝑠,𝑗(𝑡)

Γ′𝑠
+
𝑑2,𝑠 cosh 𝛾𝑠𝑉𝑠,𝑗(𝑡)

Γ′′𝑠

]︂
. (5.50)

The contribution to curvature of the Saint-Venant correction reduces to

𝛿𝑢𝑧(𝑡, 𝑟,−ℎ/2) = 𝑐(𝑡) 𝑟2 (5.51)

with the time dependent curvature

𝑐(𝑡) =
3𝜒𝑃𝛼𝜖ℎ
2𝜋𝐾𝑎3

∑︁
𝑠,𝑗

𝑝𝑠𝐽0(𝜁𝑠)
𝜁2
𝑠

[︀
(𝜒+ 2𝑎/ℎ)(1 + 𝛾2

𝑠/𝑣
2
𝑗 )

+2𝜎𝑑2,𝑠(sinh 𝛾𝑠 − 𝛾𝑠 cosh 𝛾𝑠)/𝛾𝑠Γ′′𝑠 ]𝑉𝑠,𝑗(𝑡). (5.52)

See in Figures 44, 45, and 46, the time evolution of the surface deformation under a constant power
flux. The dashed curves corresponding to the steady state are computed with Equations (3.120)
and (3.122). Using our averaging technique, we can compute the transient curvature radius for the
three considered examples (Figures 47, 48, and 49).
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Figure 44: Coating absorption: time evolution of the reflecting surface caused by thermal expansion.
Mode LG0,0, 𝑤 = 2 cm
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Figure 45: Coating absorption: time evolution of the reflecting surface caused by thermal expansion.
Flat mode, 𝑏 = 9.1 cm
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Figure 46: Coating absorption: time evolution of the reflecting surface caused by thermal expansion.
Mode LG5,5, 𝑤 = 3.5 cm
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Figure 47: Coating absorption: time evolution of the curvature radius of the thermal lens caused by
thermal expansion. Mode LG0,0, 𝑤 = 2 cm

100 101 102 103 104 105
105

106

107

108

109

Steady state

1 s

1 mn

1 h

Time [s]

C
u

rv
at

u
re

 r
ad

iu
s 

o
f 

th
e 

su
rf

ac
e 

[m
.W

]

Figure 48: Coating absorption: time evolution of the curvature radius of the thermal lens caused by
thermal expansion. Flat mode, 𝑏 = 9.1 cm
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Figure 49: Coating absorption: time evolution of the curvature radius of the thermal lens caused by
thermal expansion. Mode LG5,5, 𝑤 = 3.5 cm

5.2.2 Case of bulk absorption

The temperature field defined by Equation (5.37) gives

𝒯𝑠(𝑡, 𝑧) = −𝛽𝑃ℎ
4𝑝𝑠

8𝜋𝐾𝑎2

∑︁
𝑗

sin𝑢𝑗/𝑢𝑗
(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2

𝑠 + 𝑢2
𝑗 )2

[1− exp(−𝑡/𝜏𝑠,𝑗)] cos(𝜅𝑗𝑧) (5.53)

so that

𝑘𝑠𝑒𝑠(𝑡) = − 𝛽𝑃ℎ4

8𝜋𝐾𝑎3
𝑝𝑠𝜁𝑠𝑊𝑠,𝑗(𝑡) (5.54)

𝑜′(𝑡) =
𝛽𝑃ℎ3

8𝜋𝐾𝑎3
𝑝𝑠𝜒𝑊𝑠,𝑗(𝑡) (5.55)

with

𝑊𝑠,𝑗(𝑡) =
sin(2𝑢𝑗)/2𝑢𝑗

(︀
1− exp(−𝑡/𝜏 ′𝑠,𝑗)

)︀
(1 + sin(2𝑢𝑗)/2𝑢𝑗)(𝛾2

𝑠 + 𝑢2
𝑗 )2

(5.56)

yielding, finally,

𝐵𝑠(𝑡,−ℎ/2) = −𝛼(1 + 𝜎)𝛽𝑃ℎ4

4𝜋𝐾𝑎3

∑︁
𝑗

𝑝𝑠𝑑1,𝑠 sinh 𝛾𝑠
Γ′𝑠

𝑊𝑠,𝑗(𝑡). (5.57)

Due to the symmetry of the temperature field in 𝑧 and to the resulting symmetry of the stress field
Θ𝑟𝑟(𝑎, 𝑧), the contribution to curvature of the Saint-Venant correction (mean torque) is zero. See
in Figures 50, 51, and 52 the time evolution of the distorted surface for our three examples. The
curvature evolution is plotted in Figures 53,54, and 55.
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Figure 50: Bulk absorption: time evolution of the reflecting surface caused by thermal expansion. Mode
LG0,0, 𝑤 = 2 cm
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Figure 51: Bulk absorption: time evolution of the reflecting surface caused by thermal expansion. Flat
mode, 𝑏 = 9.1 cm
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Figure 52: Bulk absorption: time evolution of the reflecting surface caused by thermal expansion. Mode
LG5,5, 𝑤 = 3.5 cm
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Figure 53: Bulk absorption: time evolution of the curvature radius caused by thermal expansion. Mode
LG0,0, 𝑤 = 2 cm
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Figure 54: Bulk absorption: time evolution of the curvature radius caused by thermal expansion. Flat
mode, 𝑏 = 9.1 cm
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Figure 55: Bulk absorption: time evolution of the curvature radius caused by thermal expansion. Mode
LG5,5, 𝑤 = 3.5 cm

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors 77

6 Heating and Thermal Effects in the Dynamic Regime:
Transfer Functions

We address here the case of fluctuations of the incident power due to either fluctuations of the
laser itself, fluctuations of the locking system, or even fluctuations equivalent to shot noise. The
incident power flux 𝑃 (𝜔) is assumed to be of Fourier frequency 𝑓 = 𝜔/2𝜋. The Fourier transform
of the Heat equation (assuming a time dependence of all quantities in exp(𝑖𝜔𝑡)) is[︂

𝜕2
𝑟 +

1
𝑟
𝜕𝑟 + 𝜕2

𝑧 − 𝑖
𝜌𝐶𝜔

𝐾

]︂
𝑇 (𝜔, 𝑟, 𝑧) = 0 (6.1)

in the case of a heat source on the coating. We assume a separate solution in the form an FB
expansion of the form

𝑇 (𝜔, 𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝜔, 𝑧) 𝐽0(𝑘𝑠𝑟), (6.2)

where 𝑘𝑠 has the usual definition 𝑘𝑠 ≡ 𝜁𝑠/𝑎, in order to identically satisfy the radiation condition
on the edge of the mirror. Then, the longitudinal function obeys[︂

𝜕2
𝑧 − 𝑘2

𝑠 − 𝑖
𝜌𝐶𝜔

𝐾

]︂
𝑇𝑠(𝜔, 𝑧) = 0 (6.3)

so that the general solution is of the form

𝑇𝑠(𝜔, 𝑧) = 𝑇 (1)
𝑠 (𝜔) cosh(𝜅𝑠𝑧) + 𝑇 (2)

𝑠 (𝜔) sinh(𝜅𝑠𝑧) (6.4)

with

𝜅𝑠 = 𝜅𝑠(𝜔) ≡
√︂
𝑘2
𝑠 + 𝑖

𝜌𝐶𝜔

𝐾
. (6.5)

We also adopt the new dimensionless parameters 𝜉𝑠 ≡ 𝜅𝑠𝑎 ≡
√︀
𝜁2
𝑠 + 𝑖𝜌𝐶𝜔𝑎2/𝐾 and 𝜂𝑠 ≡ 𝜅𝑠ℎ/2.

With this notation, and by setting the (unchanged since the beginning) boundary conditions, we
can specialize the solution to be entirely analogous in form to the static solution.

6.1 Temperature fields and thermal lensing

6.1.1 Coating absorption

In case of dissipation of light power on the reflecting surface, we find the complex solution (see
Equation (3.18))

𝑇 (𝜔, 𝑟, 𝑧) =
𝜖𝑃 (𝜔)
2𝜋𝐾𝑎

∑︁
𝑠

𝑝𝑠

[︂
cosh(𝜅𝑠𝑧)

𝜉𝑠 sinh 𝜂𝑠 + 𝜒 cosh 𝜂𝑠
− sinh(𝜅𝑠𝑧)
𝜉𝑠 cosh 𝜂𝑠 + 𝜒 sinh 𝜂𝑠

]︂
𝐽0(𝑘𝑠𝑟). (6.6)

In turn, the dynamic thermal lens is

𝑍(𝜔, 𝑟) =
𝑑𝑛

𝑑𝑇

𝜖𝑃 (𝜔)
𝜋𝐾

∑︁
𝑠

𝑝𝑠
1

𝜉𝑠(𝜉𝑠 + 𝜒 coth 𝜂𝑠)
𝐽0(𝑘𝑠𝑟). (6.7)
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6.1.2 Bulk absorption

For internal dissipation, we have, in the same way,

𝑇 (𝜔, 𝑟, 𝑧) =
𝛽𝑃 (𝜔)
𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜁2
𝑠

[︂
1− 𝜒 cosh(𝜅𝑠𝑧)

𝜉𝑠 sinh 𝜂𝑠 + 𝜒 cosh 𝜂𝑠

]︂
𝐽0(𝑘𝑠𝑟) (6.8)

with the resulting thermal lens

𝑍(𝜔, 𝑟) =
𝑑𝑛

𝑑𝑇

𝛽ℎ𝑃 (𝜔)
𝜋𝐾

∑︁
𝑠

𝑝𝑠
𝜉2𝑠

[︂
1− 2𝑎𝜒/ℎ

𝜉𝑠(𝜉𝑠 + 𝜒 coth 𝜂𝑠)

]︂
𝐽0(𝑘𝑠𝑟). (6.9)

6.2 Equivalent displacement noise

The induced dynamic thermal lens produces a dynamic excess phase after crossing the mirror’s
substrate. This dynamic phase is analogous to a displacement. We assume this equivalent dis-
placement is not desired and call it “displacement noise”. This equivalent displacement 𝑍(𝜔) is
given, as usual, by the average of the lens, weighted by the normalized intensity profile 𝐼(𝑟),

𝑍(𝜔) = 2𝜋
∫︁ 𝑎

0

𝑍(𝜔, 𝑟)𝐼(𝑟) 𝑟 𝑑𝑟. (6.10)

We have
𝑍(𝜔, 𝑟) =

∑︁
𝑠

𝑍𝑠(𝜔)𝐽0(𝑘𝑠𝑟) (6.11)

and
𝐼(𝑟) =

1
𝜋𝑎2

∑︁
𝑠

𝑝𝑠𝐽0(𝑘𝑠𝑟) (6.12)

so that the equivalent displacement is

𝑍(𝜔) =
∑︁
𝑠

[︀
1 + (𝜒𝑒/𝜁𝑠)2

]︀
𝐽0(𝜁𝑠)2𝑝𝑠𝑍𝑠(𝜔). (6.13)

Asymptotic regime

The time constant 𝜏𝑑 ≡ 𝜌𝐶𝑎2/𝐾 is about 10 h. Therefore, it is clear that for frequencies in the
target GW band (more than a few Hz), we have

𝜉2𝑠 = 𝜁2
𝑠 + 2 𝑖 𝜋𝜏𝑑𝑓 ∼ 2 𝑖 𝜋𝜏𝑑𝑓. (6.14)

Because the FB series is converging, the values of 𝑠 at which the real part becomes comparable to
the imaginary are never reached. If we adopt the preceding approximation, we have

𝑍𝑠(𝜔) ∼ −𝑖 𝑑𝑛
𝑑𝑇

𝜖𝑃 (𝜔)
𝜋𝜌𝐶𝜔

𝑝𝑠, (6.15)

which allows one to compute the asymptotic equivalent displacement. In Figure 56 we have plotted
the transfer function |𝑍(𝜔)/𝜖𝑃 (𝜔)| relating displacement fluctuations to power fluctuations, making
clear that the asymptotic regime (dashed line) is fully valid for frequencies larger than 10 mHz.
On the other hand, we see that in the asymptotic regime, the dynamic thermal lens is simply

𝑍(𝜔, 𝑟) = −𝑖 𝑑𝑛
𝑑𝑇

𝜖𝑃 (𝜔)
𝜋𝜌𝐶𝜔

𝐼(𝑟), (6.16)
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Figure 56: Coating absorption: transfer function from power to displacement. Dashed line: asymptotic
regime

where 𝐼(𝑟) is the normalized intensity of the beam. In words, the thermal lens is proportional to
the beam intensity, with a phase lag of 𝜋/2. The conclusions are identical for the case of bulk
absorption. The asymptotic formulas are identical up to the change 𝜖→ 𝛽ℎ.

For the case of the heat source on the reflective coating, we get the following values. For an
LG0,0 mode with 𝑤 = 2 cm, we have

𝑍(𝑓)
𝜖𝑃 (𝑓)

∼ 2.7× 10−10

[︂
1 Hz
𝑓

]︂
m/W; (6.17)

for a flat mode of width 9.1 cm, we have

𝑍(𝑓)
𝜖𝑃 (𝑓)

∼ 1.3× 10−11

[︂
1 Hz
𝑓

]︂
m/W; (6.18)

and for an LG5,5 mode with 𝑤 = 3.5 cm, we have

𝑍(𝑓)
𝜖𝑃 (𝑓)

∼ 8.5× 10−12

[︂
1 Hz
𝑓

]︂
m/W. (6.19)

The results are quasi-identical for bulk absorption (see Figure 57).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


80 Jean-Yves Vinet

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100
10-10

10-9

10-8

10-7

10-6

10-5

10-4

LG00, w = 2 cm
Flat M

ode, b = 9.1 cm

LG55, w = 3.5 cm

Frequency [Hz]

T
F

 :
 |Z

(ω
)/

ε
P

(ω
)|

 [
m

/W
]

Figure 57: Bulk absorption: transfer function from power to displacement. Dashed line: asymptotic
regime.

7 Dynamic Surface Distortion

We address here the motion of the reflecting surface of a mirror receiving a time-varying power
flow creating a time-varying temperature and finally time-varying stresses. For the temperature
field, the problem was solved in the preceding Section 6. We take the generic form

𝑇 (𝜔, 𝑟, 𝑧) =
∑︁
𝑠

𝑇𝑠(𝜔, 𝑧)𝐽0(𝑘𝑠𝑟). (7.1)

And we search for a displacement vector in the (already used) form{︂
𝑢𝑟(𝜔, 𝑟, 𝑧) =

∑︀
𝑠𝐴𝑠(𝜔, 𝑧)𝐽1(𝑘𝑠𝑟)

𝑢𝑠(𝜔, 𝑟, 𝑧) =
∑︀
𝑠𝐵𝑠(𝜔, 𝑧)𝐽0(𝑘𝑠𝑟)

(7.2)

with, as usual, 𝑘𝑠 ≡ 𝜁𝑠/𝑎. The equilibrium equations must be modified with respect to Equa-
tion (3.91) to take into account inertial effects{︂

𝜕𝑟Θ𝑟𝑟 + (Θ𝑟𝑟 −Θ𝜑𝜑)/𝑟 + 𝜕𝑧Θ𝑟𝑧 = −𝜌𝜔2𝑢𝑟
(𝜕𝑟 + 1/𝑟)Θ𝑟𝑧 + 𝜕𝑧Θ𝑧𝑧 = −𝜌𝜔2𝑢𝑧

(7.3)

with the expression of the displacement vector, and the expression of thermoelastic stresses, this
gives

𝜇

[︂
𝜕2
𝑧 − 𝑘2

𝑠 +
𝜌𝜔2

𝜇

]︂
𝐴𝑠 − (𝜆+ 𝜇)𝑘𝑠(𝜕𝑧𝐵𝑠 + 𝑘𝑠𝐴𝑠) + 𝑘𝑠𝜈𝑇𝑠 = 0 (7.4)

𝜇

[︂
𝜕2
𝑧 − 𝑘2

𝑠 +
𝜌𝜔2

𝜇

]︂
𝐵𝑠 + (𝜆+ 𝜇)𝜕𝑧(𝜕𝑧𝐵𝑠 + 𝑘𝑠𝐴𝑠)− 𝜈𝜕𝑧𝑇𝑠 = 0. (7.5)

By taking 𝜕𝑧(7.4)+𝑘𝑠(7.5) , we get[︂
𝜕2
𝑧 − 𝑘2

𝑠 +
𝜌𝜔2

𝜇

]︂
(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠). (7.6)
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The general solution of which is

𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠 = 𝑘𝑠𝐶𝑠 cosh(𝜅𝑇,𝑠𝑧) + 𝑘𝑠𝐷𝑠 sinh(𝜅𝑇,𝑠𝑧), (7.7)

where 𝐶𝑠, 𝐷𝑠 are arbitrary constants, and where the transverse wave number 𝜅𝑇,𝑠 is defined as

𝜅𝑇,𝑠 =

√︃(︂
𝜁𝑠
𝑎

)︂2

− 𝜌𝜔2

𝜇
(7.8)

. Equation (7.4) can then be written as[︂
𝜕2
𝑧 − 𝑘2

𝑠 +
𝜌𝜔2

𝜆+ 2𝜇

]︂
𝐴𝑠 =

𝜆+ 𝜇

𝜆+ 2𝜇
𝜕𝑧(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠)− 𝑘𝑠

𝜈

𝜆+ 𝜇
𝑇𝑠, (7.9)

which allows one to find 𝐴𝑠:

𝐴𝑠(𝜔, 𝑧) = 𝑀𝑠 sinh(𝜅𝐿,𝑠𝑧) +𝑁𝑠 cosh(𝜅𝐿,𝑠𝑧)

+
𝜆+ 𝜇

𝜆+ 2𝜇
𝑘𝑠𝜅𝑇,𝑠

𝜅2
𝑇,𝑠 − 𝜅2

𝐿,𝑠

[𝐶𝑠 sinh(𝜅𝑇,𝑠𝑧) +𝐷𝑠 cosh(𝜅𝑇,𝑠𝑧)]− 𝑘𝑠
𝜈

𝜆+ 𝜇
𝒯𝑠, (7.10)

where 𝑀𝑠 and 𝑁𝑠 are two more arbitrary constants, 𝒯𝑠 is a special solution of[︀
𝜕2
𝑧 − 𝜅2

𝐿,𝑠

]︀
𝒯𝑠 = 𝑇𝑠 (7.11)

and the longitudinal wave number 𝜅𝐿,𝑠 is defined as

𝜅𝐿,𝑠 =

√︃(︂
𝜁𝑠
𝑎

)︂2

− 𝜌𝜔2

𝜆+ 2𝜇
. (7.12)

Once 𝐴𝑠 is found, one obtains 𝐵𝑠:

𝐵𝑠(𝜔, 𝑧) =

(︃
1− 𝜆+ 𝜇

𝜆+ 2𝜇
𝜅2
𝑇,𝑠

𝜅2
𝑇,𝑠 − 𝜅2

𝐿,𝑠

)︃
[𝐶𝑠 cosh(𝜅𝑇,𝑠𝑧) +𝐷𝑠 sinh(𝜅𝑇,𝑠𝑧)]

−𝜅𝐿,𝑠
𝑘𝑠

(𝑀𝑠 cosh(𝜅𝐿,𝑠𝑧) +𝑁𝑠 sinh(𝜅𝐿,𝑠𝑧)) +
𝜈

𝜆+ 𝜇
𝜕𝑧𝒯𝑠. (7.13)

The boundary conditions on the faces allow one to determine the arbitrary constants. It is conve-
nient to introduce the dimensionless parameter

𝑥𝑠 ≡
𝜌𝜔2𝑎2(1 + 𝜎)

𝑌 𝜁2
𝑠

. (7.14)

Then, we have

𝐶𝑠 = 𝛼
1 + 𝜎

1− 𝜎

2𝑥𝑠
𝐷1,𝑠

[︂
(1− 𝑥𝑠) sinh𝜑𝐿,𝑠 𝑒′𝑠 +

𝜅𝐿,𝑠
𝑘𝑠

cosh𝜑𝐿,𝑠 𝑘𝑠𝑜𝑠

]︂
(7.15)

𝐷𝑠 = 𝛼
1 + 𝜎

1− 𝜎

2𝑥𝑠
𝐷2,𝑠

[︂
(1− 𝑥𝑠) cosh𝜑𝐿,𝑠 𝑜′𝑠 +

𝜅𝐿,𝑠
𝑘𝑠

sinh𝜑𝐿,𝑠 𝑘𝑠𝑒𝑠

]︂
(7.16)

𝑀𝑠 = 𝛼
1 + 𝜎

1− 𝜎

1
𝐷1,𝑠

[︂
(1− 𝑥𝑠) cosh𝜑𝑇,𝑠 𝑘𝑠𝑜𝑠 +

𝜅𝑇,𝑠
𝑘𝑠

sinh𝜑𝑇,𝑠 𝑒′𝑠

]︂
(7.17)
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𝑁𝑠 = 𝛼
1 + 𝜎

1− 𝜎

1
𝐷2,𝑠

[︂
(1− 𝑥𝑠) sinh𝜑𝑇,𝑠 𝑘𝑠𝑒𝑠 +

𝜅𝑇,𝑠
𝑘𝑠

cosh𝜑𝑇,𝑠 𝑜′𝑠

]︂
(7.18)

with

𝐷1,𝑠 =
𝜅𝐿,𝑠𝜅𝑇,𝑠
𝑘2
𝑠

sinh𝜑𝑇,𝑠 cosh𝜑𝐿,𝑠 − (1− 𝑥𝑠)2 sinh𝜑𝐿,𝑠 cosh𝜑𝑇,𝑠 (7.19)

𝐷2,𝑠 =
𝜅𝐿,𝑠𝜅𝑇,𝑠
𝑘2
𝑠

sinh𝜑𝐿,𝑠 cosh𝜑𝑇,𝑠 − (1− 𝑥𝑠)2 sinh𝜑𝑇,𝑠 cosh𝜑𝐿,𝑠 (7.20)

and

𝜑𝐿,𝑠 = 𝜅𝐿,𝑠ℎ/2, 𝜑𝑇,𝑠 = 𝜅𝑇,𝑠ℎ/2. (7.21)

𝑒𝑠, 𝑒
′𝑠, 𝑜𝑠, 𝑜

′
𝑠 are defined as in Equation (3.148). The surface distortion is given by

𝑍(𝜔, 𝑟) =
∑︁
𝑠

𝐵𝑠(𝜔)𝐽0(𝑘𝑠𝑟) (7.22)

and we have

𝐵𝑠(𝜔,−ℎ/2) = 𝛼
1 + 𝜎

1− 𝜎
𝑥𝑠

[︃
cosh𝜑𝑇,𝑠

(1− 𝑥𝑠) sinh𝜑𝐿,𝑠𝑒′𝑠 + 𝜅𝐿,𝑠

𝑘𝑠
cosh𝜑𝐿,𝑠𝑘𝑠𝑜𝑠

𝐷1,𝑠

− sinh𝜑𝑇,𝑠
(1− 𝑥𝑠) cosh𝜑𝐿,𝑠𝑜′𝑠 + 𝜅𝐿,𝑠

𝑘𝑠
sinh𝜑𝐿,𝑠𝑘𝑠𝑒𝑠

𝐷2,𝑠

]︃
. (7.23)

We have seen that the dynamic temperature field at frequencies within the GW band is practically
proportional to the beam intensity profile, and consequently negligible on the edge. This is why
we neglect the boundary conditions for the edge stresses here. At this point, we can specialize for
the two cases of coating/bulk heating.

7.1 Dynamic surface distortion caused by coating absorption

The temperature field is known from Section 6 (see Equation (6.6)), so that we get

𝑒𝑠 =
𝜖𝑃 (𝜔)𝑝𝑠
2𝜋𝐾𝑎

1
𝜅2
𝑠 − 𝜅2

𝐿,𝑠

1
𝜉𝑠 tanh 𝜂𝑠 + 𝜒

(7.24)

𝑜𝑠 = −𝜖𝑃 (𝜔)𝑝𝑠
2𝜋𝐾𝑎

1
𝜅2
𝑠 − 𝜅2

𝐿,𝑠

1
𝜉𝑠 coth 𝜂𝑠 + 𝜒

(7.25)

𝑒′𝑠 = −𝜖𝑃 (𝜔)𝑝𝑠
2𝜋𝐾𝑎

𝜅

𝜅2
𝑠 − 𝜅2

𝐿,𝑠

1
𝜉𝑠 + 𝜒 tanh 𝜂𝑠

(7.26)

𝑜′𝑠 =
𝜖𝑃 (𝜔)𝑝𝑠
2𝜋𝐾𝑎

𝜅

𝜅2
𝑠 − 𝜅2

𝐿,𝑠

1
𝜉𝑠 + 𝜒 coth 𝜂𝑠

, (7.27)

which, with Equation (7.23), gives the complete solution.
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7.1.1 Mean displacement

We find the contribution to phase noise by computing, as usual, the mean equivalent displacement
by

𝑍(𝜔) = 2𝜋
∫︁ 𝑎

0

𝑢𝑧(𝜔, 𝑟,−ℎ/2)𝐼(𝑟) 𝑟 𝑑𝑟. (7.28)

I(r) being the normalized intensity profile of the beam. This yields

𝑍(𝜔) =
∑︁
𝑠

𝐵𝑠(𝜔,−ℎ/2)𝑝𝑠[1 + (𝜒e/𝜁𝑠)2]𝐽2
0 (𝜁𝑠). (7.29)

7.1.2 Under cutoff regime

The dimensionless parameter 𝑥𝑠 is very small. With the current parameters, 𝜁1 is slightly larger
than one, so that

∀𝑠 𝑥𝑠 < 4.3× 10−8

[︂
𝑓

1 Hz

]︂2
, (7.30)

so that in the GW band (far from mirror resonances), we can take the first-order approximation
of the precedent functions with respect to 𝑥𝑠. The elastic wave regime begins when the frequency
exceeds a value (cutoff) such that some 𝜅𝐿,𝑠 and 𝜅𝑇,𝑠 become imaginary. A study of the resonance
modes can then be addressed, but this requires a careful treatment of the boundary conditions on
the edge. We consider here only the case where the frequency is below the cutoff, so that a simple
theory neglecting the edge is relevant and 𝑥𝑠 may be considered small. In particular, we find from
0.1 Hz to 1 kHz

𝐵𝑠(𝜔,−ℎ/2) = −𝑖𝛼(1 + 𝜎)𝜖𝑃 (𝜔)
𝜋𝜌𝐶𝑎2𝜔

(︂
2 sinh2 𝛾𝑠 cosh2 𝛾𝑠.𝑝𝑛𝑔

sinh2 𝛾𝑠 cosh2 𝛾𝑠 − 𝛾2
𝑠

)︂
. (7.31)

This gives for our three examples the following transfer functions for the displacement noise. LG0,0

mode 𝑤 = 2 cm:

|𝑍(𝜔)/𝜖𝑃 (𝜔)| = 2× 10−11 m/W
[︂
1 Hz
𝑓

]︂
. (7.32)

Flat mode (𝑏 = 9.1 cm) or mesa mode (𝑏𝑓 = 10.7 cm):

|𝑍(𝜔)/𝜖𝑃 (𝜔)| = 1.2× 10−11 m/W
[︂
1 Hz
𝑓

]︂
. (7.33)

LG5,5 mode 𝑤 = 3.5 cm:

|𝑍(𝜔)/𝜖𝑃 (𝜔)| = 1.1× 10−11 m/W
[︂
1 Hz
𝑓

]︂
. (7.34)

Below 0.1 Hz we are in the regime where the displacements are corrected by the locking system.
Above 1 kHz the displacement noise is negligible compared to shot noise and that in the present
situation.
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8 Brownian Thermal Noise

Brownian thermal noise is the phase noise caused at nonzero temperature by random motions of the
reflecting faces of mirrors in a GW interferometer. A reflecting face can move either because it is
displaced by its suspension system or because it undergoes internal stresses. At finite temperature
the two effects are possible. We address here the internal stresses. Consider a massive body at
temperature 𝑇 . If 𝑇 > 0, the atoms constituting the body are excited and have random motions
around their equilibrium position. The fact that they are strongly coupled to neighboring atoms
makes possible the propagation of elastic waves of various types, reflecting on the faces, and the
onset of stationary waves. One can show that, for a finite body (e.g., a cylinder of silica), there
is a discrete infinity of such stationary waves, each corresponding to a particular elastic normal
mode. At thermal equilibrium, the state of the body can be represented by a linear superposition
of all the modes, with random relative phases, and, due to the energy equipartition theorem, the
same energy 𝑘𝐵𝑇 (𝑘𝐵 is the Boltzmann constant). The motion of atoms near a limiting surface of
the body will modify its shape slightly, and, if we consider the reflecting face of a mirror, a surface
distortion is a possible cause of phase change in the reflected beam, in other words, of a noise.
Estimation of the resulting spectral density of phase noise is the internal thermal noise problem
in massive mirrors.

8.1 The Fluctuation-Dissipation theorem and Levin’s generalized coor-
dinate method

We are interested in the spectral density of thermal noise. There is a general derivation of this
spectral density, based on the Fluctuation-Dissipation (FD) theorem of Callen and Welton [9]. For
an elementary dynamic system described by a degree of freedom 𝑥 and any driving force 𝐹 , one
can consider the resulting velocity 𝑣 = 𝑖𝜔�̃�, and compute a mechanical impedance as 𝒵 = 𝑣/𝐹 .
Then, the power spectral density of displacement is (this is the FD theorem)

𝑆𝑥(𝑓) =
4𝑘𝐵𝑇
𝜔2

ℜ𝑒[𝒵]. (8.1)

We can now address the problem of internal degrees of freedom in the mirrors. Internal elastic waves
eventually distort the reflecting surface, causing a phase noise. We have already discussed how to
obtain the information on the surface relevant to the beam. Let 𝑢𝑧(𝑡, 𝑥, 𝑦) be the 𝑧 component
of the displacement vector of matter at the surface of the mirror. The equivalent displacement
(generalized coordinate 𝑥) is, as usual, the axial displacement, averaged by the intensity profile,

𝑍(𝑡) =
∫︁ ∫︁

𝑢𝑧(𝑡, 𝑥, 𝑦) 𝐼(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, (8.2)

where 𝐼(𝑥, 𝑦) is the normalized light-intensity distribution in the readout beam. We now follow
the method proposed by Levin [26]. Let 𝐹 (𝑡) be the corresponding driving force. The interaction
energy is

ℰ = −𝐹 (𝑡)𝑍(𝑡) (8.3)

or
ℰ =

∫︁ ∫︁
𝑢𝑧(𝑡, 𝑥, 𝑦)𝐹 (𝑡) 𝐼(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, (8.4)

where the displacement 𝑢 may be thought of as being caused by the pressure distribution 𝐹 × 𝐼.
We address now the case of low frequencies. This case is very relevant, because resonances of
mirrors are at relatively high frequencies (several kHz) and the region where internal thermal noise
is disturbing lies long before the first resonance, in the low frequency regime. Thus, although a
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general knowledge of internal thermal noise is useful, it is nevertheless extremely interesting to
have the low frequency tail. This can be obtained as follows. If we consider a force 𝐹 (𝑡) = 𝐹 e𝑖𝜔𝑡

oscillating at very low frequency, the frequency will be lower than the cutoff for any standing waves.
The pressure 𝐹 × 𝐼 will produce an oscillating stationary displacement 𝑢, of the form

𝑢𝑧(𝑡, 𝑥, 𝑦) = e𝑖(𝜔𝑡−𝜑)𝑢(𝑥, 𝑦). (8.5)

This is equivalent to neglecting inertial forces in the motion of matter. The phase 𝜑 represents a
retardation effect that dissipation may cause; in the case of thermoelastic dissipation, we know that
𝜑 can be considered very small and independent of the frequency (at least in the GW detection
band). In the Fourier domain, this is

𝑢𝑧(𝜔, 𝑥, 𝑦) = (1− 𝑖𝜑)𝑢𝑧(𝑥, 𝑦). (8.6)

The impedance is

𝒵(𝑓) = 𝑖𝜔
(1− 𝑖𝜑)

∫︀ ∫︀
𝑢𝑧(𝑥, 𝑦) 𝐼(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐹
(8.7)

so that

ℜ𝑒[𝒵] = 𝜔 𝜑

∫︀ ∫︀
𝑢𝑧(𝑥, 𝑦)𝐹 × 𝐼(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝐹 2
(8.8)

, where the numerator of the fraction appears as the elastic energy stored in the solid stressed by
the pressure distribution 𝐹 × 𝐼. The strain energy is defined in classical elasticity theory by

𝑊 =
1
2

∫︁ ∫︁
𝑢𝑧(𝑥, 𝑦)𝑝(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, (8.9)

where 𝑝(𝑥, 𝑦) is the pressure distribution causing the displacement 𝑢𝑧(𝑥, 𝑦) at the surface on which
it is applied. Thus, we can write for the spectral density of displacement,

𝑆𝑥(𝑓) =
4𝑘𝐵𝑇
𝜋𝑓

𝜑
𝑊

𝐹 2
. (8.10)

In fact, 𝑊 is proportional to 𝐹 2, so that 𝑈 ≡ 𝑊/𝐹 2 is the strain energy for a static pressure
normalized to 1 N. The spectral density of displacement takes the general (low frequency) form

𝑆𝑥(𝑓) =
4𝑘𝐵𝑇
𝜋𝑓

𝜑𝑈. (8.11)

The problem is reduced to the computation of 𝑈 and this is the main point of Levin’s approach.
This can be difficult in the general case of an arbitrary solid, but numerical finite-element codes
are able to give more-or-less accurate estimates. However, it is possible to obtain analytic solutions
in the case of axisymmetry.

8.2 Infinite mirrors noise in the substrate

We use the linear elasticity theory already summarized by Equations (3.87) and (3.91). A first
approach, outlined in [5], consists in neglecting edge effects and treating the mirror as a plane
interface between vacuum and material with no limiting transverse dimension. In this case, the
elastic equilibrium equations (3.91) are satisfied by a displacement vector of the form [5]⎧⎨⎩𝑢𝑟(𝑟, 𝑧) =

(︁
𝛼− 𝜆+2𝜇

𝜆+𝜇 𝛽 + 𝛽 𝑘𝑧
)︁

e−𝑘𝑧𝐽1(𝑘𝑟)

𝑢𝑧(𝑟, 𝑧) =
(︁
𝛼+ 𝜇

𝜆+𝜇𝛽 + 𝛽 𝑘𝑧
)︁

e−𝑘𝑧𝐽0(𝑘𝑟),
(8.12)
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where 𝛼, 𝛽 and 𝑘 are arbitrary constants. Therefore, a more general solution is based on integrals
having the form of Hankel transforms⎧⎨⎩𝑢𝑟(𝑟, 𝑧) =

∫︀∞
0

(︁
𝛼(𝑘)− 𝜆+2𝜇

𝜆+𝜇 𝛽(𝑘) + 𝛽(𝑘) 𝑘𝑧
)︁

e−𝑘𝑧𝐽1(𝑘𝑟) 𝑘 𝑑𝑘

𝑢𝑧(𝑟, 𝑧) =
∫︀∞
0

(︁
𝛼(𝑘) + 𝜇

𝜆+𝜇𝛽(𝑘) + 𝛽(𝑘) 𝑘𝑧
)︁

e−𝑘𝑧𝐽0(𝑘𝑟) 𝑘 𝑑𝑘
, (8.13)

where 𝛼(𝑘) and 𝛽(𝑘) are now unknown functions. We can compute the relevant stress components

Θ𝑟𝑧(𝑟, 𝑧) = 2𝜇
∫︁ ∞

0

(𝛽(𝑘)− 𝛼(𝑘)− 𝛽(𝑘) 𝑘𝑧) e−𝑘𝑧𝐽1(𝑘𝑟) 𝑘2 𝑑𝑘 (8.14)

and
Θ𝑧𝑧(𝑟, 𝑧) = −2𝜇

∫︁ ∞

0

(𝛼(𝑘) + 𝛽(𝑘) 𝑘𝑧) e−𝑘𝑧𝐽0(𝑘𝑟) 𝑘2 𝑑𝑘. (8.15)

The boundary condition Θ𝑟𝑧(𝑟, 𝑧 = 0) = 0 is satisfied by taking 𝛼 = 𝛽. A second boundary
condition is

Θ𝑧𝑧(𝑟, 𝑧 = 0) = 𝐼(𝑟), (8.16)

where 𝐼(𝑟) is, as seen above, the normalized intensity of the readout beam. Therefore, we have

−2𝜇
∫︁ ∞

0

𝛼(𝑘)𝐽0(𝑘𝑟)𝑘2 𝑑𝑘 = 𝐼(𝑟). (8.17)

Inverting the Hankel transform, we find

𝑘 𝛼(𝑘) = − 1
2𝜇

𝐼(𝑘), (8.18)

where 𝐼(𝑘) is the Hankel transform of the intensity

𝐼(𝑘) =
∫︁ ∞

0

𝐼(𝑟) 𝐽0(𝑘𝑟) 𝑟 𝑑𝑟. (8.19)

The surface displacement is now, with 𝛼 = 𝛽,

𝑢𝑧(𝑟, 𝑧 = 0) =
𝜆+ 2𝜇
𝜆+ 𝜇

∫︁ ∞

0

𝛼(𝑘)𝐽0(𝑘𝑟)𝑘 𝑑𝑘

= − 𝜆+ 2𝜇
2𝜇(𝜆+ 𝜇)

∫︁ ∞

0

𝐼(𝑘)𝐽0(𝑘𝑟) 𝑑𝑘

= −2(1− 𝜎2)
𝑌

∫︁ ∞

0

𝐼(𝑘)𝐽0(𝑘𝑟) 𝑑𝑘, (8.20)

where we have switched from Lamé coefficients to the Poisson ratio 𝜎 and Young’s modulus 𝑌 .
The strain energy 𝑈 is given by

𝑈 = −1
2

∫︁ 2𝜋

0

𝑑𝜑

∫︁ ∞

0

𝑟 𝑑𝑟 𝐼(𝑟)𝑢𝑧(𝑟, 0), (8.21)

so that we get the general formula

𝑈 = 2𝜋
1− 𝜎2

𝑌
𝜛0, (8.22)

where
𝜛0 ≡

∫︁ ∞

0

𝐼(𝑘)2𝑑𝑘. (8.23)
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Table 15: Some numerical values of 𝑔0,𝑛,𝑚

m 0 1 2 3 4 5
n

0 1 .60 .46 .39 .34 .31
1 .69 .50 .41 .36 .32 .29
2 .57 .44 .37 .33 .30 .28
3 .50 .40 .35 .31 .29 .27
4 .46 .37 .33 .30 .27 .26
5 .43 .35 .31 .28 .26 .25

It is possible to get explicit results for Laguerre–Gauss and ideally flat beams. The Bessel trans-
forms of the intensity profiles have already been calculated in Section 3.1.3. We have, for an LG𝑛,𝑚

beam of width 𝑤,

𝐼𝑛,𝑚(𝑘) =
1
2𝜋

e−𝑦 𝐿𝑚(𝑦)𝐿𝑛+𝑚(𝑦), (𝑦 ≡ 𝑘2𝑤2

8
) (8.24)

and for an ideally flat beam of radius 𝑏

𝐼flat(𝑘) =
𝐽1(𝑘𝑏)
𝜋𝑘𝑏

. (8.25)

And now
𝜛0,𝑛,𝑚 =

∫︁ ∞

0

𝐼𝑛,𝑚(𝑘)2 𝑑𝑘 =
1

4𝜋3/2𝑤
𝑔0,𝑛,𝑚, (8.26)

where 𝑔0,𝑛,𝑚 are numerical factors. The final result is

𝑈𝑛,𝑚 =
1− 𝜎2

2
√
𝜋𝑌 𝑤

𝑔0,𝑛,𝑚. (8.27)

The result for 𝑛 = 0,𝑚 = 0 is first given in [5]. Table (15) gives an idea of the numerical values of
𝑔0,𝑛,𝑚.

For larger values of 𝑛 and 𝑚, an increasingly good approximation is the asymptotic value

𝑔0,𝑛,𝑚 ∼ (2𝑚+ 𝑛+ 1)−1/2. (8.28)

For an ideally flat mode, we get

𝜛0,𝐹 =
∫︁ ∞

0

𝐼flat(𝑘)2𝑑𝑘 =
4

3𝜋3𝑏
(8.29)

so that

𝑈flat =
8(1− 𝜎2)
3𝜋2𝑏𝑌

. (8.30)

These results are useful in order to compare with a more accurate calculation taking into account
the finite dimensions of mirrors. For instance, with (Ex1) with a mirror (Virgo size) having a
35 cm diameter and an LG0,0 mode of width 2 cm (Virgo input mirror), we get

𝜛0 = 2.245 m−1 (8.31)

𝑈0,0 = 1.88× 10−10 J N−2 (8.32)
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giving a noise linear spectral density of equivalent displacement:

𝑆1/2
𝑥 (𝑓) = 9.95× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2. (8.33)

Then (Ex2) for a flat beam of radius 9.1 cm gives

𝜛0 = 0.473 (mesa : 0.427) m−1 (8.34)

𝑈flat = 3.95× 10−11 J N−2 (8.35)

𝑆1/2
𝑥 (𝑓) = 4.56× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2. (8.36)

For the mesa beam, we have

𝑆1/2
𝑥 (𝑓) = 4.34× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2 (8.37)

and for an LG5,5 beam of width 3.5 cm (Ex3), this is

𝜛0 = 0.321 m−1 (8.38)

𝑈55 = 2.68× 10−11 J N−2 (8.39)

𝑆1/2
𝑥 (𝑓) = 3.76× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2. (8.40)

We will see in Section 8.4 that the first estimate is good (sharp spot on the center, far from the
edge), whereas the last two (widely spread light power) are far from reality. This is why the infinite
mirror approximation must be used with care.

8.3 Infinite mirrors, noise in coating

The dielectric coatings required to transform a polished blank of silica into a mirror are deposited
by successive layers and form a region at the reflecting surface whose mechanical parameters are
different from the bulk material. There is also a large difference for the loss angle Φcoating compared
to the substrate’s. We shall treat the coating as a layer of thickness 𝛿𝐶 , having a specific Young’s
modulus 𝑌𝐶 and Poisson ratio 𝜎𝐶 , and corresponding Lamé coefficients 𝜆𝐶 , 𝜇𝐶 . The coating is
assumed to be located in the region [−𝛿𝐶 ≤ 𝑧 ≤ 0], so that the interface substrate/coating
is located at 𝑧 = 0. For 𝑧 > 0, we have the expression (8.12) of the displacement vector (with
(𝛼, 𝛽) possibly different from the preceding solution (8.18) at the end). The following solution of
the Navier–Cauchy equations for the displacement vector in the coating is easily found

𝑢𝑟(𝑟, 𝑧) =
∫︁ ∞

0

𝐴𝐶(𝑘, 𝑧) 𝐽1(𝑘𝑟) 𝑘 𝑑𝑘 (8.41)

𝑢𝑟(𝑟, 𝑧) =
∫︁ ∞

0

𝐵𝐶(𝑘, 𝑧) 𝐽0(𝑘𝑟) 𝑘 𝑑𝑘. (8.42)
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But in the present case, the functions 𝐴𝐶 and 𝐵𝐶 are more complicated, taking into account two
finite boundaries

𝐴𝐶(𝑘, 𝑧) =
𝜆𝐶 + 𝜇𝐶

2(𝜆𝐶 + 2𝜇𝐶)
𝑘 𝑧 [𝛾1 cosh(𝑘𝑧) + 𝛾2 sinh(𝑘𝑧)] + 𝛾3 sinh(𝑘𝑧) + 𝛾4 cosh(𝑘𝑧) (8.43)

𝐵𝐶(𝑘, 𝑧) =
(︂

𝜆𝐶 + 3𝜇𝐶
2(𝜆𝐶 + 2𝜇𝐶)

𝛾1 − 𝛾3

)︂
cosh(𝑘𝑧) +

(︂
𝜆𝐶 + 3𝜇𝐶

2(𝜆𝐶 + 2𝜇𝐶)
𝛾2 − 𝛾4

)︂
sinh(𝑘𝑧)

− 𝜆𝐶 + 𝜇𝐶
2(𝜆𝐶 + 2𝜇𝐶)

𝑘 𝑧 [𝛾1 sinh(𝑘𝑧) + 𝛾2 cosh(𝑘𝑧)] . (8.44)

The four arbitrary constant 𝛾1,2,3,4 can be related to 𝛼 and 𝛽 of the preceding solution (8.12) by
requiring continuity of the displacements and of the pressure components at the interface 𝑧 = 0.
Then the boundary conditions are {︂

Θ𝑧𝑧(𝑟,−𝛿𝐶) = −𝐼(𝑟)
Θ𝑟𝑧(𝑟,−𝛿𝐶) = 0 , (8.45)

which allow one to compute (𝛼, 𝛽) and find the complete solution. The exact solution is complicated
and of little interest because we are in a case where 𝛿𝐶 (tens of microns) is small compared to the
𝑤 parameter of the beam (a few cm). A solution at first order in 𝑘𝛿𝑐 is therefore sufficient. We
first find the energy stored in the bulk. It would be difficult to use the same method as in the
preceding case (a surface integral). Instead we use the definition of the energy density

𝑤(𝑟, 𝑧) =
1
2
[︀
𝜆𝐸2(𝑟, 𝑧) + 2𝜇

(︀
𝐸2
𝑟𝑟(𝑟, 𝑧) + 𝐸2

𝜑𝜑(𝑟, 𝑧) + 2𝐸2
𝑟𝑧(𝑟, 𝑧)

)︀]︀
. (8.46)

We rewrite using the form

𝑤(𝑟, 𝑧) =
𝑌

2(1 + 𝜎)(1− 2𝜎)
{︀
𝜎𝐸(𝑟, 𝑧)2 + (1− 2𝜎)

[︀
(𝐸𝑟𝑟(𝑟, 𝑧) + 𝐸𝜑𝜑(𝑟, 𝑧))2

−2𝐸𝑟𝑟(𝑟, 𝑧)𝐸𝜑𝜑(𝑟, 𝑧) + 𝐸𝑧𝑧(𝑟, 𝑧)2
]︀}︀

(8.47)

and we integrate over the volume [0 ≤ 𝜑 ≤ 2𝜋]× [0 ≤ 𝑟 ≤ ∞]× [0 ≤ 𝑧 ≤ ∞]. It is easy to see that
the crossed term 𝐸𝑟𝑟𝐸𝜑𝜑 does not contribute in an 𝑟 integral, being the derivative of a function
null at 𝑟 = 0 and 𝑟 = ∞. By using the closure relation∫︁ ∞

0

𝐽𝜈(𝑘𝑟) 𝐽𝜈(𝑘′𝑟) 𝑟 𝑑𝑟 =
𝛿(𝑘 − 𝑘′)

𝑘
(8.48)

one finally obtains

𝑈 = 2𝜋
1− 𝜎2

𝑌
𝜛0 + 2𝜋𝛿𝐶

(1 + 𝜎)(1− 2𝜎)
𝑌 (1− 𝜎𝐶)

[︂
1− 2𝜎 + 𝜎𝐶

𝑌

𝑌𝐶

1 + 𝜎𝐶
1 + 𝜎

]︂
𝜛1 + ′(𝛿2𝐶) (8.49)

with the notation

𝜛1 =
∫︁ ∞

0

𝐼2(𝑘) 𝑘 𝑑𝑘. (8.50)

Note that, due to the Plancherel theorem (or to the closure relation in the direct space), this is
also

𝜛1 =
∫︁ ∞

0

𝐼2(𝑟) 𝑟 𝑑𝑟. (8.51)
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Table 16: Some numerical values of 𝑔1,𝑛,𝑚

m 0 1 2 3 4 5
n

0 1 .50 .34 .27 .22 .19
1 .50 .31 .23 .19 .16 .14
2 .38 .25 .19 .16 .14 .12
3 .31 .21 .17 .14 .12 .11
4 .27 .19 .15 .13 .11 .10
5 .25 .17 .14 .12 .11 .10

Now the energy stored in the coating can be computed in the same way, by integrating the energy
density

𝑤𝐶(𝑟, 𝑧) =
𝑌𝐶

2(1 + 𝜎𝐶)(1− 2𝜎𝐶)
{︀
𝜎𝐶𝐸(𝑟, 𝑧)2 + (1− 2𝜎𝐶)

[︀
(𝐸𝑟𝑟(𝑟, 𝑧) + 𝐸𝜑𝜑(𝑟, 𝑧))2

−2𝐸𝑟𝑟(𝑟, 𝑧)𝐸𝜑𝜑(𝑟, 𝑧) + 𝐸𝑧𝑧(𝑟, 𝑧)2
]︀}︀

(8.52)

within the volume [0 ≤ 𝜑 ≤ 2𝜋]× [0 ≤ 𝑟 ≤ ∞]× [−𝛿𝐶 ≤ 𝑧 ≤ 0]. But at first order in 𝛿𝐶 , it is
sufficient to take

𝑈coating = 2𝜋𝛿𝐶
∫︁ ∞

0

𝑤𝐶(𝑟, 0) 𝑟 𝑑𝑟 (8.53)

and we find

𝑈coating = 2𝜋 𝛿𝐶
(1 + 𝜎)(1− 2𝜎)

𝑌
Ω1𝜛1, (8.54)

where

Ω1 =
1− 2𝜎𝐶

2(1− 𝜎𝐶)

[︂
(1 + 𝜎𝐶)𝑌

(1 + 𝜎)(1− 2𝜎)𝑌𝐶
+

(1 + 𝜎)𝑌𝐶
(1 + 𝜎𝐶)𝑌

]︂
(8.55)

(Ω takes the value 1 when 𝑌 = 𝑌𝐶 and 𝜎 = 𝜎𝐶).

8.3.1 Coating Brownian thermal noise: LG modes

In the case of an LG𝑛,𝑚 mode, we get

𝜛1,𝑛,𝑚 =
1

2𝜋2𝑤2
𝑔1,𝑛,𝑚, (8.56)

where 𝑔1,𝑛,𝑚 is a numerical factor. Table 16 gives some values of 𝑔1,𝑛,𝑚.
The strain energy stored in the coating is

𝑈𝑛,𝑚,coating = 𝛿𝐶
(1 + 𝜎)(1− 2𝜎)

𝜋𝑌 𝑤2
Ω1 𝑔1,𝑛,𝑚. (8.57)

Thus, the ratio between the main energy in the substrate and that in the preceding coating is

𝜚 ≡ 𝑈𝑛,𝑚,coating

𝑈𝑛,𝑚,substrate
=

2√
𝜋

𝛿𝐶
𝑤

1− 2𝜎
1− 𝜎

Ω1
𝑔1,𝑛,𝑚
𝑔0,𝑛,𝑚

. (8.58)

A similar result has been also reported by [32] and [18] in the case of (𝑛 = 0,𝑚 = 0) at the limit
Ω1 = 1. For reasonable parameters, Ω1 is not so different from one. In the case of the Virgo cavity
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input mirrors (Ex1), assuming a stack 25 𝜇m thick, and elastic parameters (𝑌𝐶 ∼ 1.4×1011 N m−2,
𝜎𝐶 ∼ 0.23), Ω1 ∼ 0.93 and we get

𝜚 ∼ 10−3, (8.59)

and, for an LG5,5 mode of width 𝑤 = 3.5 cm (Ex3),

𝜚 ∼ 2.4× 10−4. (8.60)

8.3.2 Coating Brownian thermal noise: Flat modes

The Fourier transform of the flat mode pressure was found in Section 3.1.3:

𝐼flat(𝑘) =
𝐽1(𝑘𝑏)
𝜋𝑘𝑏

. (8.61)

Thus, we have

𝜛1,𝐹 =
1

𝜋2𝑏2

∫︁ ∞

0

𝐽1(𝑥)2

𝑥
𝑑𝑥 =

1
2𝜋2𝑏2

(8.62)

and the coating strain energy is

𝑈𝐹,coating =
(1 + 𝜎)(1− 2𝜎)

𝑌
Ω1

𝛿𝐶
𝜋𝑏2

(8.63)

with the ratio 𝜚 now

𝜚 =
𝑈𝐹,coating

𝑈flat
=

3𝜋
8
𝛿𝐶
𝑏

1− 2𝜎
1− 𝜎

. (8.64)

For the flat mode of (Ex2), we find
𝜚 ∼ 2.6× 10−4. (8.65)

Here are some numerical values for comparison. For the LG5,5 mode, we have𝜛1,5,5 ∼ 4.14 m−2,
For the flat mode (𝑏 = 9.1 cm), we have 𝜛1,flat ∼ 6.12 m−2 (to be discarded, as the sharp edge
effect becomes spurious, see the next value), 𝜛1,mesa ∼ 4.52 m−2 (numerical integration), and for
the Gauss–Bessel mode of Figure 5, this is 𝜛1,GB ∼ 3.56 m−2. A value of 2.34 m−2 is reported
by [4] after an optimization process involving an expansion on LG modes. It is probably possible
to have a not too different result by a fine tuning of the conical mode’s parameters.

8.4 Finite mirrors

The treatment of a mirror as an infinite medium can be accepted when the readout beam is a sharp
one, of width much smaller than the mirror’s dimensions. But it becomes highly questionable when
the spatial extension of the mode is comparable to those dimensions, which is precisely the case
when high-order LG modes or mesa beams are considered. This is why an analytic method for
computing 𝑈 in the case of finite size mirrors has been developed in BHV, then amended in [28] for
one boundary condition. We change slightly the coordinate system with respect to the preceding
thermal studies. The mirror is assumed to fill the cylindrical volume defined by 𝑟 ∈ [0, 𝑎], 𝑧 ∈ [0, ℎ].
The reflecting face (intracavity) is assumed to be at 𝑧 = 0. As in the thermal studies, we take a
displacement vector under the form of an FB series⎧⎨⎩𝑢𝑟(𝑟, 𝑧) =

∑︀
𝑠𝐴𝑠(𝑧)𝐽1(𝑘𝑠𝑟)

𝑢𝜑(𝑟, 𝑧) = 0
𝑢𝑧(𝑟, 𝑧) =

∑︀
𝑠𝐵𝑠(𝑟, 𝑧)𝐽0(𝑘𝑠𝑟)

(8.66)

where 𝐴𝑠 and 𝐵𝑠 are unknown functions of 𝑧, and 𝑘𝑠 are constants to be determined.
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8.4.1 Equilibrium equations

The Navier–Cauchy equations read{︂
𝜇(𝜕2

𝑧 − 𝑘2
𝑠)𝐴𝑠 − (𝜆+ 𝜇) 𝑘𝑠 (𝜕𝑧𝐵𝑠 + 𝑘𝑠𝐴𝑠)

𝜇(𝜕2
𝑧 − 𝑘2

𝑠)𝐵𝑠 + (𝜆+ 𝜇) 𝜕𝑧 (𝜕𝑧𝐵𝑠 + 𝑘𝑠𝐴𝑠)
, (8.67)

which yields
(𝜕2
𝑧 − 𝑘2

𝑠)(𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠) = 0. (8.68)

The general solution of which is

𝜕𝑧𝐴𝑠 + 𝑘𝑠𝐵𝑠 = 𝐶𝑠e−𝑘𝑠𝑧 +𝐷𝑠e𝑘𝑠𝑧. (8.69)

This allows one to compute 𝐵𝑠 in terms of 𝐴𝑠 and to substitute it in Equation (8.67), so that one
gets

(𝜕2
𝑧 − 𝑘2

𝑠)𝐴𝑠 = − 𝜆+ 𝜇

𝜆+ 2𝜇
𝑘2
𝑠

(︀
𝐶𝑠e−𝑘𝑠𝑧 −𝐷𝑠e𝑘𝑠𝑧

)︀
. (8.70)

The solution of which is

𝐴𝑠(𝑧) = 𝑀𝑠e−𝑘𝑠𝑧 +𝑁𝑠e𝑘𝑠𝑧 +
𝜆+ 𝜇

2(𝜆+ 2𝜇)
𝑘𝑠𝑧

(︀
𝐶𝑠e−𝑘𝑠𝑧 +𝐷𝑠e𝑘𝑠𝑧

)︀
, (8.71)

where 𝑀𝑠 and 𝑁𝑠 are two more arbitrary constants. Now 𝐵𝑠 is determined by

𝐵𝑠(𝑧) =
(︂

𝜆+ 3𝜇
2(𝜆+ 2𝜇)

𝐶𝑠 +𝑀𝑠

)︂
e−𝑘𝑠𝑧 +

(︂
𝜆+ 3𝜇

2(𝜆+ 2𝜇)
𝐷𝑠 −𝑁𝑠

)︂
e𝑘𝑠𝑧 +

𝜆+ 𝜇

2(𝜆+ 2𝜇)
𝑘𝑠𝑧

(︀
𝐶𝑠e−𝑘𝑠𝑧 −𝐷𝑠e𝑘𝑠𝑧

)︀
(8.72)

8.4.2 Boundary conditions

The boundary conditions we assume are

∙ No shear on the cylindrical edge, i.e.,

Θ𝑟𝑧(𝑎, 𝑧) = 0. (8.73)

This can be satisfied by requiring 𝜁𝑠 ≡ 𝑘𝑠𝑎 to be a strictly positive zero of 𝐽1(𝜁). The family
of all such zeroes defines a family of functions {𝐽0(𝜁𝑠𝑟/𝑎), 𝑠 ∈ N*} complete and orthogonal
on [0, 𝑎], on which any function of 𝑟 may be expanded as a FB series. Note that this family
is different from the families encountered in thermal studies. In particular, the orthogonality
relation is simpler: ∫︁ 𝑎

0

𝐽0(𝑘𝑠𝑟) 𝐽0(𝑘𝑠′𝑟) 𝑟 𝑑𝑟 =
𝑎2

2
𝐽2

0 (𝜁𝑠) 𝛿𝑠,𝑠′ . (8.74)

∙ No shear on the two circular faces, i.e.,

Θ𝑟𝑧(𝑎, 0) = Θ𝑟𝑧(𝑎, ℎ) = 0. (8.75)

∙ The given pressure on the reflecting face:

Θ𝑧𝑧(𝑟, 0) = −𝑝(𝑟), (8.76)

where 𝑝(𝑟) is a pressure distribution normalized to an integrated force of 1 N, identical to
the normalized optical intensity function 𝐼(𝑟).
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∙ No pressure on the rear face:
Θ𝑧𝑧(𝑟, ℎ) = 0. (8.77)

∙ No radial stress on the edge:
Θ𝑟𝑟(𝑎, 𝑧) = 0. (8.78)

The pressure distribution can, as usual, be expanded on the complete orthogonal family 𝐽0(𝑘𝑠𝑧):

𝑝(𝑟) = 𝐼(𝑟) =
1
𝜋𝑎2

∑︁
𝑠

𝑝𝑠𝐽0(𝑘𝑠𝑟). (8.79)

Owing to the norm of the functions 𝐽0(𝑘𝑠𝑟), the FB coefficients 𝑝𝑠 are now defined by

𝑝𝑠 =
2𝜋

𝐽2
0 (𝜁𝑠)

∫︁ 𝑎

0

𝐼(𝑟) 𝐽0(𝑘𝑠𝑟) 𝑟 𝑑𝑟. (8.80)

We have already encountered this kind of integral. The general result for an LG𝑛,𝑚 mode is

𝑝(𝑛)
𝑚,𝑠 =

1
𝐽2

0 (𝜁𝑠)
exp(−𝑦𝑠)𝐿𝑚(𝑦)𝐿𝑚+𝑛(𝑦) (𝑦𝑠 ≡ 𝑘2

𝑠𝑤
2/8) (8.81)

and for a flat mode

𝑝flat,𝑠 =
2𝑎𝐽1(𝜁𝑠𝑏/𝑎)
𝑏𝐽2

0 (𝜁𝑠)
. (8.82)

For a mesa mode, numerical integration is necessary. The Θ𝑟𝑧 and Θ𝑧𝑧 components of the stress
tensor are obtained as FB series:

Θ𝑟𝑧(𝑟, 𝑧) =
∑︁
𝑠

Θ𝑠,𝑟𝑧(𝑧)𝐽1(𝑘𝑠𝑟) (8.83)

Θ𝑧𝑧(𝑟, 𝑧) =
∑︁
𝑠

Θ𝑠,𝑧𝑧(𝑧)𝐽0(𝑘𝑠𝑟), (8.84)

making clear that the first boundary condition is satisfied. In more detail, we have

Θ𝑠,𝑟𝑧(𝑧)/𝑘𝑠𝜇 =
(︂

2𝑁𝑠 −
𝜇

𝜆+ 2𝜇
𝐷𝑠

)︂
e𝑘𝑠𝑧 −

(︂
2𝑀𝑠 −

𝜇

𝜆+ 2𝜇
𝐶𝑠

)︂
e−𝑘𝑠𝑧

+
𝜆+ 𝜇

𝜆+ 2𝜇
𝑘𝑠𝑧

(︀
𝐶𝑠e−𝑘𝑠𝑧 −𝐷𝑠e𝑘𝑠𝑧

)︀
(8.85)

Θ𝑠,𝑧𝑧(𝑧)/𝑘𝑠𝜇 = (𝐷𝑠 − 2𝑁𝑠)e𝑘𝑠𝑧 − (𝐶𝑠 + 2𝑀𝑠)e−𝑘𝑠𝑧 − 𝜆+ 𝜇

𝜆+ 2𝜇
𝑘𝑠𝑧

(︀
𝐶𝑠e−𝑘𝑠𝑧 +𝐷𝑠e𝑘𝑠𝑧

)︀
. (8.86)

The boundary conditions on the faces provide four equations allowing one to determine the con-
stants 𝐶𝑠, 𝐷𝑠,𝑀𝑠, and 𝑁𝑠. We have

𝐶𝑠 =
1
𝜋𝑎2

4𝑝𝑠(1− 𝜎2)
𝑘𝑠𝑌

1− 𝑞𝑠 + 2𝑞𝑠𝑥𝑠
(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2

𝑠

(8.87)

𝐷𝑠 =
1
𝜋𝑎2

4𝑝𝑠(1− 𝜎2)
𝑘𝑠𝑌

𝑞𝑠(1− 𝑞𝑠 + 2𝑥𝑠)
(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2

𝑠

(8.88)

𝑀𝑠 = − 1
𝜋𝑎2

𝑝𝑠(1 + 𝜎)
𝑘𝑠𝑌

2𝑞𝑠𝑥2
𝑠 + (1− 2𝜎)(1− 𝑞𝑠 + 2𝑞𝑠𝑥𝑠)

(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2
𝑠

(8.89)
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𝑁𝑠 = − 1
𝜋𝑎2

𝑝𝑠𝑞𝑠(1 + 𝜎)
𝑘𝑠𝑌

2𝑥2
𝑠 − (1− 2𝜎)(1− 𝑞𝑠 + 2𝑥𝑠)

(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2
𝑠

, (8.90)

with the notation 𝑥𝑠 ≡ 𝑘𝑠ℎ and 𝑞𝑠 ≡ exp(−2𝑥𝑠). This was found by [5]. At this point, [28] pointed
out that the component of spatial frequency zero of the pressure was not taken into account (recall
that the 𝜁𝑠 are the nonzero solutions of 𝐽1(𝜁) = 0). The preceding displacement vector has a zero
average on the strained face. One must now consider the resulting force acting on the body under
the uniform pressure

𝑝0 =
1
𝜋𝑎2

, (8.91)

producing a force of 1 N after integration on the disk. But this force produces an acceleration,
which should be added to the Navier–Cauchy equations (8.67) (recall that the mirrors of GW
interferometers are practically free in the longitudinal degree of freedom in the detection band).
This effect can be taken into account by an extra displacement of the form{︃

𝛿1𝑢𝑟(𝑟, 𝑧) = 𝑝0
𝜎
𝑌 𝑟 (1− 𝑧/ℎ)

𝛿1𝑢𝑧(𝑟, 𝑧) = 𝑝0

[︁
𝜎
𝑌

𝑟2

2ℎ −
1
𝑌 (𝑧 − 𝑧2/2ℎ)

]︁
.

(8.92)

This extra displacement contributes only axial stress

𝛿1Θ𝑧𝑧 = −𝑝0 (1− 𝑧/ℎ), (8.93)

all other extra stress components being null. The equilibrium equations remain satisfied for

𝜕𝑧𝛿1Θ𝑧𝑧 = 𝑝0/ℎ = 𝜌 × 1 N
𝜌ℎ𝜋𝑎2

= 𝜌 × 1 N
Mass

= 𝜌𝑧 (8.94)

as remarked by [28]. Now, the sum of the displacement (8.66) and of the extra displacement (8.92)
satisfies all boundary conditions except the vanishing of the radial stress on the edge. We have for
the FB component of the radial stress

Θ𝑠,𝑟𝑟(𝑧) = 𝜆 (𝑘𝑠𝐴𝑠(𝑧) + 𝜕𝑧𝐵𝑠(𝑧)) 𝐽0(𝜁𝑠) + 2𝜇𝑘𝑠𝐴𝑠𝐽 ′1(𝜁𝑠). (8.95)

But, due to the fact that 𝐽 ′1(𝜁𝑠) = 𝐽0(𝜁𝑠), and after substituting the explicit expressions of 𝐴𝑠 and
𝐵𝑠, we get

Θ𝑠,𝑟𝑟(𝑧) = −𝑝0
𝑝𝑠𝐽0(𝜁𝑠)

(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2
𝑠

[︀
(1− 𝑞𝑠 + 2𝑞𝑠𝑥𝑠(1 + 𝑥𝑠))e−𝑘𝑠𝑧 − 𝑞𝑠(1− 𝑞𝑠 + 2𝑥𝑠(1− 𝑥𝑠))e𝑘𝑠𝑧

−𝑘𝑠𝑧𝑞𝑠(1− 𝑞𝑠 + 2𝑥𝑠)e𝑘𝑠𝑧 − 𝑘𝑠𝑧(1− 𝑞𝑠 + 2𝑞𝑠𝑥𝑠)e−𝑘𝑠𝑧.
]︀

(8.96)

It is numerically easy to check that this function of 𝑧 is not very different from linear. It has a
vanishing average. Therefore, it is possible to find an approximate solution using the Saint-Venant
principle once more. We add to our displacement one more extra displacement giving a linear edge
stress compensating the preceding. The second extra displacement is of the form{︂

𝛿2𝑢𝑟(𝑟, 𝑧) = 1−𝜎
𝑌 (𝜔0 + 𝜔1𝑧)𝑟

𝛿2𝑢𝑧(𝑟, 𝑧) = − 2𝜎
𝑌 (𝜔0 + 𝜔1𝑧/2)𝑧 − 1−𝜎

𝑌 𝜔1
𝑟2

2 ,
(8.97)

such that the equilibrium equations (8.67) are identically satisfied. It contributes only radial stress,
thus leaving unchanged the boundary conditions, except for a radial contribution

𝛿2Θ𝑟𝑟(𝑧) = 𝜔0 + 𝜔1𝑧. (8.98)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


On Special Optical Modes and Thermal Issues in Advanced GW Interferometric Detectors 95

As usual, we require a minimum residual stress on the edge, which amounts to having null resulting
mean force and torque on the edge. If we define

𝐼0 =
1
ℎ

∫︁ ℎ

0

Θ𝑟𝑟(𝑎, 𝑧) 𝑑𝑧 (8.99)

𝐼1 =
1
ℎ2

∫︁ ℎ

0

Θ𝑟𝑟(𝑎, 𝑧) 𝑧 𝑑𝑧 (8.100)

then the values of 𝜔0 and 𝜔1 are
𝜔0 = 6 𝐼1 − 4 𝐼0 (8.101)

𝜔1 = (6 𝐼0 − 12 𝐼1)/ℎ. (8.102)

The explicit expression (8.96) allows one to compute 𝐼0 and 𝐼1. One finds

𝐼0 = 0 (8.103)

𝐼1 = 𝑝0𝑆 (8.104)

with

𝑆 =
𝑎2

ℎ2

∑︁
𝑠

𝑝𝑠𝐽0(𝜁𝑠)
𝜁2
𝑠

(8.105)

and
𝜔0 = 6𝑆 𝑝0, 𝜔1 = −12𝑆 𝑝0/ℎ. (8.106)

In summary, the total displacement is now

�⃗�tot(𝑟, 𝑧) = �⃗�(𝑟, 𝑧) + Δ�⃗�(𝑟, 𝑧) (8.107)

with {︂
𝑢𝑟(𝑟, 𝑧) =

∑︀
𝐴𝑠(𝑧)𝐽1(𝑘𝑠𝑟)

𝑢𝑧(𝑟, 𝑧) =
∑︀
𝐵𝑠(𝑧)𝐽0(𝑘𝑠𝑟)

(8.108)

and

Δ�⃗�(𝑟, 𝑧) = 𝛿1�⃗�(𝑟, 𝑧) + 𝛿2�⃗�(𝑟, 𝑧)

=
{︂
𝑝0

𝜎
𝑌 (1− 𝑧/ℎ) + 1−𝜎

𝑌 (𝜔0 + 𝜔1𝑧)𝑟
𝑝0

𝜎
2𝑌 𝑟

2/ℎ− 1
𝑌 (𝑧 − 𝑧2/2ℎ)− 2𝜎

𝑌 (𝜔0𝑧 + 𝜔1𝑧
2/2)− 1−𝜎

2𝑌 𝜔1𝑟
2 (8.109)

8.4.3 Strain energy

The strain tensor is now of the form

𝐸𝑖𝑗(𝑟, 𝑧) = 𝐸0,𝑖𝑗(𝑟, 𝑧) + Δ𝐸𝑖𝑗(𝑧), (8.110)

where the component 𝐸0,𝑖𝑗 is computed from �⃗�, whereas the component Δ𝐸𝑖𝑗 is computed from
Δ�⃗�. Now the strain energy density 𝑤(𝑟, 𝑧) is defined by

𝑤(𝑟, 𝑧) =
1
2

𝑌

(1 + 𝜎)(1− 2𝜎)

[︁
𝜎𝐸(𝑟, 𝑧)2 + (1− 2𝜎)

(︀
𝐸𝑟𝑟(𝑟, 𝑧)2

+𝐸𝜑𝜑(𝑟, 𝑧)2 + 𝐸𝑧𝑧(𝑟, 𝑧)2 + 2𝐸𝑟𝑧(𝑟, 𝑧)2
)︀]︀

(8.111)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


96 Jean-Yves Vinet

𝐸(𝑟, 𝑧) ≡
∑︀
𝑖𝐸𝑖𝑖(𝑟, 𝑧) being the trace of the strain tensor. Thus, integrated strain energy 𝑈 , i.e.,

our target, is

𝑈 =
∫︁ 2𝜋

0

𝑑𝜑

∫︁ ℎ

0

𝑑𝑧

∫︁ 𝑎

0

𝑟 𝑑𝑟 𝑤(𝑟, 𝑧). (8.112)

The squares of the strain tensor components obviously contain, in general, squares of the main
strain, squares of the extra strains and cross products. However, in the 𝑟 integral, cross products
vanish, so that the total internal energy is the sum of two contributions

𝑈 = 𝑈0 + Δ𝑈. (8.113)

These can be computed separately. We have

𝑈0 =
1− 𝜎2

𝜋𝑎𝑌

∑︁
𝑠>0

𝐽2
0 (𝜁𝑠)𝑝2

𝑠

𝜁𝑠

1− 𝑞2𝑠 + 4𝑞𝑠𝑥𝑠
(1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2

𝑠

. (8.114)

The dimension of 𝑈 is J N−2. And for the second contribution, we have

Δ𝑈 =
𝑎2

6𝜋ℎ3𝑌

[︃(︂
ℎ

𝑎

)︂4

+ 12𝜎𝜉
(︂
ℎ

𝑎

)︂2

+ 72(1− 𝜎)𝜉2
]︃

(8.115)

with
𝜉 ≡

∑︁
𝑠>0

𝑝𝑠𝐽0(𝜁𝑠)/𝜁2
𝑠 . (8.116)

For our three reference examples, using Virgo mirrors, we get, with a loss angle of 10−6,

∙ LG0,0, 𝑤 = 2 cm
𝑈0 = 1.81× 10−10 J N−2 (8.117)

Δ𝑈 = 2.08× 10−11 J N−2 (8.118)

𝑈 = 2.02× 10−10 J N−2 (8.119)

𝑆1/2
𝑥 (𝑓) = 1.03× 10−18

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2 (8.120)

∙ flat mode, 𝑏 = 9.1 cm
𝑈0 = 2.08× 10−11 J N−2 (8.121)

Δ𝑈 = 1.21× 10−11 J N−2 (8.122)

𝑈 = 3.28× 10−11 J N−2 (8.123)

𝑆1/2
𝑥 (𝑓) = 4.16× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2 (8.124)
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∙ mesa mode, 𝑏𝑓 = 10.7 cm
𝑈0 = 1.58× 10−11 J N−2 (8.125)

Δ𝑈 = 1.04× 10−11 J N−2 (8.126)

𝑈 = 2.62× 10−11 J N−2 (8.127)

𝑆1/2
𝑥 (𝑓) = 3.72× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2 (8.128)

∙ LG5,5, 𝑤 = 3.5 cm
𝑈0 = 4.24× 10−12 J N−2 (8.129)

Δ𝑈 = 4.40× 10−12 J N−2 (8.130)

𝑈 = 8.64× 10−12 J N−2 (8.131)

𝑆1/2
𝑥 (𝑓) = 2.13× 10−19

[︂
1 Hz
𝑓

]︂1/2
mHz−1/2 (8.132)

It is clear that for modes widely spread on the mirror surface, the Saint-Venant correction
becomes important. Moreover, if we compare to the values found in the infinite mirror
approximation, we see that the first example was underestimated by about 7%, the flat
mode by 17%, and the third by a factor of 3. We also see the discrepancy (11%) between
the flat estimation and the mesa beam. This leads us to be cautious with the foregoing
estimations. Figure 58 summarizes the gain in thermal noise obtained with respect to the
current situation on Virgo input mirrors for several beams having 1 ppm clipping losses.

8.4.4 Explicit displacement and strain tensor

In Section 9, we shall need the explicit expressions of the displacement vector and particularly of
the trace of the strain tensor. We have, after the preceding calculations for the FB components of
the main displacement,

𝐴𝑠(𝑧) =
𝑝𝑠(1 + 𝜎)
𝜋𝑎𝜁𝑠𝑌Δ𝑠

{︁
− [(1− 2𝜎)𝑄𝑠 + 2𝑞𝑠𝑥2

𝑠]e
−𝑘𝑠𝑧 + [(1− 2𝜎)𝑅𝑠 − 2𝑞𝑠𝑥2

𝑠]e
𝑘𝑠𝑧

+𝑘𝑠𝑧
[︀
𝑄𝑠e−𝑘𝑠𝑧 +𝑅𝑠e𝑘𝑠𝑧

]︀}︀
(8.133)

with the notation

𝑘𝑠 ≡ 𝜁𝑠/𝑎, 𝑥𝑠 ≡ 𝑘𝑠ℎ, 𝑞𝑠 ≡ exp(−2𝑥𝑠), Δ𝑠 ≡ (1− 𝑞𝑠)2 − 4𝑞𝑠𝑥2
𝑠,

𝑄𝑠 ≡ 1− 𝑞𝑠 + 2𝑞𝑠𝑥𝑠, 𝑅𝑠 ≡ 𝑞𝑠(1− 𝑞𝑞 + 2𝑥𝑠). (8.134)

In the same way

𝐵𝑠(𝑧) =
𝑝𝑠(1 + 𝜎)
𝜋𝑎𝜁𝑠𝑌Δ𝑠

{︁
[2(1− 𝜎)𝑄𝑠 − 2𝑞𝑠𝑥2

𝑠]e
−𝑘𝑠𝑧 + [2(1− 𝜎)𝑅𝑠 + 2𝑞𝑠𝑥2

𝑠]e
𝑘𝑠𝑧

+𝑘𝑠𝑧
[︀
𝑄𝑠e−𝑘𝑠𝑧 −𝑅𝑠e𝑘𝑠𝑧

]︀}︀
(8.135)
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Figure 58: Gain in thermal noise PSD1/2 for LG modes having each a 𝑤 parameter tuned for 1 ppm
clipping losses, with respect to the Virgo input mirrors and beams

The 𝑧 derivative of 𝐵𝑠(𝑧) is needed as well,

𝜕𝑧𝐵𝑠(𝑧) =
𝑝𝑠(1 + 𝜎)
𝜋𝑎2𝑌Δ𝑠

{︁
− [(1− 2𝜎)𝑄𝑠 − 2𝑞𝑠𝑥2

𝑠]e
−𝑘𝑠𝑧 + [(1− 2𝜎)𝑅𝑠 + 2𝑞𝑠𝑥2

𝑠]e
𝑘𝑠𝑧

−𝑘𝑠𝑧
[︀
𝑄𝑠e−𝑘𝑠𝑧 +𝑅𝑠e𝑘𝑠𝑧

]︀}︀
(8.136)

and the combination is still

1
2

[𝜕𝑧𝐴𝑠(𝑧)− 𝑘𝑠𝐵𝑠(𝑧)] =
(1 + 𝜎)𝑝𝑠
𝜋𝑎2𝑌Δ𝑠

{︁
(2𝑞𝑠𝑥2

𝑠 − 𝑘𝑠𝑧𝑄𝑠)e−𝑘𝑠𝑧 − (2𝑞𝑠𝑥2
𝑠 − 𝑘𝑠𝑧𝑅𝑠)e𝑘𝑠𝑧

}︁
. (8.137)

For the extra displacement we have

Δ𝑢𝑟(𝑟, 𝑧) =
1

𝜋𝑎2𝑌
[𝑐0 + 𝑐1𝑧] 𝑟 (8.138)

Δ𝑢𝑧(𝑟, 𝑧) =
1

𝜋𝑎2𝑌

[︀
𝑐2𝑟

2 + 𝑐3𝑧 + 𝑐4𝑧
2
]︀

(8.139)

with the notation

𝑐0 = 𝜎 + 6(1− 𝜎)𝑆, 𝑐1 = −[𝜎 + 12(1− 𝜎)𝑆]/ℎ, 𝑐2 = −1
2
𝑐1,

𝑐3 = −(1 + 12𝜎𝑆), 𝑐4 = (1 + 24𝜎𝑆)/2ℎ (8.140)

This allows one to plot the (virtually) deformed solid (see Figure 59) in our three examples. We
have amplified the displacement by a large factor, to give a better idea of the shape.

We find the FB components of the main strain tensor to be

𝐸𝑟𝑟(𝑟, 𝑧) =
∑︁
𝑠

𝑘𝑠𝐴𝑠(𝑧)𝐽 ′1(𝑘𝑠𝑟) (8.141)
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n=0,m=0 n=1,m=0 n=0,m=1 flat n=1,m=3 n=5,m=5

Figure 59: Virtually deformed mirror under beam pressure. (1 N integrated pressure) by modes having
1 ppm clipping losses. For more clarity, the displacements have been amplified by a factor of 7× 107.

𝐸𝜑𝜑(𝑟, 𝑧) =
∑︁
𝑠

𝑘𝑠𝐴𝑠(𝑧)
𝐽1(𝑘𝑠𝑟)
𝑘𝑠𝑟

(8.142)

𝐸𝑧𝑧(𝑟, 𝑧) =
∑︁
𝑠

𝜕𝑧𝐵𝑠𝐽0(𝑘𝑠𝑟) (8.143)

𝐸𝑟𝑧(𝑟, 𝑧) =
1
2

∑︁
𝑠

(𝜕𝑧𝐴𝑠 − 𝑘𝑠𝐵𝑠)𝐽1(𝑘𝑠𝑟) (8.144)

This gives, in particular, the FB component of the trace of the strain tensor

𝐸(𝑟, 𝑧) =
∑︁

𝐸𝑠(𝑧)𝐽0(𝑘𝑠𝑟) (8.145)

with

𝐸𝑠(𝑧) = −2(1 + 𝜎)(1− 2𝜎)𝑝𝑠
𝜋𝑎2𝑌Δ𝑠

[︀
𝑄𝑠e−𝑘𝑠𝑧 −𝑅𝑠e𝑘𝑠𝑧

]︀
. (8.146)

And for the extra contributions, we get

Δ𝐸𝑟𝑟(𝑧) =
1

𝜋𝑎2𝑌
(𝑐0 + 𝑐1𝑧) (8.147)

Δ𝐸𝜑𝜑(𝑧) =
1

𝜋𝑎2𝑌
(𝑐0 + 𝑐1𝑧) (8.148)

Δ𝐸𝑧𝑧(𝑧) =
1

𝜋𝑎2𝑌
(𝑐3 + 2𝑐4𝑧) (8.149)

Δ𝐸𝑟𝑧 = 0 (8.150)

Δ𝐸(𝑧) =
1

𝜋𝑎2𝑌
(2𝑐0 + 𝑐3 + 2(𝑐1 + 𝑐4)𝑧)

= −(1− 2𝜎)
1

𝜋𝑎2𝑌

[︁
1− 12𝑆 − (1− 24𝑆)𝑧/ℎ

]︁
(8.151)

This allows us to map the energy density in the material (see Figures 60, 61, and 62).
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Figure 60: Distribution of strain energy in the mirror substrate (LG0,0 𝑤 = 2 cm, logarithmic scale)
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Figure 61: Distribution of strain energy in the mirror substrate (Flat mode 𝑏 = 9.1 cm, logarithmic scale)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


102 Jean-Yves Vinet

 0.00  0.05  0.10

-0.175

-0.140

-0.105

-0.070

-0.035

 0.000

 0.035

 0.070

 0.105

 0.140

 0.175

-.11E+02

-.98E+01

-.88E+01

-.79E+01

-.69E+01

Figure 62: Distribution of strain energy in the mirror substrate (LG5,5 𝑤 = 3.5 cm, logarithmic scale)
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8.5 Coating Brownian thermal noise: finite mirrors

We again consider the coating as a very thin, but finite, layer having a different loss angle. Thus, the
contributions of the coating and of the bulk material to overall noise must be computed separately.
For the coating, we consider (as in the case of semi-infinite mirrors) a new solution of the Navier–
Cauchy equations in the region [-𝛿𝐶 , 0]; then the continuity of the displacements and the continuity
of the pressures (Θ𝑖𝑗𝑛

𝑗) at the interfaces 𝑧 = 0 and 𝑧 = −𝛿𝐶 , allow us to completely determine
the new solution. The energy density is

𝑤(𝑟, 𝑧) =
1
2
[︀
𝜆𝐶𝐸(𝑟, 0)2 + 2𝜇𝑐

(︀
(𝐸𝑟𝑟(𝑟, 0) + 𝐸𝜑,𝜑(𝑟, 0))2

−2𝐸𝑟𝑟(𝑟, 0)𝐸𝜑,𝜑(𝑟, 0) + 𝐸𝑧𝑧(𝑟, 𝑧)2
)︀]︀

(8.152)

Due to the orthogonality of functions 𝐽0(𝑘𝑠𝑟), we get, after some algebra,

𝑈0,coating =
𝛿𝐶

2𝜋𝑎2

1 + 𝜎𝐶
1− 𝜎𝐶

1
𝑌𝐶

∑︁
𝑠

𝑝2
𝑠

Δ2
𝑠

𝐽0(𝜁𝑠)2
[︃
(1− 2𝜎𝐶)Δ2

𝑠 +
(︂

1 + 𝜎

1 + 𝜎𝐶

)︂2

𝑋2
𝑠

]︃
(8.153)

with the notation
𝑋𝑠 ≡ (1− 2𝜎)(1− 𝑞𝑠)2 + 4𝑞𝑠𝑥2

𝑠. (8.154)

In the case of an homogeneous medium (𝜆𝐶 = 𝜆, 𝜇𝐶 = 𝜇), this reduces to

𝑈0,coating,hom =
𝛿𝐶 (1 + 𝜎)
𝜋𝑎2𝑌

∑︁
𝑠

𝑝2
𝑠

Δ2
𝑠

𝐽0(𝜁𝑠)2
[︀
16𝑞2𝑠𝑥

4
𝑠 + (1− 2𝜎)(1− 𝑞𝑠)4

]︀
. (8.155)

Note that the radial stress on the edge of the coating is

Θ𝑟𝑟(𝑎, 0) = − 1
𝜋𝑎2

∑︁
𝑠

𝑝𝑠𝐽0(𝜁𝑠)
[︂
𝜎𝐶 +

𝑌𝐶 (1 + 𝜎)
𝑌 (1 + 𝜎𝐶)

𝑋𝑠

Δ𝑠

]︂
. (8.156)

But we must add the contribution of the Saint-Venant correction. In the same way, we consider a
new solution of the Navier–Cauchy equations connected to the preceding Saint-Venant correction.
The components of the strain tensor in the coating are then

Δ𝐸𝑟𝑟 =
1

𝜋𝑎2𝑌
[𝜎 + 6𝑆(1− 𝜎)] (8.157)

Δ𝐸𝜑𝜑 =
1

𝜋𝑎2𝑌
[𝜎 + 6𝑆(1− 𝜎)] (8.158)

Δ𝐸𝑧𝑧 = − 1
𝜋𝑎2𝑌

1
𝑌𝐶(1− 𝜎𝐶)

[2𝑌𝐶(𝜎 + 6𝑆(1− 𝜎)) + 𝑌 (1 + 𝜎𝐶)(1− 2𝜎𝐶)] (8.159)

Δ𝐸𝑟𝑧 = 0. (8.160)

After integrating the energy density over the volume 𝜋𝑎2𝛿𝐶 , one finds

Δ𝑈coating = 𝛿𝐶
1 + 24𝜎𝑆 + 72(1− 𝜎)𝑆2

2𝜋𝑎2𝑌
Ω2 (8.161)

with the notation

Ω2 =
𝑌 2(1 + 𝜎𝐶)(1− 2𝜎𝐶) + 2𝑌 2

𝐶 [𝜎 + 6 (1− 𝜎)𝑆]2

𝑌 𝑌𝐶 (1− 𝜎) [1 + 24𝜎 𝑆 + 72 (1− 𝜎)𝑆2]
. (8.162)
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Table 17: Comparison infinite/finite mirror Strain Energy (SE)

3 examples coating SE [JN−2] bulk SE [J N−2]

Ex1: LG00, 𝑤 = 2 cm
U∞ 2.10× 10−13 1.88× 10−10

U 2.38× 10−13 2.02× 10−10

Ex2: flat
U∞ 1.02× 10−14 3.95× 10−11

U 2.07× 10−14 3.28× 10−11

Ex3: LG55, 𝑤 = 3.5 cm
U∞ 6.87× 10−15 2.68× 10−11

U 7.47× 10−15 8.64× 10−12

Ω2 takes the value one in the homogeneous case (when 𝜆𝐶 = 𝜆 and 𝜇𝐶 = 𝜇). Finally, 𝑈coating =
𝑈0,coating+Δ𝑈coating. At this point, it is very interesting to compare the figures obtained within the
infinite medium approximation and the finite mirror formula. In Table 17, we give a few examples
(in the homogeneous case) showing that the infinite mirror approximation is almost acceptable for
peaked power distributions, but quite bad for wide beams, and especially for coating energy. Thus,
optimization work based on infinite mirrors are, at minimum, questionable.
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9 Thermoelastic Noise

9.1 Introduction

The Brownian motion of matter inside the substrates is not the only cause of noise in the optical
readout. There is another cause due to temperature fluctuations in a finite volume of material.
These fluctuations are called thermodynamic and can couple with strain via the thermal dilatation
constant 𝛼, eventually producing random motions of the surface. A good way to model this kind
of noise is to start from the general thermodynamic formulas detailed by Landau and Lifshitz [24]
and use the Levin approach already presented. As in the preceding Section 8, we will consider the
low frequency tail of the spectral density of the effective motion of the surface (i.e., the readout
noise) as depending on the energy dissipated when the body is under a virtual pressure having the
same profile as the optical beam and excited at low frequency. In this case, the spectral density is
still of the form (Levin’s formula)

𝑆𝑥(𝑓) =
4𝑘𝐵𝑇
𝜔2

𝑊, (9.1)

where 𝑊 is the average dissipated energy. For the standard thermal noise, we had 𝑊 = 2𝑈𝜔Φ as
average dissipated energy, Φ being a global loss angle and 𝑈 the static strain energy. But now 𝑊
must be interpreted as the energy dissipated via coupling of the strain with the temperature field
in the bulk. Obviously, the temperature field itself depends on the strain field. Using the same
approach as used in [28], we first solve the static linear elastic problem (done in the preceding
Section 8), then we compute the resulting temperature field and use it to compute the dissipated
energy. For computing the dissipated energy, we use the time dependence of the entropy. The
variations of the entropy density 𝑆 are related to the heat flux �⃗� by requiring conservation of the
energy in the body

𝑇
𝜕𝑆

𝜕𝑡
= −div(�⃗�), (9.2)

where �⃗� = −𝐾 grad𝑇 , 𝐾 being the thermal conductivity of the material (cf. Landau and Lifshitz
[24]). Or, as well,

𝜕𝑆

𝜕𝑡
= − 1

𝑇
div(�⃗�). (9.3)

Therefore, total entropy variation in the body is

𝑑𝑆tot

𝑑𝑡
= −

∫︁
1
𝑇

div(�⃗�) 𝑑𝑉, (9.4)

where the integral is extended to the whole body. This is

𝑑𝑆tot

𝑑𝑡
= −

∫︁
div

�⃗�

𝑇
𝑑𝑉 +

∫︁
�⃗�.grad

(︂
1
𝑇

)︂
𝑑𝑉. (9.5)

Neglecting the heat flow at the surface of the body, the first integral vanishes, and we have

𝑑𝑆tot

𝑑𝑡
= −

∫︁
1
𝑇 2

�⃗�.grad𝑇 𝑑𝑉. (9.6)

But using the definition of �⃗�, this is

𝑑𝑆tot

𝑑𝑡
=
∫︁

𝐾

𝑇 2
(grad𝑇 )2 𝑑𝑉, (9.7)

so that the energy variation is

𝑊 = 𝑇
𝑑𝑆tot

𝑑𝑡
=
∫︁
𝐾

𝑇
(grad𝑇 )2 𝑑𝑉. (9.8)
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We shall say now that the temperature gradient field is caused by the small deformations of the
body that we computed earlier, while 𝑇 is the mean temperature. This becomes

𝑊 = 𝑇
𝑑𝑆tot

𝑑𝑡
=
𝐾

𝑇

∫︁
(grad 𝛿𝑇 )2 𝑑𝑉. (9.9)

where we have replaced 𝑇 by a 𝛿𝑇 in the gradient for more clarity. On the other hand, it is well
known (cf. Landau-Lifshitz) that the total entropy is the sum of two terms, one being the entropy
in the reference state, and a second one proportional to the trace 𝐸 of the strain tensor

𝑆 = 𝑆0 + 𝜈𝐸, (9.10)

𝜈 being the thermoelastic coefficient, so that there is, in the bulk material, a power source given
by

𝑃 = 𝑇
𝑑𝑆

𝑑𝑡
= 𝜈 𝑇

𝑑𝐸

𝑑𝑡
, (9.11)

where 𝐸 is the trace of 𝐸𝑖𝑘. The resulting temperature field obeys the Heat (Fourier) equation

(𝜌𝐶𝜕𝑡 −𝐾Δ) 𝛿𝑇 = 𝜈 𝑇
𝑑𝐸

𝑑𝑡
. (9.12)

The trace of the strain tensor 𝐸𝑖𝑘 found in the preceding Section 8 is, in any case, a harmonic
function, so that there is a trivial solution

𝛿𝑇 =
𝜈𝑇

𝜌𝐶
𝐸. (9.13)

The boundary conditions (null heat flux on the surfaces) are considered satisfied in time average
(𝛿𝑇 is assumed oscillating at a few tens of Hz). In fact, they are exactly satisfied on the circular
edge of the mirror. Now we reach the relevant equation for the dissipated energy

𝑊 =
𝐾𝜈2𝑇

𝜌2𝐶2

∫︁
(grad𝐸)2 𝑑𝑉. (9.14)

𝜈 is related to the linear dilatation coefficient 𝛼 by

𝜈 =
𝛼𝑌

1− 2𝜎
, (9.15)

where 𝑌 is Young’s modulus and 𝜎 the Poisson ratio. Finally,

𝑊 = 𝐾𝑇

[︂
𝛼𝑌

(1− 2𝜎)𝜌𝐶

]︂2 ∫︁
(grad𝐸)2 𝑑𝑉 (9.16)

(see [28]). We have, after the preceding Section 8 on standard thermal noise, everything we need
to compute 𝑊 .

9.2 Case of infinite mirrors

Let us recall the results obtained in the preceding chapter on standard thermal noise. Under beam
pressure, the displacement vector is

𝑢𝑟(𝑟, 𝑧) =
∫︁ ∞

0

𝛼(𝑘) [𝑘𝑧 − 1 + 2𝜎] exp(−𝑘𝑧) 𝐽1(𝑘𝑧) 𝑘 𝑑𝑘 (9.17)
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𝑢𝑧(𝑟, 𝑧) =
∫︁ ∞

0

𝛼(𝑘) [𝑘𝑧 + 2− 2𝜎] exp(−𝑘𝑧) 𝐽0(𝑘𝑧) 𝑘 𝑑𝑘 (9.18)

so that

𝐸(𝑟, 𝑧) = div �⃗�(𝑟, 𝑧) = −2(1− 2𝜎)
∫︁ ∞

0

𝛼(𝑘) exp(−𝑘𝑧) 𝐽0(𝑘𝑧) 𝑘2 𝑑𝑘. (9.19)

The function 𝑢(𝑘) is determined by the virtual pressure distribution 𝐼(𝑟) (normalized beam inten-
sity). Namely,

𝛼(𝑘) = −1 + 𝜎

𝑌

𝐼(𝑘)
𝑘

, (9.20)

where 𝐼(𝑘) is the Hankel transform of 𝐼(𝑟). As a result,

𝐸(𝑟, 𝑧) = −2(1− 2𝜎)(1 + 𝜎)
𝑌

∫︁ ∞

0

𝐼(𝑘) exp(−𝑘𝑧) 𝐽0(𝑘𝑟) 𝑘 𝑑𝑘, (9.21)

which shows, in passing, that

𝐸(𝑟, 0) = −2(1− 2𝜎)(1 + 𝜎)
𝑌

𝐼(𝑟). (9.22)

Thus, wee can already foresee that in the case of an ideally flat beam the gradient will involve
Dirac distributions; therefore, the volume integration of its square will be problematic. Let us
compute the gradient of 𝐸:

𝜕𝐸

𝜕𝑟
=

2(1− 2𝜎)(1 + 𝜎)
𝑌

∫︁ ∞

0

𝐼(𝑘) exp(−𝑘𝑧) 𝐽1(𝑘𝑟) 𝑘2 𝑑𝑘 (9.23)

𝜕𝐸

𝜕𝑧
=

2(1− 2𝜎)(1 + 𝜎)
𝑌

∫︁ ∞

0

𝐼(𝑘) exp(−𝑘𝑧) 𝐽0(𝑘𝑟) 𝑘2 𝑑𝑘. (9.24)

Now, using the closure relation,∫︁ ∞

0

𝐽𝜈(𝑘𝑟) 𝐽𝜈(𝑘′𝑟) 𝑟 𝑑𝑟 =
𝛿(𝑘 − 𝑘′)

𝑘
(9.25)

for 𝜈 = 0, 1. It is now possible to carry out the volume integration:

2𝜋
∫︁ ∞

0

𝑟 𝑑𝑟

∫︁ ∞

0

𝑑𝑧 ( ⃗grad𝐸)2 = 8𝜋
(1− 2𝜎)2(1 + 𝜎)2

𝑌 2

∫︁ ∞

0

𝐼(𝑘)2 𝑘2 𝑑𝑘 (9.26)

so that

𝑊 = 8𝜋
𝐾𝑇𝛼2(1 + 𝜎)2

𝜌2𝐶2
𝜛2 (9.27)

with

𝜛2 =
∫︁ ∞

0

𝐼(𝑘)2 𝑘2 𝑑𝑘. (9.28)

This expression shows that the function 𝐼(𝑘) must have an asymptotic evanescence strictly faster
than 𝑘−3/2 for the integral to converge. This is a strong requirement on the Hankel transform of
the pressure distribution.
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Table 18: Some numerical values of 𝑔2,𝑛,𝑚

m 0 1 2 3 4 5
n

0 1 .75 .64 .57 .53 .49
1 .44 .39 .36 .33 .31 .30
2 .33 .31 .29 .27 .26 .25
3 .28 .26 .25 .24 .23 .22
4 .24 .23 .22 .21 .21 .20
5 .22 .21 .20 .20 .19 .19

9.2.1 Gaussian beams

For a Laguerre–Gauss mode LG𝑛,𝑚 of width parameter 𝑤, we have seen that

𝐼𝑛,𝑚(𝑘) =
1
2𝜋

e−𝑦𝐿𝑚(𝑦)𝐿𝑚+𝑛(𝑦) (𝑦 ≡ 𝑘2𝑤2/8) (9.29)

giving

𝜛2,𝑛,𝑚 =
1

2𝜋
√
𝜋𝑤3

𝑔2,𝑛,𝑚, (9.30)

where 𝑔2,𝑛,𝑚 are numerical factors (see Table 18).
Thus, ∫︁

( ⃗grad𝐸)2 𝑑𝑉 =
4(1− 2𝜎)2(1 + 𝜎)2√

𝜋𝑌 2𝑤3
𝑔2,𝑛,𝑚, (9.31)

so that the spectral density of thermoelastic noise is, using Equations (9.1) and (9.16),

𝑆𝑥(𝑓) =
4𝑘𝐵𝐾𝑇 2𝛼2(1 + 𝜎)2

𝜋2
√
𝜋 𝜌2 𝐶2 𝑓2𝑤3

𝑔2,𝑛,𝑚. (9.32)

This result was found (in the case of 𝑛 = 𝑚 = 0) first by Braginsky et al. [7] using their own
formalism, then by Liu et al. [28], using our approach. For silica parameters and for Ex1 (the
LG0,0 mode with 𝑤 = 2 cm), one finds

𝜛2,0,0 = 11, 224 m−3 (9.33)

and

𝑆𝑥(𝑓)1/2 = 8.53× 10−20

[︂
1 Hz
𝑓

]︂
mHz−1/2, (9.34)

which is lower than the standard thermal noise, but still significant. For Ex3 (the LG5,5 mode
with 𝑤 = 3.5 cm), we have

𝜛2,5,5 = 398 m−3 (9.35)

𝑆𝑥(𝑓)1/2 = 1.61× 10−20

[︂
1 Hz
𝑓

]︂
mHz−1/2. (9.36)
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9.2.2 Flat beams

If we now consider a flat beam modeled by its ideal representation

𝐼(𝑟) =
{︂

1/𝜋𝑏2 (𝑟 < 𝑏)
0 (𝑟 ≥ 𝑏), (9.37)

we have the Hankel transform

𝐼(𝑘) =
𝐽1(𝑘𝑏)
𝜋 𝑘𝑏

, (9.38)

which shows that the requirement on the decreasing rate for large 𝑘 is not fulfilled, 𝐽𝜈(𝑘) having
asymptotic behavior in 𝑘−1/2, just below the limit. Therefore, it is impossible to use the crude
flat model, the integral 𝜛2 being divergent. If we want to have an evaluation, we must carry out
a numerical integration with the mesa intensity profile. We find (for our particular model)

𝜛2 ∼ 77 m−3, (9.39)

seeming to indicate a strong reduction factor of the SD of noise, namely 0.44 with respect to Ex3.
This result is due to the fact that the LG5,5 mode has a number of rings causing many local
gradients. This was pointed out by Agresti ([2]) in the case of the LG0,5 mode. Anyway this mode
is unwanted, as well as other LG0,𝑚 modes, because we wish to avoid sharp central power peaks .

9.2.3 Thermoelastic noise in the coating

We apply the same strategy for all coating calculations. The gradient of the trace of the strain
tensor can be integrated on the surface 𝑧 = 0 giving∫︁ ∞

0

∇𝐸2 𝑟 𝑑𝑟 =
8(1 + 𝜎)2(1− 2𝜎)2

𝑌 2
Ω3𝜛3 (9.40)

with

Ω3 ≡
1
2

[︃(︂
(1− 𝜎)(1− 2𝜎𝐶)
(1− 𝜎𝐶)(1− 2𝜎)

)︂2

+
1

4(1− 𝜎𝐶)2

[︂
1− 2𝜎𝐶 +

𝑌

𝑌𝐶

(1 + 𝜎𝐶)(1− 2𝜎𝐶)
(1 + 𝜎)(1− 2𝜎𝐶)

]︂2]︃
(9.41)

(Ω3 takes the value one when 𝑌 = 𝑌𝐶 , 𝜎 = 𝜎𝐶). Contrary to Ω1, which is not so sensitive to
parameters, Ω3 can take values quite different from one. For instance, if we assume the parameters
of fused silica for the substrate, and (𝑌𝐶 ∼ 1.4× 1011 N m−2, 𝜎𝐶 ∼ 0.23) for the coating, we have
Ω3 ∼ 0.59. 𝜛3 has the following definition

𝜛3 ≡
∫︁ ∞

0

𝐼(𝑘)2𝑘3 𝑑𝑘, (9.42)

so that the energy 𝑊 is (taking into account special values for the coating material)

𝑊 = 16𝜋𝐾𝐶𝑇

(︂
𝛼𝐶(1 + 𝜎𝐶)
𝜌𝐶𝐶𝐶

)︂2

Ω3𝜛3 𝛿𝐶 . (9.43)

In the case of LG𝑛,𝑚 modes, we obtain

𝜛3,𝑛,𝑚 =
2

𝜋2𝑤4
𝑔3,𝑛,𝑚, (9.44)

where 𝑔3,𝑛,𝑚 are numerical factors, the first ones being given by Table 19.
It seems clear that, as already mentioned, the modes LG0,𝑚, having a sharp peak on the axis,

become worse and worse as the order 𝑚 increases. On the other hand, the reduction factor for the
noise in the best cases is much less than for the Brownian thermal noise.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


110 Jean-Yves Vinet

Table 19: Some numerical values of 𝑔3,𝑛,𝑚

m 0 1 2 3 4 5
n

0 1 1.5 1.72 1.86 1.96 2.05
1 .50 .81 .98 1.10 1.20 1.27
2 .37 .62 .77 .88 .96 1.03
3 .31 .53 .66 .76 .83 .90
4 .27 .46 .58 .67 .75 .81
5 .25 .42 .53 .61 .68 .74

Table 20: Some values of 𝜛𝑛

n LG00 𝑤 = 2 cm LG55 𝑤 = 3.5 cm flat 𝑏 = 9.1 cm mesa 𝑏𝑓 = 10.7 cm units

0 2.245 0.321 0.473 0.426 m−1

1 126.65 4.13 6.12 4.52 m−2

2 1.122× 104 398 * 76.7 m−3

3 1.27× 106 105 * 1800 m−4

9.2.4 Scaling laws

This section offers an opportunity to summarize the various coefficients encountered in the parts
of this noise study. Several authors (see [29] for his discussion) have remarked on the dependence
of the various noises encountered on the integrals we have denoted 𝜛𝑚, {𝑚 ∈ N}.

𝜛𝑚 =
∫︁ ∞

0

𝐼(𝑘) 𝑘𝑚 𝑑𝑘 (9.45)

∙ Brownian noise, substrate: 𝜛0

∙ Brownian noise, coating: 𝜛1

∙ Thermoelastic noise, substrate: 𝜛2

∙ Thermoelastic noise, coating: 𝜛3. However, in this case there is a more refined analysis [29],
taking into account the heat flow. Attention must be paid to this theory (see also [17, 8]).
However, the approximate character of the semi-infinite–mirror approach reduces its practical
interest.

We have given these integrals in the case of different LG𝑚𝑛 modes. In particular, Table 20
gives the values for our four examples. These can be used to derive figures of merit.

9.2.5 Numerical results

We give briefly some figures regarding our three reference situations. We take the parameter
of fused silica for the substrate, and the parameters of TA2𝑂5 for the coating ([36]), namely,
𝑌𝐶 = 1.4 1011 Pa, 𝜎𝐶 = 0.23, 𝜌𝐶 × 𝐶𝐶 = 2.1 × 106 J/m3/K. The thickness of the coating is
assumed to be 25 𝜇m. For a TEM0,0 mode of waist 2 cm, we obtain

∙ Spectral density of thermoelastic noise in the substrate:

𝑆𝑥(𝑓)1/2 = 8.53× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.46)
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Spectral density of noise in the coating:

𝑆𝑥(𝑓)1/2 = 1.32× 10−19 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.47)

We see that the large difference in parameters overcompensates for the difference in volume. For
an LG55 mode of waist 3.5 cm:

∙ Spectral density of thermoelastic noise in the substrate:

𝑆𝑥(𝑓)1/2 = 1.61× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.48)

Spectral density of noise in the coating:

𝑆𝑥(𝑓)1/2 = 3.71× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.49)

The reduction factor is about five for the substrate and only 3.5 for the coating. We see that the
large difference in parameters overcompensates for the difference in volume. For a mesa mode:

∙ Spectral density of thermoelastic noise in the substrate:

𝑆𝑥(𝑓)1/2 = 7.05× 10−21 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.50)

∙ Spectral density of noise in the coating:

𝑆𝑥(𝑓)1/2 = 4.99× 10−21 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.51)

The reduction factor with respect to Ex1 is about 12 for the substrate and 26 for the coating. This
kind of mode is obviously the best regarding this kind of noise.

9.3 Case of finite mirrors

In the case of finite mirrors, the model developed for standard thermal noise provides the explicit
expressions for the trace 𝐸 of the strain tensor

𝐸(𝑟, 𝑧) = 𝐸0(𝑟, 𝑧) + Δ𝐸(𝑟, 𝑧) (9.52)

with

𝐸0(𝑟, 𝑧) = −2(1− 2𝜎)(1 + 𝜎)
𝜋𝑎2𝑌

∑︁
𝑠>0

𝑝𝑠
Δ𝑠

𝐽0(𝜁𝑠𝑟/𝑎)
[︁
𝑄𝑠 e−𝜁𝑠𝑧/𝑎 −𝑅𝑠 e𝜁𝑠𝑧/𝑎

]︁
, (9.53)

where 𝑝𝑠 are the Fourier–Bessel coefficients of the pressure distribution, and Δ𝑠, 𝑞𝑠, 𝑥𝑠, 𝑄𝑠 and
𝑅𝑠 have been defined in the preceding Section 8. Moreover,

Δ𝐸(𝑟, 𝑧) = −(1− 2𝜎)
1

𝜋𝑎2𝑌
[1− 12𝑆 − (1− 24𝑆)𝑧/ℎ] (9.54)

(see Equation (8.105) for 𝑆), so that the gradient of 𝐸 is

𝜕𝐸0

𝜕𝑟
=

2(1− 2𝜎)(1 + 𝜎)
𝜋𝑎3𝑌

∑︁
𝑠>0

𝑝𝑠𝜁𝑠
Δ𝑠

𝐽1(𝑘𝑠𝑟)
[︀
𝑄𝑠 e−𝑘𝑠𝑧 −𝑅𝑠 e𝑘𝑠𝑧

]︀
(9.55)

𝜕𝐸0

𝜕𝑧
=

2(1− 2𝜎)(1 + 𝜎)
𝜋𝑎3𝑌

∑︁
𝑠>0

𝑝𝑠𝜁𝑠
Δ𝑠

𝐽0(𝑘𝑠𝑟)
[︀
𝑄𝑠 e−𝑘𝑠𝑧 +𝑅𝑠 e𝑘𝑠𝑧

]︀
(9.56)

𝜕Δ𝐸
𝜕𝑧

=
1− 2𝜎
𝜋𝑎2ℎ𝑌

(1− 24𝑆). (9.57)
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9.3.1 Case of the bulk material

Owing to the orthogonality relations of 𝐽𝜈(𝜁𝑠𝑟/𝑎), we get∫︁
( ⃗grad𝐸0)2 𝑑𝑉 =

4(1− 2𝜎)2(1 + 𝜎)2

𝜋𝑎3𝑌 2

∑︁
𝑠>0

𝑊𝑠 (9.58)

where

𝑊𝑠 =
𝑝2
𝑠𝜁𝑠
Δ2
𝑠

𝐽0(𝜁𝑠)2 (1− 𝑞𝑠)

×
[︀
(1− 𝑞𝑠)(1− 𝑞2𝑠) + 8𝑞𝑠𝑥𝑠 (1− 𝑞𝑠 + 𝑥𝑠)

]︀
(9.59)

and, obviously, ∫︁
( ⃗gradΔ𝐸)2 𝑑𝑉 =

(1− 2𝜎)2

𝜋𝑎2ℎ𝑌 2
(1− 24𝑆)2 (9.60)

(N.B. ⃗gradΔ𝐸 and ⃗grad𝐸0 are orthogonal in the 𝑟 integration). We have, finally,

𝑊 =
4𝐾𝑇𝛼2

𝜋𝑎3𝜌2𝐶2

[︃
(1 + 𝜎)2

∑︁
𝑠>0

𝑊𝑠 + (1− 24𝑆)2
𝑎

4ℎ

]︃
. (9.61)

And for the spectral density,

𝑆𝑥(𝑓) =
4𝑘𝐵𝐾𝑇 2𝛼2

𝜋3𝑎3𝜌2𝐶2𝑓2

[︃
(1 + 𝜎)2

∑︁
𝑚>0

𝑊𝑠 + (1− 24𝑆)2
𝑎

4ℎ

]︃
. (9.62)

For Gaussian beams, we substitute the 𝑝𝑠’s in the preceding formulas. For the parameters
corresponding to Virgo input mirrors (LG0,0, 𝑤 = 2 cm) we find

𝑆1/2
𝑥 (𝑓) = 8.83× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.63)

For the flat beam, 𝑏 = 9.1 cm,

𝑆1/2
𝑥 (𝑓) = 1.87× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.64)

For the mesa beam, 𝑏𝑓 = 10.7 cm,

𝑆1/2
𝑥 (𝑓) = 1.49× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.65)

For the LG5,5 beam, 𝑤 = 3.5 cm,

𝑆1/2
𝑥 (𝑓) = 1.72× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.66)

In Figures 63, 64, 65, and 66, one can see the distribution of ( ⃗grad𝐸)2 in Ex1, Ex2, the mesa beam,
and Ex3, respectively.

In the case of the flat beam, one should note the peaks at the location of the sharp edges of
the intensity distribution. This was the cause of the divergence of the infinite mirror approach.
However, the estimation for the flat and mesa beams are not very different.
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Figure 63: Distribution of (∇⃗𝐸)2 in the case of a LG0,0 mode (𝑤 = 2 cm). (Logarithmic scale, arbitrary
units)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-5

http://www.livingreviews.org/lrr-2009-5


114 Jean-Yves Vinet

 0.00  0.05  0.10

-0.175

-0.140

-0.105

-0.070

-0.035

 0.000

 0.035

 0.070

 0.105

 0.140

 0.175

0.35E+00

0.17E+01

0.31E+01

0.45E+01

0.59E+01

Figure 64: Distribution of (∇⃗𝐸)2 in the case of a flat mode (𝑏 = 9.1 cm). (Logarithmic scale, arbitrary
units)
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Figure 65: Distribution of (∇⃗𝐸)2 in the case of a mesa mode (𝑏𝑓 = 10.7 cm). (Logarithmic scale,
arbitrary units)
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Figure 66: Distribution of the square gradient of the trace of the strain tensor in the case of an LG5,5

mode (𝑤 = 3.5 cm). (Logarithmic scale, arbitrary units)
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9.3.2 Case of the coatings

The components of the gradient of the trace of the strain tensor on the reflecting surface can be
obtained from the model developed for the Brownian thermal noise. We consider a new solution
of the Navier–Cauchy equations, matched to the bulk solution at 𝑧 = 0, and depending on specific
parameters 𝑌𝐶 and 𝜎𝐶 . The components of the gradient are as follows, with the notation already
introduced.

𝜕𝐸

𝜕𝑟
=

(1 + 𝜎)(1− 2𝜎𝐶)
𝜋𝑎3𝑌 (1− 𝜎𝐶)

∑︁
𝑠

𝑝𝑠𝜁𝑠
Δ𝑠

[︀
2(1− 𝜎)(1− 𝑞2𝑠 + 4𝑞𝑠𝑥𝑠)

]︀
𝐽1(𝑘𝑠𝑟) (9.67)

𝜕𝐸

𝜕𝑧
=

(1 + 𝜎)(1− 2𝜎𝐶)
𝜋𝑎3𝑌 (1− 𝜎𝐶)

∑︁
𝑠

𝑝𝑠𝜁𝑠
Δ𝑠

[︂
𝑌 (1 + 𝜎𝐶)
𝑌𝐶(1 + 𝜎)

Δ𝑠 +𝑋𝑠

]︂
𝐽0(𝑘𝑠𝑟), (9.68)

so that a volume integration gives

2𝜋 𝛿𝐶
∫︁ 𝑎

0

(∇⃗𝐸)2 𝑟 𝑑𝑟 = 𝛿𝑐
(1 + 𝜎)2(1− 2𝜎𝐶)2

𝜋𝑎4𝑌 2(1− 𝜎𝐶)2
∑︁
𝑠

𝑝2
𝑠𝜁

2
𝑠𝐽0(𝜁𝑠)2

Δ2
𝑠

𝑉𝑠 (9.69)

with

𝑉𝑠 ≡ 4(1− 𝜎2)2(1− 𝑞2𝑠 + 4 𝑞𝑠𝑥𝑠)2 +
[︂
𝑌 (1 + 𝜎𝐶)
𝑌𝐶(1 + 𝜎)

Δ𝑠 +𝑋𝑠

]︂2
. (9.70)

The Saint-Venant correction to 𝐸 only has a 𝑧 derivative, so that

2𝜋𝛿𝐶
∫︁ 𝑎

0

(∇⃗Δ𝐸)2𝑟 𝑑𝑟 = 𝛿𝐶
4(1− 2𝜎𝐶)2 [𝜎 + 12𝑆(1− 𝜎)]2

𝜋𝑎2ℎ2𝑌 2(1− 𝜎𝐶)2
. (9.71)

And the global result is

𝑊 = 𝐾𝐶𝑇

(︂
𝛼

𝜌𝐶𝐶𝐶

)︂2
𝛿𝐶

𝜋𝑎4(1− 𝜎𝐶)2

[︃
(1 + 𝜎)2

∑︁
𝑠

𝑝2
𝑠𝜁

2
𝑠𝐽0(𝜁𝑠)2

Δ2
𝑠

𝑉𝑠

+
4𝑎2

ℎ2
(𝜎 + 12𝑆(1− 𝜎))2

]︂
. (9.72)

9.3.3 Numerical results

With the coating parameters already given, we get the following results for the coating noise. For
the LG00 mode with 𝑤 = 2 cm waist:

𝑆1/2
𝑥 (𝑓) = 1.54× 10−19 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.73)

For the LG55 mode with 𝑤 = 3.5 cm:

𝑆1/2
𝑥 (𝑓) = 4.33× 10−20 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.74)

And for the mesa mode:

𝑆1/2
𝑥 (𝑓) = 8.66× 10−21 mHz−1/2

[︂
1 Hz
𝑓

]︂
. (9.75)

We see how the infinite mirror model underestimates the noise by a factor of two for the last case.
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10 Generation of High Order Modes

Several methods have been proposed to generate LG modes. We discuss here a particular method
based on fiber optics. It is known that cylindrical fibers having three layers (core plus two claddings)
can exhibit modes having an annular structure more or less analogous to an LG mode. Consider a
fiber having a core of radius 𝑟𝐶 , a cladding confined to the zone 𝑟𝐶 < 𝑟 < 𝑟𝐺 and an extra cladding
for 𝑟 > 𝑟𝐺. The latter can be assumed infinite for the guided modes, which have an evanescent
behavior in that region, so that the external radius is never reached by the light. The refractive
indices are 𝑛𝐶 in the core, 𝑛𝐺 in the first cladding and 𝑛ext in the external cladding. We assume
𝑛𝐶 > 𝑛𝐺 > 𝑛ext. Assuming a wave of the form (𝑝 is any integer and 𝑘 ≡ 2𝜋/𝜆)

ℰ(𝑟, 𝑧) = e𝑖𝑘𝑛eff𝑧𝐸𝑝(𝑟)e𝑖𝑝𝜙, (10.1)

where ℰ is any component of the optical wave and 𝑛eff is a parameter depending on the fiber
geometry (radii and indices). The wave equation reduces to[︂

𝜕2
𝑟 +

1
𝑟
𝜕𝑟 −

𝑝2

𝑟2
+ 𝑘2(𝑛2 − 𝑛2

eff)
]︂
𝐸𝑝(𝑟) = 0. (10.2)

There exist families of modes depending on the value of 𝑛eff compared to 𝑛𝑐, 𝑛𝐺, and 𝑛ext. Modes
such that 𝑛𝐶 > 𝑛eff > 𝑛𝐺 are called core modes. Modes such that 𝑛𝐶 > 𝑛𝐺 > 𝑛eff > 𝑛ext are
called cladding modes. We are interested in cladding modes because the central part of the beam
is vanishing in this case (as in an LG𝑛,𝑛, 𝑛 ̸= 0 mode). A further (realistic) assumption is that
the indices are slightly different. In this case, the weak guidance model holds, leading to linearly
polarized modes called LP. Solving Equation (10.2) leads to a wave of the form

𝐸𝑝(𝑟) =

⎧⎨⎩𝐴𝐽𝑝(𝑈𝑟/𝑟𝐶) (𝑟 < 𝑟𝐶)
𝐵𝐽𝑝(𝑈𝑔𝑟/𝑟𝐺) +𝐵𝑌𝑝(𝑈𝑔𝑟/𝑟𝐺) (𝑟𝐶 ≤ 𝑟 < 𝑟𝐺)
𝐷𝐾𝑝(𝑊𝑟/𝑟𝐶) (𝑟 > 𝑟𝐺)

(10.3)

with the following notation:

𝑈 = 𝑘𝑟𝐶

√︁
𝑛2
𝐶 − 𝑛2

eff , 𝑈𝑔 = 𝑘𝑟𝐺

√︁
𝑛2
𝐺 − 𝑛2

eff , 𝑊 = 𝑘𝑟𝐺

√︁
𝑛2

eff − 𝑛2
ext. (10.4)

𝐽𝑝 and 𝑌𝑝 are Bessel functions of the first and second kind, respectively. 𝐾𝑝 is a modified Bessel
function of the second kind. The structure of the solution was dictated by the following considera-
tions: The solution must be regular at 𝑟 = 0, (no 𝑌𝑝 contribution in the core), the solution must be
evanescent in the external cladding (no 𝐼𝑝 contribution there). Now the arbitrary constants 𝐴,𝐵,
and 𝐶 can be reduced to one after taking into account the boundary conditions. The boundary
conditions require continuity of the components of the field tangential to the cylindrical interfaces
at 𝑟𝐶 , and 𝑟𝐺. In the weak guidance model, this is equivalent to requiring a smooth solution at the
interfaces and smooth derivatives. Only discrete values of 𝑛eff make it possible, and these discrete
values determine families of modes. The central issue of the guide theory is thus to find these
values. If we adopt the following notation (𝑆 ≡ 𝑟𝐺/𝑟𝐶):

𝑀(𝑛eff) = 𝑈𝑔𝑌𝑝+1(𝑈𝑔)𝐾𝑝(𝑊 )−𝑊𝐾𝑝+1(𝑊 )𝑌𝑝(𝑈𝑔) (10.5)

𝑁(𝑛eff) = 𝑈𝐽𝑝+1(𝑈)𝐽𝑝(𝑈𝑔/𝑆)− 𝑈𝑔
𝑆
𝐽𝑝+1(𝑈𝑔/𝑆)𝐽𝑝(𝑈) (10.6)

𝑃 (𝑛eff) = 𝑈𝑔𝐽𝑝+1(𝑈𝑔)𝐾𝑝(𝑊 )−𝑊𝐾𝑝+1(𝑊 )𝐽𝑝(𝑈𝑔) (10.7)
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𝑄(𝑛eff) =
𝑈𝑔
𝑆
𝑌𝑝+1(𝑈𝑔/𝑆)𝐽𝑝(𝑈)− 𝑈𝐽𝑝+1(𝑈)𝑌𝑝(𝑈𝑔/𝑆), (10.8)

then the solutions 𝑛eff are determined by the dispersion equation

𝑀𝑁 − 𝑃𝑄 = 0. (10.9)

Solutions of Equation (10.9) may or may not exist, depending on the parameters. Their (finite)
number depends also on these parameters. Standard numerical procedures allow one to extract
the number of solutions and the effective indices corresponding to each of the modes. For a given
mode, 𝑛eff being known, the quantities 𝑈,𝑈𝑔, and 𝑊 are known, and the constants 𝐵,𝐶,𝐷 can
be computed from 𝐴, which can be used for normalization. Specifically, we have

𝐵 =
𝜋

2

[︂
𝑈𝐽𝑝+1(𝑈)𝑌𝑝(𝑈𝑔/𝑆)− 𝑈𝑔

𝑆
𝐽𝑝(𝑈)𝑌𝑝+1(𝑈𝑔/𝑆)

]︂
(10.10)

𝐶 =
𝜋

2

[︂
𝑈𝑔
𝑆
𝐽𝑝+1(𝑈𝑔/𝑆)𝐽𝑝(𝑈)− 𝑈𝐽𝑝+1(𝑈)𝐽𝑝(𝑈𝑔/𝑆)

]︂
(10.11)

𝐷 =
𝐵𝐽𝑝(𝑈𝑔) + 𝐶𝑌𝑝(𝑈𝑔)

𝐾𝑝(𝑊 )
. (10.12)

It is possible to find parameters such that an LP mode has a structure comparable to an LG mode.
We show a specific (but somewhat arbitrary) example in Figure 67, for which the Hermitian scalar
product of the fiber (LP5,5) mode with an LG mode is about 75% in power. The parameters of
the LP mode are

𝑟𝐶 = 4𝜇m, 𝑟𝐺 = 58.99𝜇m, 𝑛𝐶 = 1.452126,
𝑛𝐺 = 1.446846, 𝑛ext = 1.4452, 𝑛eff = 1.4452017 (10.13)

The LG5,5 mode has 𝑤 = 4.472 cm. It is surely possible to have a better matching after an
optimization study that we are planning. The last step is to couple a TEM0,0 laser beam with
such a fiber and then the resulting fundamental LP mode to the LP5,5 via a Bragg coupler.

  0   2   4   6   8  10  12  14  16  18  20
-0.20

-0.16

-0.12

-0.08

-0.04

 0.00

 0.04

 0.08

 0.12

 0.16

 0.20

  0   2   4   6   8  10  12  14  16  18  20
-0.20

-0.16

-0.12

-0.08

-0.04

 0.00

 0.04

 0.08

 0.12

 0.16

 0.20

Order 5

r
C

r
G

radial coordinate r/r
C

N
o

rm
al

iz
ed

 a
m

p
li

tu
d

e

Figure 67: Mode LP5,5 (solid line), Mode LG5,5 (dashed line)
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11 Conclusion

We have discussed some of the main issues regarding mirrors to be used in a high–optical-power
interferometer. These issues are thermal lensing, thermal aberration, thermal noise and thermoe-
lastic noise. These spurious effects do not act at the same level. Thermal issues arise directly from
the laser power and make necessary compensation systems more and more difficult as the power
increases. Thermal noises (standard and thermoelastic) are not related to the laser power, but
dominate the shot noise in the central spectral region, spoiling any gain of sensitivity expected
from a higher laser power. An interesting approach to reduce these effects is to change the readout
beam from the fundamental TEM0,0 currently used, to the more widely spread (“exotic”) light
power distributions, (either mesa, conical or high-order Laguerre–Gauss). We have given the for-
mulas for estimating the gains with respect to the above cited issues for these different modes.
Thus, we hope to contribute to the design of advanced instruments. It is already possible to point
out that exotic beams provide a high gain (up to a factor of five) in thermal noise and thermoelastic
noise and a huge gain in spurious thermal effects (up to two orders of magnitude).
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