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Abstract
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1 Introduction

Over the last 30 years, one of the greatest achievements in classical general relativity has certainly
been the proof of the positivity of the total gravitational energy, both at spatial and null infinity.
It is precisely its positivity that makes this notion not only important (because of its theoretical
significance), but also a useful tool in the everyday practice of working relativists. This success
inspired the more ambitious claim to associate energy (or rather energy-momentum and, ultimately,
angular momentum as well) to extended, but finite, spacetime domains, i.e., at the quasi-local level.
Obviously, the quasi-local quantities could provide a more detailed characterization of the states
of the gravitational ‘field’ than the global ones, so they (together with more general quasi-local
observables) would be interesting in their own right.

Moreover, finding an appropriate notion of energy-momentum and angular momentum would
be important from the point of view of applications as well. For example, they may play a cen-
tral role in the proof of the full Penrose inequality (as they have already played in the proof of
the Riemannian version of this inequality). The correct, ultimate formulation of black hole ther-
modynamics should probably be based on quasi-locally defined internal energy, entropy, angular
momentum, etc. In numerical calculations, conserved quantities (or at least those for which bal-
ance equations can be derived) are used to control the errors. However, in such calculations all
the domains are finite, i.e., quasi-local. Therefore, a solid theoretical foundation of the quasi-local
conserved quantities is needed.

However, contrary to the high expectations of the 1980s, finding an appropriate quasi-local
notion of energy-momentum has proven to be surprisingly difficult. Nowadays, the state of the art is
typically postmodern; although there are several promising and useful suggestions, we not only have
no ultimate, generally accepted expression for the energy-momentum and especially for the angular
momentum, but there is not even a consensus in the relativity community on general questions (for
example, what do we mean by energy-momentum? just a general expression containing arbitrary
functions, or rather a definite one, free of any ambiguities, even of additive constants), or on the
list of the criteria of reasonableness of such expressions. The various suggestions are based on
different philosophies/approaches and give different results in the same situation. Apparently, the
ideas and successes of one construction have very little influence on other constructions.

The aim of the present paper is, therefore, twofold. First, to collect and review the various
specific suggestions, and, second, to stimulate the interaction between the different approaches
by clarifying the general, potentially-common points, issues and questions. Thus, we wanted
not only to write a ‘who-did-what’ review, but to concentrate on the understanding of the basic
questions (such as why should the gravitational energy-momentum and angular momentum, or,
more generally, any observable of the gravitational ‘field’, be necessarily quasi-local) and ideas
behind the various specific constructions. Consequently, one third of the present review is devoted
to these general questions. We review the specific constructions and their properties only in the
second part, and in the third part we discuss very briefly some (potential) applications of the
quasi-local quantities. Although this paper is at heart a review of known and published results,
we believe that it contains several new elements, observations, suggestions etc.

Surprisingly enough, most of the ideas and concepts that appear in connection with the grav-
itational energy-momentum and angular momentum can be introduced in (and hence can be un-
derstood from) the theory of matter fields in Minkowski spacetime. Thus, in Section 2.1, we review
the Belinfante–Rosenfeld procedure that we will apply to gravity in Section 3, introduce the no-
tion of quasi-local energy-momentum and angular momentum of the matter fields and discuss their
properties.The philosophy of quasi-locality in general relativity will be demonstrated in Minkowski
spacetime where the energy-momentum and angular momentum of the matter fields are treated
quasi-locally. Then we turn to the difficulties of gravitational energy-momentum and angular mo-
mentum, and we clarify why the gravitational observables should necessarily be quasi-local. The
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10 László B. Szabados

tools needed to construct and analyze the quasi-local quantities are reviewed in the fourth section.
This closes the first (general) part of the review (Sections 2–4).

The second part is devoted to the discussion of the specific constructions (Sections 5–12). Since
most of the suggestions are constructions, they cannot be given as a short mathematical defini-
tion. Moreover, there are important physical ideas behind them, without which the constructions
may appear ad hoc. Thus, we always try to explain these physical pictures, the motivations and
interpretations. Although the present paper is intended to be a nontechnical review, the explicit
mathematical definitions of the various specific constructions will always be given, while the prop-
erties and applications are usually summarized. Sometimes we give a review of technical aspects
as well, without which it would be difficult to understand even some of the conceptual issues. The
list of references connected with this second part is intended to be complete. We apologize to all
those whose results were accidentally left out.

The list of the (actual and potential) applications of the quasi-local quantities, discussed in
Section 13, is far from being complete, and might be a bit subjective. Here we consider the
calculation of gravitational energy transfer, applications to black hole physics and cosmology, and
a quasi-local characterization of the pp-wave metrics. We close this paper with a discussion of
the successes and deficiencies of the general and (potentially) viable constructions. In contrast
to the positivistic style of Sections 5–12, Section 14 (as well as the choice of subject matter of
Sections 2- 4) reflects our own personal interest and view of the subject.

The theory of quasi-local observables in general relativity is far from being complete. The
most important open problem is still the trivial one: ‘Find quasi-local energy-momentum and
angular momentum expressions satisfying the points of the lists of Section 4.3’. Several specific
open questions in connection with the specific definitions are raised both in the corresponding
sections and in Section 14; these are simple enough to be worked out by graduate students. On
the other hand, applying them to solve physical/geometrical problems (e.g., to some mentioned in
Section 13) would be a real achievement.

In the present paper we adopt the abstract index formalism. The signature of the spacetime
metric 𝑔𝑎𝑏 is −2, and the curvature Ricci tensors and curvature scalar of the covariant derivative
∇𝑎 are defined by (∇𝑐∇𝑑 −∇𝑑∇𝑐)𝑋𝑎 := −𝑅𝑎

𝑏𝑐𝑑𝑋
𝑏, 𝑅𝑏𝑑 := 𝑅𝑎

𝑏𝑎𝑑 and 𝑅 := 𝑅𝑏𝑑𝑔
𝑏𝑑, respectively.

Hence, Einstein’s equations take the form 𝐺𝑎𝑏 + 𝜆𝑔𝑎𝑏 := 𝑅𝑎𝑏 − 1
2𝑅𝑔𝑎𝑏 + 𝜆𝑔𝑎𝑏 = −8𝜋𝐺𝑇𝑎𝑏, where

𝐺 is Newton’s gravitational constant and 𝜆 is the cosmological constant (and the speed of light
is 𝑐 = 1). However, apart from special cases stated explicitly, the cosmological constant will be
assumed to be vanishing, and in Sections 13.3 and 13.4 we use the traditional cgs system.
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2 Energy-Momentum and Angular Momentum of Matter
Fields

2.1 Energy-momentum and angular-momentum density of matter fields

2.1.1 The symmetric energy-momentum tensor

It is a widely accepted view that the canonical energy-momentum and spin tensors are well defined
and have relevance only in flat spacetime, and, hence, are usually underestimated and abandoned.
However, it is only the analog of these canonical quantities that can be associated with gravity
itself. Thus, we first introduce these quantities for the matter fields in a general curved spacetime.

To specify the state of the matter fields operationally, two kinds of devices are needed; the
first measures the value of the fields, while the other measures the spatio-temporal location of the
first. Correspondingly, the fields on the manifold 𝑀 of events can be grouped into two sharply-
distinguished classes; the first contains the matter field variables, e.g., finitely many (𝑟, 𝑠)-type
tensor fields Φ𝑁

𝑎1...𝑎𝑟

𝑏1...𝑏𝑠
, whilst the second contains the fields specifying the spacetime geometry, i.e.,

the metric 𝑔𝑎𝑏 in Einstein’s theory. Suppose that the dynamics of the matter fields is governed by
Hamilton’s principle specified by a Lagrangian 𝐿m = 𝐿m(𝑔𝑎𝑏,Φ𝑁 ,∇𝑒Φ𝑁 , . . . ,∇𝑒1 . . .∇𝑒𝑘

Φ𝑁 ). If
𝐼m[𝑔𝑎𝑏,Φ𝑁 ] is the action functional, i.e., the volume integral of 𝐿m on some open domain 𝐷 with
compact closure, then the equations of motion are

𝐸𝑁 𝑏...
𝑎... :=

1√︀
|𝑔|

𝛿𝐼m
𝛿Φ𝑁

𝑎...
𝑏...

=
𝑘∑︁

𝑛=0

(−)𝑛∇𝑒𝑛
. . .∇𝑒1

(︁ 𝜕𝐿m

𝜕(∇𝑒1 . . .∇𝑒𝑛
Φ𝑁

𝑎...
𝑏... )

)︁
= 0,

the Euler–Lagrange equations. (Here, of course, 𝛿𝐼m/𝛿Φ𝑁
𝑎...
𝑏... denotes the formal variational deriva-

tive of 𝐼m with respect to the field variable Φ𝑁
𝑎...
𝑏... .) The symmetric (or dynamical) energy-mo-

mentum tensor is defined (and is given explicitly) by

𝑇𝑎𝑏 :=
2√︀
|𝑔|

𝛿𝐼m
𝛿𝑔𝑎𝑏

= 2
𝜕𝐿m

𝜕𝑔𝑎𝑏
− 𝐿m𝑔𝑎𝑏 + 1

2∇
𝑒(𝜎𝑎𝑏𝑒 + 𝜎𝑏𝑎𝑒 − 𝜎𝑎𝑒𝑏 − 𝜎𝑏𝑒𝑎 − 𝜎𝑒𝑎𝑏 − 𝜎𝑒𝑏𝑎), (2.1)

where we introduced the canonical spin tensor

𝜎𝑒𝑎
𝑏 :=

𝑘∑︁
𝑛=1

𝑛∑︁
𝑖=1

(−)𝑖𝛿𝑒
𝑒𝑖
∇𝑒𝑖−1 . . .∇𝑒1

(︂
𝜕𝐿m

𝜕(∇𝑒1 . . .∇𝑒𝑛
Φ𝑁

𝑐...
𝑑...)

)︂
Δ𝑎𝑐...

𝑏𝑒𝑖+1...𝑒𝑛𝑑...
𝑓𝑖+1...𝑓𝑛𝑔...
ℎ... ∇𝑓𝑖+1 . . .∇𝑓𝑛

Φ𝑁
ℎ...
𝑔... .

(2.2)
(The terminology will be justified in Section 2.2.) Here Δ𝑎𝑐1...𝑐𝑝𝑔1...𝑔𝑞

𝑏𝑑1...𝑑𝑞ℎ1...ℎ𝑝
is the (𝑝+ 𝑞 + 1, 𝑝+ 𝑞 + 1)-

type invariant tensor, built from the Kronecker deltas, appearing naturally in the expression of
the Lie derivative of the (𝑝, 𝑞)-type tensor fields in terms of the torsion free covariant derivatives:
 LKΦ𝑐...

𝑑... = ∇KΦ𝑐...
𝑑... − ∇𝑎𝐾

𝑏Δ𝑎𝑐...𝑔...
𝑏𝑑...ℎ...Φ

ℎ...
𝑔... . (For the general idea behind the derivation of 𝑇𝑎𝑏 and

Equation (2.2), see, e.g., Section 3 of [218].)

2.1.2 The canonical Noether current

Suppose that the Lagrangian is weakly diffeomorphism invariant in the sense that, for any vector
field 𝐾𝑎 and the corresponding local one-parameter family of diffeomorphisms, 𝜑𝑡 one has

(𝜑*𝑡𝐿m)(𝑔𝑎𝑏,Φ𝑁 ,∇𝑒Φ𝑁 , . . . )− 𝐿m

(︀
𝜑*𝑡 𝑔

𝑎𝑏, 𝜑*𝑡 Φ𝑁 , 𝜑
*
𝑡∇𝑒Φ𝑁 , . . .

)︀
= ∇𝑒𝐵

𝑒
𝑡 ,

for some one-parameter family of vector fields 𝐵𝑒
𝑡 = 𝐵𝑒

𝑡 (𝑔𝑎𝑏,Φ𝑁 , . . . ). (𝐿m is called diffeomorphism
invariant if ∇𝑒𝐵

𝑒
𝑡 = 0, e.g., when 𝐿m is a scalar.) Let 𝐾𝑎 be any smooth vector field on 𝑀 . Then,

calculating the divergence ∇𝑎(𝐿m𝐾
𝑎) to determine the rate of change of the action functional 𝐼m
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along the integral curves of 𝐾𝑎, by a tedious but straightforward computation, one can derive
the Noether identity: 𝐸𝑁 𝑏...

𝑎...  LKΦ𝑁
𝑎...
𝑏... + 1

2𝑇𝑎𝑏  LK𝑔
𝑎𝑏 + ∇𝑒𝐶

𝑒[K] = 0, where  LK denotes the Lie
derivative along 𝐾𝑎, and 𝐶𝑒[K], the Noether current, is given explicitly by

𝐶𝑒[K] = �̇�𝑒 + 𝜃𝑒𝑎𝐾𝑎 +
(︁
𝜎𝑒[𝑎𝑏] + 𝜎𝑎[𝑏𝑒] + 𝜎𝑏[𝑎𝑒]

)︁
∇𝑎𝐾𝑏. (2.3)

Here �̇�𝑒 is the derivative of 𝐵𝑒
𝑡 with respect to 𝑡 at 𝑡 = 0, which may depend on 𝐾𝑎 and its

derivatives, and 𝜃𝑎
𝑏, the canonical energy-momentum tensor, is defined by

𝜃𝑎
𝑏 := −𝐿m𝛿

𝑎
𝑏−

𝑘∑︁
𝑛=1

𝑛∑︁
𝑖=1

(−)𝑖𝛿𝑎
𝑒𝑖
∇𝑒𝑖−1 . . .∇𝑒1

(︂
𝜕𝐿m

𝜕(∇𝑒1 . . .∇𝑒𝑛
Φ𝑁

𝑐...
𝑑...)

)︂
∇𝑏∇𝑒𝑖+1 . . .∇𝑒𝑛

Φ𝑁
𝑐...
𝑑.... (2.4)

Note that, apart from the term �̇�𝑒, the current 𝐶𝑒[K] does not depend on higher than the first
derivative of 𝐾𝑎, and the canonical energy-momentum and spin tensors could be introduced as
the coefficients of 𝐾𝑎 and its first derivative, respectively, in 𝐶𝑒[K]. (For the original introduction
of these concepts, see [65, 66, 403]. If the torsion Θ𝑐

𝑎𝑏 is not vanishing, then in the Noether
identity there is a further term, 1

2𝑆
𝑎𝑏

𝑐  LKΘ𝑐
𝑎𝑏, where the dynamic spin tensor 𝑆𝑎𝑏

𝑐 is defined by√︀
|𝑔|𝑆𝑎𝑏

𝑐 := 2𝛿𝐼m/𝛿Θ𝑐
𝑎𝑏, and the Noether current has a slightly different structure [237, 238].)

Obviously, 𝐶𝑒[K] is not uniquely determined by the Noether identity, because that contains only its
divergence, and any identically-conserved current may be added to it. In fact, 𝐵𝑒

𝑡 may be chosen
to be an arbitrary nonzero (but divergence free) vector field, even for diffeomorphism-invariant
Lagrangians. Thus, to be more precise, if �̇�𝑒 = 0, then we call the specific combination (2.3) the
canonical Noether current. Other choices for the Noether current may contain higher derivatives
of 𝐾𝑎, as well (see, e.g., [279]), but there is a specific one containing 𝐾𝑎 algebraically (see points 3
and 4 below). However, 𝐶𝑎[K] is sensitive to total divergences added to the Lagrangian, and,
if the matter fields have gauge freedom (e.g., if the matter is a Maxwell or Yang–Mills field),
then in general it is not gauge invariant, even if the Lagrangian is. On the other hand, 𝑇 𝑎𝑏 is
gauge invariant and is independent of total divergences added to 𝐿m because it is the variational
derivative of the gauge invariant action with respect to the metric. Provided the field equations
are satisfied, the Noether identity implies [65, 66, 403, 237, 238] that

1. ∇𝑎𝑇
𝑎𝑏 = 0,

2. 𝑇 𝑎𝑏 = 𝜃𝑎𝑏 +∇𝑐(𝜎𝑐[𝑎𝑏] + 𝜎𝑎[𝑏𝑐] + 𝜎𝑏[𝑎𝑐]),

3. 𝐶𝑎[K] = 𝑇 𝑎𝑏𝐾𝑏 +∇𝑐((𝜎𝑎[𝑐𝑏] − 𝜎𝑐[𝑎𝑏] − 𝜎𝑏[𝑎𝑐])𝐾𝑏), where the second term on the right is an
identically-conserved (i.e., divergence-free) current, and

4. 𝐶𝑎[K] is conserved if 𝐾𝑎 is a Killing vector.

Hence, 𝑇 𝑎𝑏𝐾𝑏 is also conserved and can equally be considered as a Noether current. (For a
formally different, but essentially equivalent, introduction to the Noether current and identity,
see [492, 264, 175].)

The interpretation of the conserved currents, 𝐶𝑎[K] and 𝑇 𝑎𝑏𝐾𝑏, depends on the nature of
the Killing vector, 𝐾𝑎. In Minkowski spacetime the ten-dimensional Lie algebra K of the Killing
vectors is well known to split in to the semidirect sum of a four-dimensional commutative ideal,
T, and the quotient K/T, where the latter is isomorphic to 𝑠𝑜(1, 3). The ideal T is spanned by the
constant Killing vectors, in which a constant orthonormal frame field {𝐸𝑎

𝑎 } on 𝑀 , 𝑎 = 0, . . . , 3,
forms a basis. (Thus, the underlined Roman indices 𝑎 , 𝑏 , . . . are concrete, name indices.) By
𝑔𝑎𝑏𝐸

𝑎
𝑎𝐸

𝑏
𝑏 = 𝜂𝑎 𝑏 := diag(1,−1,−1,−1) the ideal T inherits a natural Lorentzian vector space

structure. Having chosen an origin 𝑜 ∈ 𝑀 , the quotient K/T can be identified as the Lie algebra
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R𝑜 of the boost-rotation Killing vectors that vanish at 𝑜. Thus, K has a ‘4 + 6’ decomposition into
translations and boost rotations, where the translations are canonically defined but the boost-
rotations depend on the choice of the origin 𝑜 ∈ 𝑀 . In the coordinate system {𝑥𝑎 } adapted to
{𝐸𝑎

𝑎 } (i.e., for which the one-form basis dual to {𝐸𝑎
𝑎 } has the form 𝜗

𝑎
𝑎 = ∇𝑎𝑥

𝑎 ), the general
form of the Killing vectors (or rather one-forms) is 𝐾𝑎 = 𝑇𝑎 𝜗

𝑎
𝑎 + 𝑀𝑎 𝑏 (𝑥𝑎 𝜗

𝑏
𝑎 − 𝑥𝑏 𝜗

𝑎
𝑎 ) for some

constants 𝑇𝑎 and 𝑀𝑎 𝑏 = −𝑀𝑏 𝑎 . Then, the corresponding canonical Noether current is 𝐶𝑒[K] =
𝐸𝑒

𝑒 (𝜃𝑒 𝑎 𝑇𝑎 − (𝜃𝑒 𝑎 𝑥𝑏 −𝜃𝑒 𝑏 𝑥𝑎 −2𝜎𝑒 [𝑎 𝑏 ])𝑀𝑎 𝑏 ), and the coefficients of the translation and the boost-
rotation parameters 𝑇𝑎 and 𝑀𝑎 𝑏 are interpreted as the density of the energy-momentum and of
the sum of the orbital and spin angular momenta, respectively. Since, however, the difference
𝐶𝑎[K]− 𝑇 𝑎𝑏𝐾𝑏 is identically conserved and 𝑇 𝑎𝑏𝐾𝑏 has more advantageous properties, it is 𝑇 𝑎𝑏𝐾𝑏

that is used to represent the energy-momentum and angular-momentum density of the matter
fields.

Since in de Sitter and anti-de Sitter spacetimes the (ten-dimensional) Lie algebra of the Killing
vector fields, 𝑠𝑜(1, 4) and 𝑠𝑜(2, 3), respectively, are semisimple, there is no such natural notion
of translations, and hence no natural ‘4 + 6’ decomposition of the ten conserved currents into
energy-momentum and (relativistic) angular momentum density.

2.2 Quasi-local energy-momentum and angular momentum of the mat-
ter fields

In Section 3 we will see that well-defined (i.e., gauge-invariant) energy-momentum and angular-
momentum density cannot be associated with the gravitational ‘field’, and if we do not want to talk
only about global gravitational energy-momentum and angular momentum, then these quantities
must be assigned to extended, but finite, spacetime domains.

In the light of modern quantum-field–theory investigations, it has become clear that all physical
observables should be associated with extended but finite spacetime domains [210, 209]. Thus
observables are always associated with open subsets of spacetime, whose closure is compact, i.e.,
they are quasi-local. Quantities associated with spacetime points or with the whole spacetime
are not observable in this sense. In particular, global quantities, such as the total energy or
electric charge, should be considered as the limit of quasi-locally–defined quantities. Thus, the
idea of quasi-locality is not new in physics. Although in classical nongravitational physics this is
not obligatory, we adopt this view in talking about energy-momentum and angular momentum
even of classical matter fields in Minkowski spacetime. Originally, the introduction of these quasi-
local quantities was motivated by the analogous gravitational quasi-local quantities [449, 453].
Since, however, many of the basic concepts and ideas behind the various gravitational quasi-
local energy-momentum and angular momentum definitions can be understood from the analogous
nongravitational quantities in Minkowski spacetime, we devote Section 2.2 to the discussion of
them and their properties.

2.2.1 The definition of quasi-local quantities

To define the quasi-locally–conserved quantities in Minkowski spacetime, first observe that, for any
Killing vector 𝐾𝑎 ∈ K, the three-form 𝜔𝑎𝑏𝑐 := 𝐾𝑒𝑇

𝑒𝑓𝜀𝑓𝑎𝑏𝑐 is closed, and hence, by the triviality
of the third de Rham cohomology group, 𝐻3(R4) = 0, it is exact: For some two-form ∪[K]𝑎𝑏

we have 𝐾𝑒𝑇
𝑒𝑓𝜀𝑓𝑎𝑏𝑐 = 3∇[𝑎 ∪[K]𝑏𝑐]. ∨𝑐𝑑 := − 1

2 ∪ [K]𝑎𝑏𝜀
𝑎𝑏𝑐𝑑 may be called a ‘superpotential’

for the conserved current three-form 𝜔𝑎𝑏𝑐. (However, note that while the superpotential for the
gravitational energy-momentum expressions of Section 3 is a local function of the general field
variables, the existence of this ‘superpotential’ is a consequence of the field equations and the
Killing nature of the vector field 𝐾𝑎. The existence of globally-defined superpotentials that are
local functions of the field variables can be proven even without using the Poincaré lemma [491].)
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If ∪̃[K]𝑎𝑏 is (the dual of) another superpotential for the same current 𝜔𝑎𝑏𝑐, then by ∇[𝑎(∪[K]𝑏𝑐] −
∪̃[K]𝑏𝑐]) = 0 and 𝐻2(R4) = 0 the dual superpotential is unique up to the addition of an exact
two-form. If, therefore, 𝒮 is any closed orientable spacelike two-surface in the Minkowski spacetime
then the integral of ∪[K]𝑎𝑏 on 𝒮 is free from this ambiguity. Thus, if Σ is any smooth compact
spacelike hypersurface with smooth two-boundary 𝒮, then

𝑄𝒮 [K] := 1
2

∮︁
𝒮
∪[K]𝑎𝑏 =

∫︁
Σ

𝐾𝑒𝑇
𝑒𝑓 1

3!𝜀𝑓𝑎𝑏𝑐 (2.5)

depends only on 𝒮. Hence, it is independent of the actual Cauchy surface Σ of the domain of
dependence 𝐷(Σ) because all the spacelike Cauchy surfaces for 𝐷(Σ) have the same common
boundary 𝒮. Thus, 𝑄𝒮 [K] can equivalently be interpreted as being associated with the whole
domain of dependence 𝐷(Σ), and, hence, it is quasi-local in the sense of [210, 209] above. It
defines the linear maps 𝑃𝒮 : T→ R and 𝐽𝒮 : R𝑜 → R by 𝑄𝒮 [K] =: 𝑇𝑎𝑃

𝑎
𝒮 +𝑀𝑎 𝑏 𝐽

𝑎 𝑏
𝒮 , i.e., they are

elements of the corresponding dual spaces. Under Lorentz rotations of the Cartesian coordinates,
𝑃

𝑎
𝒮 and 𝐽

𝑎 𝑏
𝒮 transform as a Lorentz vector and anti-symmetric tensor, respectively, while under

the translation 𝑥𝑎 ↦→ 𝑥𝑎 + 𝜂𝑎 of the origin, 𝑃 𝑎
𝒮 is unchanged, as 𝐽𝑎 𝑏

𝒮 ↦→ 𝐽
𝑎 𝑏
𝒮 + 2𝜂[𝑎𝑃

𝑏 ]
𝒮 . Thus,

𝑃
𝑎
𝒮 and 𝐽

𝑎 𝑏
𝒮 may be interpreted as the quasi-local energy-momentum and angular momentum of

the matter fields associated with the spacelike two-surface 𝒮, or, equivalently, to 𝐷(Σ). Then
the quasi-local mass and Pauli–Lubanski spin are defined, respectively, by the usual formulae
𝑚2
𝒮 := 𝜂𝑎 𝑏𝑃

𝑎
𝒮 𝑃

𝑏
𝒮 and 𝑆

𝑎
𝒮 := 1

2𝜀
𝑎

𝑏 𝑐 𝑑𝑃
𝑏
𝒮 𝐽

𝑐 𝑑
𝒮 . (If 𝑚2 ̸= 0, then the dimensionally-correct definition

of the Pauli–Lubanski spin is 1
𝑚𝑆

𝑎
𝒮 .) As a consequence of the definitions, 𝜂𝑎 𝑏𝑃

𝑎
𝒮 𝑆

𝑏
𝒮 = 0 holds, i.e.,

if 𝑃 𝑎
𝒮 is timelike then 𝑆

𝑎
𝒮 is spacelike or zero, but if 𝑃 𝑎

𝒮 is null (i.e., 𝑚2
𝒮 = 0) then 𝑆

𝑎
𝒮 is spacelike

or proportional to 𝑃 𝑎
𝒮 .

Obviously we can form the flux integral of the current 𝑇 𝑎𝑏𝜉𝑏 on the hypersurface even if 𝜉𝑎 is
not a Killing vector, even in general curved spacetime:

𝐸Σ [𝜉𝑎] :=
∫︁

Σ

𝜉𝑒𝑇
𝑒𝑓 1

3!𝜀𝑓𝑎𝑏𝑐. (2.6)

Then, however, the integral 𝐸Σ[𝜉𝑎] does depend on the hypersurface, because it is not connected
with the spacetime symmetries. In particular, the vector field 𝜉𝑎 can be chosen to be the unit
timelike normal 𝑡𝑎 of Σ. Since the component 𝜇 := 𝑇𝑎𝑏𝑡

𝑎𝑡𝑏 of the energy-momentum tensor is
interpreted as the energy-density of the matter fields seen by the local observer 𝑡𝑎, it would be
legitimate to interpret the corresponding integral 𝐸Σ[𝑡𝑎] as ‘the quasi-local energy of the matter
fields seen by the fleet of observers being at rest with respect to Σ’. Thus, 𝐸Σ[𝑡𝑎] defines a different
concept of the quasi-local energy: While that based on 𝑄𝒮 [K] is linked to some absolute element,
namely to the translational Killing symmetries of the spacetime, and the constant timelike vector
fields can be interpreted as the observers ‘measuring’ this energy, 𝐸Σ[𝑡𝑎] is completely independent
of any absolute element of the spacetime and is based exclusively on the arbitrarily chosen fleet of
observers. Thus, while 𝑃 𝑎

𝒮 is independent of the actual normal 𝑡𝑎 of 𝒮, 𝐸Σ[𝜉𝑎] (for non-Killing 𝜉𝑎)
depends on 𝑡𝑎 intrinsically and is a genuine three-hypersurface rather than a two-surface integral.

If 𝑃 𝑎
𝑏 := 𝛿𝑎

𝑏 − 𝑡𝑎𝑡𝑏, the orthogonal projection to Σ, then the part 𝑗𝑎 := 𝑃 𝑎
𝑏 𝑇

𝑏𝑐𝑡𝑐 of the energy-
momentum tensor is interpreted as the momentum density seen by the observer 𝑡𝑎. Hence,

(𝑡𝑎𝑇 𝑎𝑏)(𝑡𝑐𝑇 𝑐𝑑)𝑔𝑏𝑑 = 𝜇2 + ℎ𝑎𝑏𝑗
𝑎𝑗𝑏 = 𝜇2 − |𝑗𝑎|2

is the square of the mass density of the matter fields, where ℎ𝑎𝑏 is the spatial metric in the plane
orthogonal to 𝑡𝑎. If 𝑇 𝑎𝑏 satisfies the dominant energy condition (i.e., 𝑇 𝑎𝑏𝑉𝑏 is a future-directed
nonspacelike vector for any future directed nonspacelike vector 𝑉 𝑎, see for example [218]), then
this is non-negative, and hence,

𝑀Σ :=
∫︁

Σ

√︁
𝜇2 − |𝑗𝑒|2 1

3! 𝑡
𝑓𝜀𝑓𝑎𝑏𝑐 (2.7)
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can also be interpreted as the quasi-local mass of the matter fields seen by the fleet of observers
being at rest with respect to Σ, even in general curved spacetime. However, although in Minkowski
spacetime 𝐸Σ[K] for the four translational Killing vectors gives the four components of the energy-
momentum 𝑃

𝑎
𝒮 , the mass 𝑀Σ is different from 𝑚𝒮 . In fact, while 𝑚𝒮 is defined as the Lorentzian

norm of 𝑃 𝑎
𝒮 with respect to the metric on the space of the translations, in the definition of 𝑀Σ the

norm of the current 𝑇 𝑎𝑏𝑡𝑏 is first taken with respect to the pointwise physical metric of the space-
time, and then its integral is taken. Nevertheless, because of more advantageous properties (see
Section 2.2.3), we prefer to represent the quasi-local energy(-momentum and angular momentum)
of the matter fields in the form 𝑄𝒮 [K] instead of 𝐸Σ[𝜉𝑎].

Thus, even if there is a gauge-invariant and unambiguously-defined energy-momentum density
of the matter fields, it is not a priori clear how the various quasi-local quantities should be in-
troduced. We will see in the second part of this review that there are specific suggestions for the
gravitational quasi-local energy that are analogous to 𝑃 0

𝒮 , 𝐸Σ[𝑡𝑎] or 𝑀Σ.

2.2.2 Hamiltonian introduction of the quasi-local quantities

In the standard Hamiltonian formulation of the dynamics of the classical matter fields on a given
(not necessarily flat) spacetime (see, for example, [260, 507] and references therein) the configu-
ration and momentum variables, 𝜑𝐴 and 𝜋𝐴, respectively, are fields on a connected three-manifold
Σ, which is interpreted as the typical leaf of a foliation Σ𝑡 of the spacetime. The foliation can be
characterized on Σ by a function 𝑁 , called the lapse. The evolution of the states in the spacetime
is described with respect to a vector field 𝐾𝑎 = 𝑁𝑡𝑎 +𝑁𝑎 (‘evolution vector field’ or ‘general time
axis’), where 𝑡𝑎 is the future-directed unit normal to the leaves of the foliation and𝑁𝑎 is some vector
field, called the shift, being tangent to the leaves. If the matter fields have gauge freedom, then the
dynamics of the system is constrained: Physical states can be only those that are on the constraint
surface, specified by the vanishing of certain functions 𝐶i = 𝐶i(𝜑𝐴, 𝐷𝑒𝜑

𝐴, . . . , 𝜋𝐴, 𝐷𝑒𝜋𝐴, . . . ),
i = 1, . . . , 𝑛, of the canonical variables and their derivatives up to some finite order, where 𝐷𝑒 is
the covariant derivative operator in Σ. Then the time evolution of the states in the phase space is
governed by the Hamiltonian, which has the form

𝐻 [K] =
∫︁

Σ

(︀
𝜇𝑁 + 𝑗𝑎𝑁

𝑎 + 𝐶i𝑁
i +𝐷𝑎𝑍

𝑎
)︀
𝑑Σ. (2.8)

Here 𝑑Σ is the induced volume element, the coefficients 𝜇 and 𝑗𝑎 are local functions of the canonical
variables and their derivatives up to some finite order, the 𝑁 i’s are functions on Σ, and 𝑍𝑎 is a
local function of the canonical variables and is a linear function of the lapse, the shift, the functions
𝑁 i, and their derivatives up to some finite order. The part 𝐶i𝑁

i of the Hamiltonian generates
gauge motions in the phase space, and the functions 𝑁 i are interpreted as the freely specifiable
‘gauge generators’.

However, if we want to recover the field equations for 𝜑𝐴 (which are partial differential equa-
tions on the spacetime with smooth coefficients for the smooth field 𝜑𝐴) on the phase space as the
Hamilton equations and not some of their distributional generalizations, then the functional dif-
ferentiability of 𝐻[K] must be required in the strong sense of [490]1. Nevertheless, the functional
differentiability (and, in the asymptotically flat case, also the existence) of 𝐻[K] requires some
boundary conditions on the field variables, and may yield restrictions on the form of 𝑍𝑎. It may
happen that, for a given 𝑍𝑎, only too restrictive boundary conditions would be able to ensure the
functional differentiability of the Hamiltonian, and, hence, the ‘quasi-local phase space’ defined

1Sometimes in the literature this requirement is introduced as some new principle in the Hamiltonian formulation
of the fields, but its real content is not more than to ensure that the Hamilton equations coincide with the field
equations.
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with these boundary conditions would contain only very few (or no) solutions of the field equa-
tions. In this case, 𝑍𝑎 should be modified. In fact, the boundary conditions are connected to the
nature of the physical situations considered. For example, in electrodynamics different boundary
conditions must be imposed if the boundary is to represent a conducting or an insulating surface.
Unfortunately, no universal principle or ‘canonical’ way of finding the ‘correct’ boundary term and
the boundary conditions is known.

In the asymptotically flat case, the value of the Hamiltonian on the constraint surface defines
the total energy-momentum and angular momentum, depending on the nature of 𝐾𝑎, in which the
total divergence 𝐷𝑎𝑍

𝑎 corresponds to the ambiguity of the superpotential two-form ∪[K]𝑎𝑏: An
identically-conserved quantity can always be added to the Hamiltonian (provided its functional
differentiability is preserved). The energy density and the momentum density of the matter fields
can be recovered as the functional derivative of 𝐻[K] with respect to the lapse 𝑁 and the shift 𝑁𝑎,
respectively. In principle, the whole analysis can be repeated quasi-locally too. However, apart
from the promising achievements of [8, 9, 407] for the Klein–Gordon, Maxwell, and the Yang–
Mills–Higgs fields, as far as we know, such a systematic quasi-local Hamiltonian analysis of the
matter fields is still lacking.

2.2.3 Properties of the quasi-local quantities

Suppose that the matter fields satisfy the dominant energy condition. Then 𝐸Σ[𝜉𝑎] is also non-
negative for any nonspacelike 𝜉𝑎, and, obviously, 𝐸Σ[𝑡𝑎] is zero precisely when 𝑇 𝑎𝑏 = 0 on Σ,
and hence, by the conservation laws (see, for example, page 94 of [218]), on the whole domain
of dependence 𝐷(Σ). Obviously, 𝑀Σ = 0 if and only if 𝐿𝑎 := 𝑇 𝑎𝑏𝑡𝑏 is null on Σ. Then, by
the dominant energy condition it is a future-pointing vector field on Σ, and 𝐿𝑎𝑇

𝑎𝑏 = 0 holds.
Therefore, 𝑇 𝑎𝑏 on Σ has a null eigenvector with zero eigenvalue, i.e., its algebraic type on Σ is pure
radiation.

The properties of the quasi-local quantities based on 𝑄𝒮 [K] in Minkowski spacetime are, how-
ever, more interesting. Namely, assuming that the dominant energy condition is satisfied, one can
prove [449, 453] that

1. 𝑃 𝑎
𝒮 is a future directed nonspacelike vector, 𝑚2

𝒮 ≥ 0;

2. 𝑃 𝑎
𝒮 = 0 if and only if 𝑇𝑎𝑏 = 0 on 𝐷(Σ);

3. 𝑚2
𝒮 = 0 if and only if the algebraic type of the matter on 𝐷(Σ) is pure radiation, i.e.,

𝑇𝑎𝑏𝐿
𝑏 = 0 holds for some constant null vector 𝐿𝑎. Then 𝑇𝑎𝑏 = 𝜏𝐿𝑎𝐿𝑏 for some non-negative

function 𝜏 . In this case 𝑃 𝑎
𝒮 = 𝑒𝐿𝑎 , where 𝐿𝑎 := 𝐿𝑎𝜗

𝑎
𝑎 and 𝑒 :=

∫︀
Σ
𝜏𝐿𝑎 1

3!𝜀𝑎𝑏𝑐𝑑;

4. For 𝑚2
𝒮 = 0 the angular momentum has the form 𝐽

𝑎 𝑏
𝒮 = 𝑒𝑎𝐿𝑏 − 𝑒𝑏𝐿𝑎 , where 𝑒𝑎 :=∫︀

Σ
𝑥𝑎 𝜏𝐿𝑎 1

3!𝜀𝑎𝑏𝑐𝑑. Thus, in particular, the Pauli–Lubanski spin is zero.

Therefore, the vanishing of the quasi-local energy-momentum characterizes the ‘vacuum state’ of
the classical matter fields completely, and the vanishing of the quasi-local mass is equivalent to
special configurations representing pure radiation.

Since 𝐸Σ[𝑡𝑎] and 𝑀Σ are integrals of functions on a hypersurface, they are obviously additive,
e.g., for any two hypersurfaces Σ1 and Σ2 (having common points at most on their boundaries
𝒮1 and 𝒮2) one has 𝐸Σ1∪Σ2 [𝑡𝑎] = 𝐸Σ1 [𝑡𝑎] + 𝐸Σ2 [𝑡𝑎]. On the other hand, the additivity of 𝑃 𝑎

𝒮
is a slightly more delicate problem. Namely, 𝑃 𝑎

𝒮1
and 𝑃

𝑎
𝒮2

are elements of the dual space of the
translations, and hence, we can add them and, as in the previous case, we obtain additivity.
However, this additivity comes from the absolute parallelism of the Minkowski spacetime: The
quasi-local energy-momenta of the different two-surfaces belong to one and the same vector space.
If there were no natural connection between the Killing vectors on different two-surfaces, then the
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energy-momenta would belong to different vector spaces, and they could not be added. We will
see that the quasi-local quantities discussed in Sections 7, 8, and 9 belong to vector spaces dual
to their own ‘quasi-Killing vectors’, and there is no natural way of adding the energy-momenta of
different surfaces.

2.2.4 Global energy-momenta and angular momenta

If Σ extends either to spatial or future null infinity, then, as is well known, the existence of the limit
of the quasi-local energy-momentum can be ensured by slightly faster than 𝒪(𝑟−3) (for example by
𝒪(𝑟−4)) falloff of the energy-momentum tensor, where 𝑟 is any spatial radial distance. However,
the finiteness of the angular momentum and center-of-mass is not ensured by the 𝒪(𝑟−4) falloff.
Since the typical falloff of 𝑇𝑎𝑏 – for the electromagnetic field, for example – is 𝒪(𝑟−4), we may
not impose faster than this, because otherwise we would exclude the electromagnetic field from
our investigations. Thus, in addition to the 𝒪(𝑟−4) falloff, six global integral conditions for the
leading terms of 𝑇𝑎𝑏 must be imposed. At spatial infinity these integral conditions can be ensured
by explicit parity conditions, and one can show that the ‘conservation equations’ 𝑇 𝑎𝑏

;𝑏 = 0 (as
evolution equations for the energy density and momentum density) preserve these falloff and parity
conditions [458].

Although quasi-locally the vanishing of the mass does not imply the vanishing of the matter
fields themselves (the matter fields must be pure radiative field configurations with plane wave
fronts), the vanishing of the total mass alone does imply the vanishing of the fields. In fact, by
the vanishing of the mass, the fields must be plane waves, furthermore, by 𝑇𝑎𝑏 = 𝒪(𝑟−4), they
must be asymptotically vanishing at the same time. However, a plane-wave configuration can be
asymptotically vanishing only if it is vanishing.

2.2.5 Quasi-local radiative modes and a classical version of the holography for matter
fields

By the results of Section 2.2.4, the vanishing of the quasi-local mass, associated with a closed
spacelike two-surface 𝒮, implies that the matter must be pure radiation on a four-dimensional
globally-hyperbolic domain 𝐷(Σ). Thus, 𝑚𝒮 = 0 characterizes ‘simple’, ‘elementary’ states of the
matter fields. In the present section we review how these states on 𝐷(Σ) can be characterized
completely by data on the two-surface 𝒮, and how these states can be used to formulate a classical
version of the holographic principle.

For the (real or complex) linear massless scalar field 𝜑 and the Yang–Mills fields, represented by
the symmetric spinor fields 𝜑𝛼

𝐴𝐵 , 𝛼 = 1, . . . , 𝑁 , where 𝑁 is the dimension of the gauge group, the
vanishing of the quasi-local mass is equivalent [459] to plane waves and the pp-wave solutions of
Coleman [140], respectively. Then, the condition 𝑇𝑎𝑏𝐿

𝑏 = 0 implies that these fields are completely
determined on the whole 𝐷(Σ) by their value on 𝒮 (in which case the spinor fields 𝜑𝛼

𝐴𝐵 are
necessarily null: 𝜑𝛼

𝐴𝐵 = 𝜑𝛼𝑂𝐴𝑂𝐵 , where 𝜑𝛼 are complex functions and 𝑂𝐴 is a constant spinor field
such that 𝐿𝑎 = 𝑂𝐴�̄�𝐴′). Similarly, the null linear zero-rest-mass fields 𝜑𝐴𝐵...𝐸 = 𝜑𝑂𝐴𝑂𝐵 . . . 𝑂𝐸

on 𝐷(Σ) with any spin and constant spinor 𝑂𝐴 are completely determined by their value on 𝒮.
Technically, these results are based on the unique complex analytic structure of the 𝑢 = const.
two-surfaces foliating Σ, where 𝐿𝑎 = ∇𝑎𝑢, and, by the field equations, the complex functions 𝜑
and 𝜑𝛼 turn out to be antiholomorphic [453]. Assuming, for the sake of simplicity, that 𝒮 is future
and past convex in the sense of Section 4.1.3 below, the independent boundary data for such a
pure radiative solution consist of a constant spinor field on 𝒮 and a real function with one, and
another with two, variables. Therefore, the pure radiative modes on 𝐷(Σ) can be characterized
completely by appropriate data (the holographic data) on the ‘screen’ 𝒮.

These ‘quasi-local radiative modes’ can be used to map any continuous spinor field on 𝐷(Σ)
to a collection of holographic data. Indeed, the special radiative solutions of the form 𝜑𝑂𝐴 (with
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fixed constant-spinor field 𝑂𝐴), together with their complex conjugate, define a dense subspace in
the space of all continuous spinor fields on Σ. Thus, every such spinor field can be expanded by
the special radiative solutions, and hence, can also be represented by the corresponding family of
holographic data. Therefore, if we fix a foliation of 𝐷(Σ) by spacelike Cauchy surfaces Σ𝑡, then
every spinor field on 𝐷(Σ) can also be represented on 𝒮 by a time-dependent family of holographic
data, as well [459]. This fact may be a specific manifestation in classical nongravitational physics
of the holographic principle (see Section 13.4.2).
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3 On the Energy-Momentum and Angular Momentum of
Gravitating Systems

3.1 On the gravitational energy-momentum and angular momentum
density: The difficulties

3.1.1 The root of the difficulties

The action 𝐼m for the matter fields is a functional of both kinds of fields, thus one can take the
variational derivatives both with respect to Φ𝑁

𝑎...
𝑏... and 𝑔𝑎𝑏. The former give the field equations,

while the latter define the symmetric energy-momentum tensor. Moreover, 𝑔𝑎𝑏 provides a metrical
geometric background, in particular a covariant derivative, for carrying out the analysis of the
matter fields. The gravitational action 𝐼g is, on the other hand, a functional of the metric alone,
and its variational derivative with respect to 𝑔𝑎𝑏 yields the gravitational field equations. The lack
of any further geometric background for describing the dynamics of 𝑔𝑎𝑏 can be traced back to the
principle of equivalence [29], and introduces a huge gauge freedom in the dynamics of 𝑔𝑎𝑏 because
that should be formulated on a bare manifold: The physical spacetime is not simply a manifold
𝑀 endowed with a Lorentzian metric 𝑔𝑎𝑏, but the isomorphism class of such pairs, where (𝑀, 𝑔𝑎𝑏)
and (𝑀,𝜑*𝑔𝑎𝑏) are considered to be equivalent for any diffeomorphism 𝜑 of 𝑀 onto itself2. Thus,
we do not have, even in principle, any gravitational analog of the symmetric energy-momentum
tensor of the matter fields. In fact, by its very definition, 𝑇𝑎𝑏 is the source-current for gravity,
like the current 𝐽𝑎

A := 𝛿𝐼𝑝/𝛿𝐴
A
𝑎 in Yang–Mills theories (defined by the variational derivative of

the action functional of the particles, e.g., of the fermions, interacting with a Yang–Mills field
𝐴A

𝑎 ), rather than energy-momentum. The latter is represented by the Noether currents associ-
ated with special spacetime displacements. Thus, in spite of the intimate relation between 𝑇𝑎𝑏

and the Noether currents, the proper interpretation of 𝑇𝑎𝑏 is only the source density for grav-
ity, and hence it is not the symmetric energy-momentum tensor whose gravitational counterpart
must be searched for. In particular, the Bel–Robinson tensor 𝑇𝑎𝑏𝑐𝑑 := 𝜓𝐴𝐵𝐶𝐷𝜓𝐴′𝐵′𝐶′𝐷′ , given
in terms of the Weyl spinor, (and its generalizations introduced by Senovilla [414, 413]), being
a quadratic expression of the curvature (and its derivatives), is (are) expected to represent only
‘higher-order’ gravitational energy-momentum. (Note that according to the original tensorial defi-
nition the Bel–Robinson tensor is one-fourth the expression above. Our convention follows that of
Penrose and Rindler [391].) In fact, the physical dimension of the Bel–Robinson ‘energy-density’
𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑 is cm−4, and hence (in the traditional units) there are no powers 𝐴 and 𝐵 such that
𝑐𝐴𝐺𝐵 𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑 would have energy-density dimension. Here 𝑐 is the speed of light and 𝐺 is
Newton’s gravitational constant. As we will see, the Bel–Robinson ‘energy-momentum density’
𝑇𝑎𝑏𝑐𝑑𝑡

𝑏𝑡𝑐𝑡𝑑 appears naturally in connection with the quasi-local energy-momentum and spin an-
gular momentum expressions for small spheres only in higher-order terms. Therefore, if we want
to associate energy-momentum and angular momentum with the gravity itself in a Lagrangian
framework, then it is the gravitational counterpart of the canonical energy-momentum and spin
tensors and the canonical Noether current built from them that should be introduced. Hence it
seems natural to apply the Lagrange–Belinfante–Rosenfeld procedure, sketched in the previous
section, to gravity too [65, 66, 403, 237, 238, 447].

2Since we do not have a third kind of device to specify the spatio-temporal location of the devices measuring
the spacetime geometry, we do not have any further operationally defined, maybe nondynamic background, just in
accordance with the principle of equivalence. If there were some nondynamic background metric 𝑔0

𝑎𝑏 on 𝑀 , then, by
requiring 𝑔0

𝑎𝑏 = 𝜑*𝑔0
𝑎𝑏 we could reduce the almost arbitrary diffeomorphism 𝜑 (essentially four arbitrary functions

of four variables) to a transformation depending on at most ten parameters.
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20 László B. Szabados

3.1.2 Pseudotensors

The lack of any background geometric structure in the gravitational action yields, first, that any
vector field 𝐾𝑎 generates a symmetry of the matter-plus-gravity system. Its second consequence
is the need for an auxiliary derivative operator, e.g., the Levi-Civita covariant derivative coming
from an auxiliary, nondynamic background metric (see, for example, [282, 396]), or a background
(usually torsion free, but not necessarily flat) connection (see, for example, [264]), or the partial
derivative coming from a local coordinate system (see, for example, [482]). Though the natural
expectation would be that the final results be independent of these background structures, as is
well known, the results do depend on them.

In particular [447], for Hilbert’s second-order Lagrangian 𝐿H := 𝑅/16𝜋𝐺 in a fixed local co-
ordinate system {𝑥𝛼} and derivative operator 𝜕𝜇 instead of ∇𝑒, Equation (2.4) gives precisely
Møller’s energy-momentum pseudotensor M𝜃

𝛼
𝛽 , which was defined originally through the superpo-

tential equation
√︀
|𝑔|(8𝜋𝐺M𝜃

𝛼
𝛽 − 𝐺𝛼

𝛽) := 𝜕𝜇M ∪𝛽
𝛼𝜇, where M ∪𝛽

𝛼𝜇 :=
√︀
|𝑔|𝑔𝛼𝜌𝑔𝜇𝜔(𝜕[𝜔𝑔𝜌]𝛽) is

the Møller superpotential [335]. (For another simple and natural introduction of Møller’s energy-
momentum pseudotensor, see [121].) For the spin pseudotensor, Equation (2.2) gives

8𝜋𝐺
√︀
|𝑔|M𝜎𝜇𝛼

𝛽 = −M ∪𝛽
𝛼𝜇 + 𝜕𝜈

(︁√︀
|𝑔|𝛿[𝜇𝛽 𝑔

𝜈]𝛼
)︁
,

which is, in fact, only pseudotensorial. Similarly, the contravariant form of these pseudotensors
and the corresponding canonical Noether current are also pseudotensorial. We saw in Section 2.1.2
that a specific combination of the canonical energy-momentum and spin tensors gave the sym-
metric energy-momentum tensor, which is gauge invariant even if the matter fields have gauge
freedom, and one might hope that the analogous combination of the energy-momentum and spin
pseudotensors gives a reasonable tensorial energy-momentum density for the gravitational field.
The analogous expression is, in fact, tensorial, but unfortunately it is just the negative of the
Einstein tensor [447, 448]3. Therefore, to use the pseudotensors, a ‘natural’ choice for a ‘preferred’
coordinate system would be needed. This could be interpreted as a gauge choice, or a choice for
the reference configuration.

A further difficulty is that the different pseudotensors may have different (potential) signifi-
cance. For example, for any fixed 𝑘 ∈ R Goldberg’s 2𝑘𝑡ℎ symmetric pseudotensor 𝑡𝛼𝛽

(2𝑘) is defined

by 2 |𝑔|𝑘+1 (8𝜋𝐺𝑡𝛼𝛽
(2𝑘) − 𝐺𝛼𝛽) := 𝜕𝜇𝜕𝜈 [|𝑔|𝑘+1 (𝑔𝛼𝛽𝑔𝜇𝜈 − 𝑔𝛼𝜈𝑔𝛽𝜇)] (which, for 𝑘 = 0, reduces to

the Landau–Lifshitz pseudotensor, the only symmetric pseudotensor that is a quadratic expres-
sion of the first derivatives of the metric) [201]. However, by Einstein’s equations, this definition
implies that 𝜕𝛼[|𝑔|𝑘+1 (𝑡𝛼𝛽

(2𝑘) +𝑇𝛼𝛽)] = 0. Hence what is (coordinate-)divergence-free (i.e., ‘pseudo-
conserved’) cannot be interpreted as the sum of the gravitational and matter energy-momentum
densities. Indeed, the latter is |𝑔|1/2

𝑇𝛼𝛽 , while the second term in the divergence equation has an
extra weight |𝑔|𝑘+1/2. Thus, there is only one pseudotensor in this series, 𝑡𝛼𝛽

(−1), which satisfies the

‘conservation law’ with the correct weight. In particular, the Landau–Lifshitz pseudotensor 𝑡𝛼𝛽
(0)

also has this defect. On the other hand, the pseudotensors coming from some action (the ‘canonical
pseudotensors’) appear to be free of this kind of difficulty (see also [447, 448]). Excellent classical
reviews on these (and several other) pseudotensors are [482, 69, 10, 202], and for some recent ones
(using background geometric structures) see, for example, [170, 171, 93, 192, 193, 279, 396].

A particularly useful and comprehensive recent review with many applications and an extended
bibliography is that of Petrov [394]. We return to the discussion of pseudotensors in Sections 3.3.1
and 11.3.4.

3Since Einstein’s Lagrangian is only weakly diffeomorphism invariant, the situation would be even worse if we
used Einstein’s Lagrangian. The corresponding canonical quantities would still be coordinate dependent, though in
certain ‘natural’ coordinate systems they yield reasonable results (see, for example, [2] and references therein).
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3.1.3 Strategies to avoid pseudotensors I: Background metrics/connections

One way of avoiding the use of pseudotensorial quantities is to introduce an explicit background
connection [264] or background metric [402, 280, 285, 282, 281, 395, 168]. (The superpotential
of Katz, Bičák, and Lyndel-Bell [281] has been rediscovered recently by Chen and Nester [126]
in a completely different way. We return to a discussion of the approach of Chen and Nester in
Section 11.3.2.) The advantage of this approach would be that we could use the background not
only to derive the canonical energy-momentum and spin tensors, but to define the vector fields 𝐾𝑎

as the symmetry generators of the background. Then, the resulting Noether currents are, without
doubt, tensorial. However, they depend explicitly on the choice of the background connection
or metric not only through 𝐾𝑎: The canonical energy-momentum and spin tensors themselves
are explicitly background-dependent. Thus, again, the resulting expressions would have to be
supplemented by a ‘natural’ choice for the background, and the main question is how to find such
a ‘natural’ reference configuration from the infinitely many possibilities. A particularly interesting
special bimetric approach was suggested in [373] (see also [374]), in which the background (flat)
metric is also fixed by using Synge’s world function.

3.1.4 Strategies to avoid pseudotensors II: The tetrad formalism

In the tetrad formulation of general relativity, the 𝑔𝑎𝑏-orthonormal frame fields {𝐸𝑎
𝑎 }, 𝑎 = 0, . . . , 3,

are chosen to be the gravitational field variables [489, 288]. Re-expressing the Hilbert Lagrangian
(i.e., the curvature scalar) in terms of the tetrad field and its partial derivatives in some local
coordinate system, one can calculate the canonical energy-momentum and spin by Equations (2.4)
and (2.2), respectively. Not surprisingly at all, we recover the pseudotensorial quantities that we
obtained in the metric formulation above. However, as realized by Møller [336], the use of the
tetrad fields as the field variables instead of the metric makes it possible to introduce a first-order,
scalar Lagrangian for Einstein’s field equations: If 𝛾𝑎

𝑒 𝑏 := 𝐸𝑒
𝑒 𝛾

𝑎
𝑒𝑏 := 𝐸𝑒

𝑒 𝜗
𝑎
𝑎∇𝑒𝐸

𝑎
𝑏 , the Ricci rotation

coefficients, then Møller’s tetrad Lagrangian is

𝐿 :=
1

16𝜋𝐺

[︁
𝑅− 2∇𝑎

(︁
𝐸𝑎

𝑎 𝜂
𝑎 𝑏 𝛾

𝑐
𝑐 𝑏

)︁]︁
=

1
16𝜋𝐺

(︁
𝐸𝑎

𝑎𝐸
𝑏
𝑏 − 𝐸𝑏

𝑎𝐸
𝑎
𝑏

)︁
𝛾𝑎

𝑎𝑐 𝛾
𝑐 𝑏
𝑏 . (3.1)

(Here {𝜗𝑎
𝑎 } is the one-form basis dual to {𝐸𝑎

𝑎 }.) Although 𝐿 depends on the actual tetrad field
{𝐸𝑎

𝑎 }, it is weakly 𝑂(1, 3)-invariant. Møller’s Lagrangian has a nice uniqueness property [378]:
Any first-order scalar Lagrangian built from the tetrad fields, whose Euler–Lagrange equations
are the Einstein equations, is Møller’s Lagrangian. (Using Dirac spinor variables Nester and Tung
found a first-order spinor Lagrangian [359], which turned out to be equivalent to Møller’s La-
grangian [486]. Another first-order spinor Lagrangian, based on the use of the two-component
spinors and the anti-self-dual connection, was suggested by Tung and Jacobson [485]. Both La-
grangians yield a well-defined Hamiltonian, reproducing the standard ADM energy-momentum in
asymptotically flat spacetimes.) The canonical energy-momentum 𝜃𝛼

𝛽 derived from Equation (3.1)
using the components of the tetrad fields in some coordinate system as the field variables is still
pseudotensorial, but, as Møller realized, it has a tensorial superpotential:

∨𝑏
𝑎𝑒 := 2

(︁
−𝛾𝑎

𝑏 𝑐 𝜂
𝑐 𝑒 + 𝛾

𝑑
𝑑 𝑐 𝜂

𝑐 𝑠
(︁
𝛿

𝑎
𝑏 𝛿

𝑒
𝑠 − 𝛿𝑎

𝑠 𝛿
𝑒
𝑏

)︁)︁
𝜗

𝑏
𝑏𝐸

𝑎
𝑎𝐸

𝑒
𝑒 = ∨𝑏

[𝑎𝑒]. (3.2)

The canonical spin turns out to be essentially ∨𝑏
𝑎𝑒, i.e., a tensor. The tensorial nature of the

superpotential makes it possible to introduce a canonical energy-momentum tensor for the grav-
itational ‘field’. Then, the corresponding canonical Noether current 𝐶𝑎[K] will also be tensorial
and satisfies

8𝜋𝐺𝐶𝑎[K] = 𝐺𝑎𝑏𝐾𝑏 + 1
2∇𝑐

(︀
𝐾𝑏∨𝑏

𝑎𝑐
)︀
. (3.3)
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Therefore, the canonical Noether current derived from Møller’s tetrad Lagrangian is independent
of the background structure (i.e., the coordinate system) that we used to do the calculations (see
also [447]). However, 𝐶𝑎[K] depends on the actual tetrad field, and hence, a preferred class of frame
fields, i.e., an 𝑂(1, 3)-gauge reduction, is needed. Thus, the explicit background dependence of the
final result of other approaches has been transformed into an internal 𝑂(1, 3)-gauge dependence.
It is important to realize that this difficulty always appears in connection with the gravitational
energy-momentum and angular momentum, at least in disguise. In particular, the Hamiltonian
approach in itself does not yield a well-defined energy-momentum density for the gravitational
‘field’ (see, for example, [347, 325]). Thus in the tetrad approach the canonical Noether current
should be supplemented by a gauge condition for the tetrad field. Such a gauge condition could
be some spacetime version of Nester’s gauge conditions (in the form of certain partial differential
equations) for the orthonormal frames of Riemannian manifolds [346, 349]. (For the existence
and the potential obstruction to the existence of this gauge condition, see [352].) Furthermore,
since 𝐶𝑎[K] + 𝑇 𝑎𝑏𝐾𝑏 is conserved for any vector field 𝐾𝑎, in the absence of the familiar Killing
symmetries of the Minkowski spacetime it is not trivial to define the ‘translations’ and ‘rotations’,
and hence the energy-momentum and angular momentum. To make them well defined, additional
ideas would be needed. For recent reviews of the tetrad formalism of general relativity, including
an extended bibliography, see, e.g., [447, 448, 369, 263].

In general, the frame field {𝐸𝑎
𝑎 } is defined only on an open subset 𝑈 ⊂ 𝑀 . If the domain of

the frame field can be extended to the whole 𝑀 , then 𝑀 is called parallelizable. For time and
space-orientable spacetimes this is equivalent to the existence of a spinor structure [187], which is
known to be equivalent to the vanishing of the second Stiefel–Whitney class of 𝑀 [332], a global
topological condition on 𝑀 .

3.1.5 Strategies to avoid pseudotensors III: Higher derivative currents

Giving up the paradigm that the Noether current should depend only on the vector field 𝐾𝑎

and its first derivative – i.e., if we allow a term �̇�𝑎 to be present in the Noether current (2.3),
even if the Lagrangian is diffeomorphism invariant – one naturally arrives at Komar’s tensorial
superpotential K∨ [K]𝑎𝑏 := ∇[𝑎𝐾𝑏] and the corresponding Noether current [296] (see also [69]).
Although its independence of any background structure (viz. its tensorial nature) and its uniqueness
property (see Komar [296] quoting Sachs) is especially attractive, the vector field 𝐾𝑎 is still to be
determined. A new suggestion for the approximate spacetime symmetries that can, in principle,
be used in Komar’s expression, both near a point and a world line, is given in [213]. This is a
generalization of the affine collineations (including the homotheties and the Killing symmetries).
We continue the discussion of the Komar expression, in Sections 3.2.2, 3.2.3, 4.3.1 and 12.1, and
of the approximate spacetime symmetries in 11.1.

3.2 On the global energy-momentum and angular momentum of gravi-
tating systems: The successes

As is well known, in spite of the difficulties with the notion of the gravitational energy-momentum
density discussed above, reasonable total energy-momentum and angular momentum can be as-
sociated with the whole spacetime, provided it is asymptotically flat. In the present section we
recall the various forms of them. As we will see, most of the quasi-local constructions are simply
‘quasi-localizations’ of the total quantities. Obviously, the technique used in the ‘quasi-localization’
does depend on the actual form of the total quantities, yielding mathematically-inequivalent def-
initions for the quasi-local quantities. We return to the discussion of the tools needed in the
quasi-localization procedures in Sections 4.2 and 4.3. Classical, excellent reviews of global energy-
momentum and angular momentum are [189, 202, 21, 360, 505, 392], and a recent review of con-
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formal infinity (with special emphasis on its applicability in numerical relativity) is [179]. Reviews
of the positive energy proofs from the early 1980’s [250, 393].

3.2.1 Spatial infinity: Energy-momentum

There are several mathematically-inequivalent definitions of asymptotic flatness at spatial infin-
ity [189, 436, 30, 57, 182]. The traditional definition is based on the existence of a certain asymp-
totically flat spacelike hypersurface. Here we adopt this definition, which is probably the weakest
one in the sense that the spacetimes that are asymptotically flat in the sense of any reasonable
definition are asymptotically flat in the traditional sense as well. A spacelike hypersurface Σ will be
called 𝑘–asymptotically flat if for some compact set 𝐾 ⊂ Σ the complement Σ−𝐾 is diffeomorphic
to R3 minus a solid ball, and there exists a (negative definite) metric 0ℎ𝑎𝑏 on Σ, which is flat on
Σ − 𝐾, such that the components of the difference of the physical and the background metrics,
ℎij − 0ℎij, and of the extrinsic curvature 𝜒ij in the 0ℎij-Cartesian coordinate system {𝑥k} fall off
as 𝑟−𝑘 and 𝑟−𝑘−1, respectively, for some 𝑘 > 0 and 𝑟2 := 𝛿ij𝑥

i𝑥j [399, 56]. These conditions make
it possible to introduce the notion of asymptotic spacetime Killing vectors, and to speak about
asymptotic translations and asymptotic boost rotations. Σ − 𝐾 together with the metric and
extrinsic curvature is called the asymptotic end of Σ. In a more general definition of asymptotic
flatness Σ is allowed to have finitely many such ends.

As is well known, finite and well-defined ADM energy-momentum [16, 18, 17, 19] can be asso-
ciated with any 𝑘–asymptotically flat spacelike hypersurface, if 𝑘 > 1

2 , by taking the value on the
constraint surface of the Hamiltonian 𝐻[𝐾𝑎], given, for example, in [399, 56], with the asymptotic
translations 𝐾𝑎 (see [132, 45, 366, 133]). In its standard form, this is the 𝑟 → ∞ limit of a two-
surface integral of the first derivatives of the induced three-metric ℎ𝑎𝑏 and of the extrinsic curvature
𝜒𝑎𝑏 for spheres of large coordinate radius 𝑟. The ADM energy-momentum is an element of the
space dual to the space of the asymptotic translations, and transforms as a Lorentzian four-vector
with respect to asymptotic Lorentz transformations of the asymptotic Cartesian coordinates.

The traditional ADM approach to the introduction of the conserved quantities and the Hamil-
tonian analysis of general relativity is based on the 3 + 1 decomposition of the fields and the
spacetime. Thus, it is not a priori clear that the energy and spatial momentum form a Lorentz
vector (and the spatial angular momentum and center-of-mass, discussed below, form an anti-
symmetric tensor). One has to check a posteriori that the conserved quantities obtained in the
3 + 1 form are, in fact, Lorentz-covariant. To obtain manifestly Lorentz-covariant quantities one
should not do the 3 + 1 decomposition. Such a manifestly Lorentz-covariant Hamiltonian analysis
was suggested first by Nester [345], and he was able to recover the ADM energy-momentum in a
natural way (see Section 11.3).

Another form of the ADM energy-momentum is based on Møller’s tetrad superpotential [202]:
Taking the flux integral of the current 𝐶𝑎[K] + 𝑇 𝑎𝑏𝐾𝑏 on the spacelike hypersurface Σ, by Equa-
tion (3.3) the flux can be rewritten as the 𝑟 → ∞ limit of the two-surface integral of Møller’s
superpotential on spheres of large 𝑟 with the asymptotic translations 𝐾𝑎. Choosing the tetrad
field 𝐸𝑎

𝑎 to be adapted to the spacelike hypersurface and assuming that the frame 𝐸𝑎
𝑎 tends to a

constant Cartesian one as 𝑟−𝑘, the integral reproduces the ADM energy-momentum. The same ex-
pression can be obtained by following the familiar Hamiltonian analysis using the tetrad variables
too: By the standard scenario one can construct the basic Hamiltonian [347]. This Hamiltonian,
evaluated on the constraints, turns out to be precisely the flux integral of 𝐶𝑎[K] + 𝑇 𝑎𝑏𝐾𝑏 on Σ.

A particularly interesting and useful expression for the ADM energy-momentum is possible
if the tetrad field is considered to be a frame field built from a normalized spinor dyad {𝜆𝐴

𝐴 },
𝐴 = 0, 1, on Σ, which is asymptotically constant (see Section 4.2.3). (Thus, underlined capital
Roman indices are concrete name spinor indices.) Then, for the components of the ADM energy-
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momentum in the constant spinor basis at infinity, Møller’s expression yields the limit of

𝑃𝐴 𝐵 ′
=

1
4𝜋𝐺

∮︁
𝒮

i
2

(︁
�̄�

𝐵 ′

𝐴′ ∇𝐵𝐵′𝜆
𝐴
𝐴 − �̄�

𝐵 ′

𝐵′∇𝐴𝐴′𝜆
𝐴
𝐵

)︁
, (3.4)

as the two-surface 𝒮 is blown up to approach infinity. In fact, to recover the ADM energy-
momentum in the form (3.4), the spinor fields 𝜆𝐴

𝐴 need not be required to form a normalized
spinor dyad, it is enough that they form an asymptotically constant normalized dyad, and we have
to use the fact that the generator vector field 𝐾𝑎 has asymptotically constant components 𝐾𝐴 𝐴 ′

in the asymptotically constant frame field 𝜆𝐴
𝐴 �̄�

𝐴′

𝐴 ′ . Thus 𝐾𝑎 = 𝐾𝐴 𝐴 ′
𝜆𝐴

𝐴 �̄�
𝐴′

𝐴 ′ can be interpreted
as an asymptotic translation. The complex-valued two-form in the integrand of Equation (3.4)
will be denoted by 𝑢(𝜆𝐴 , �̄�𝐵 ′

)𝑎𝑏, and is called the Nester–Witten two-form. This is ‘essentially
Hermitian’ and connected with Komar’s superpotential; for any two spinor fields 𝛼𝐴 and 𝛽𝐴 one
has

𝑢
(︀
𝛼, 𝛽

)︀
𝑎𝑏
− 𝑢 (𝛽, �̄�)𝑎𝑏 = −i∇[𝑎𝑋𝑏], (3.5)

𝑢
(︀
𝛼, 𝛽

)︀
𝑎𝑏

+ 𝑢 (𝛽, �̄�)𝑎𝑏 = 1
2∇𝑐𝑋𝑑𝜀

𝑐𝑑
𝑎𝑏 + i

(︁
𝜀𝐴′𝐵′𝛼(𝐴∇𝐵)𝐶′𝛽

𝐶′ − 𝜀𝐴𝐵𝛽(𝐴′∇𝐵′)𝐶𝛼
𝐶
)︁
, (3.6)

where 𝑋𝑎 := 𝛼𝐴𝛽𝐴′ and the overline denotes complex conjugation. Thus, apart from the terms in
Equation (3.6) involving ∇𝐴′𝐴𝛼

𝐴 and ∇𝐴𝐴′𝛽
𝐴′ , the Nester–Witten two-form 𝑢(𝛼, 𝛽)𝑎𝑏 is just

− i
2 (∇[𝑎𝑋𝑏] + i∇[𝑐𝑋𝑑]

1
2𝜀

𝑐𝑑
𝑎𝑏), i.e., the anti-self-dual part of the curl of − i

2𝑋𝑎. (The original
expressions by Witten and Nester were given using Dirac, rather than two-component Weyl,
spinors [508, 344]. The two-form 𝑢(𝛼, 𝛽)𝑎𝑏 in the present form using the two-component spinors
probably appeared first in [253].) Although many interesting and original proofs of the positivity of
the ADM energy are known even in the presence of black holes [409, 410, 508, 344, 250, 393, 275],
the simplest and most transparent ones are probably those based on the use of two-component
spinors; if the dominant energy condition is satisfied on the 𝑘–asymptotically flat spacelike hyper-
surface Σ, where 𝑘 > 1

2 , then the ADM energy-momentum is future pointing and nonspacelike
(i.e., the Lorentzian length of the energy-momentum vector, the ADM mass, is non-negative), and
is null if and only if the domain of dependence 𝐷(Σ) of Σ is flat [253, 400, 197, 401, 80]. Its proof
may be based on the Sparling equation [437, 161, 392, 329]: ∇[𝑎𝑢(𝜆, �̄�)𝑏𝑐] = − 1

2𝜆𝐸�̄�𝐸′𝐺
𝑒𝑓 1

3!𝜀𝑓𝑎𝑏𝑐 +
Γ(𝜆, �̄�)𝑎𝑏𝑐. The significance of this equation is that, in the exterior derivative of the Nester–
Witten two-form, the second derivatives of the metric appear only through the Einstein tensor,
thus its structure is similar to that of the superpotential equations in Lagrangian field theory, and
Γ(𝜆, �̄�)𝑎𝑏𝑐, known as the Sparling three-form, is a quadratic expression of the first derivatives of
the spinor fields. If the spinor fields 𝜆𝐴 and 𝜇𝐴 solve the Witten equation on a spacelike hypersur-
face Σ, then the pullback of Γ(𝜆, �̄�)𝑎𝑏𝑐 to Σ is positive definite. This theorem has been extended
and refined in various ways, in particular by allowing inner boundaries of Σ that represent future
marginally-trapped surfaces in black holes [197, 250, 393, 246].

The ADM energy-momentum can also be written as the two-sphere integral of certain parts
of the conformally rescaled spacetime curvature [21, 22, 36]. This expression is a special case of
the more general ‘Riemann tensor conserved quantities’ (see [202]; if 𝒮 is any closed spacelike
two-surface with area element 𝑑𝒮, then for any tensor fields 𝜔𝑎𝑏 = 𝜔[𝑎𝑏] and 𝜇𝑎𝑏 = 𝜇[𝑎𝑏] one can
form the integral

𝐼𝒮 [𝜔, 𝜇] :=
∮︁
𝒮
𝜔𝑎𝑏𝑅𝑎𝑏𝑐𝑑𝜇

𝑐𝑑 𝑑𝒮. (3.7)

Since the falloff of the curvature tensor near spatial infinity is 𝑟−𝑘−2, the integral 𝐼𝒮 [𝜔, 𝜇] at spatial
infinity can give finite value precisely when 𝜔𝑎𝑏𝜇𝑐𝑑 blows up like 𝑟𝑘 as 𝑟 → ∞. In particular, for
the 1/𝑟 falloff, this condition can be satisfied by 𝜔𝑎𝑏𝜇𝑐𝑑 =

√︀
Area(𝒮) �̂�𝑎𝑏�̂�𝑐𝑑, where Area(𝒮) is the

area of 𝒮 and the hatted tensor fields are 𝒪(1).
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If the spacetime is stationary, then the ADM energy can be recovered at the 𝑟 → ∞ limit of
the two-sphere integral of Komar’s superpotential with the Killing vector 𝐾𝑎 of stationarity [202],
as well. On the other hand, if the spacetime is not stationary then, without additional restriction
on the asymptotic time translation, the Komar expression does not reproduce the ADM energy.
However, by Equations (3.5) and (3.6) such an additional restriction might be that 𝐾𝑎 should
be a constant combination of four future-pointing null vector fields of the form 𝛼𝐴�̄�𝐴′ , where the
spinor fields 𝛼𝐴 are required to satisfy the Weyl neutrino equation ∇𝐴′𝐴𝛼

𝐴 = 0. This expression
for the ADM energy-momentum has been used to give an alternative, ‘four-dimensional’ proof of
the positivity of the ADM energy [253].

In stationary spacetime the notion of the mechanical energy with respect to the world lines
of stationary observers (i.e., the integral curves of the timelike Killing field) can be introduced
in a natural way, and then (by definition) the total (ADM) energy is written as the sum of the
mechanical energy and the gravitational energy. Then the latter is shown to be negative for certain
classes of systems [283, 320].

The notion of asymptotic flatness at spatial infinity is generalized in [365]; here the background
flat metric 0ℎ𝑎𝑏 on Σ−𝐾 is allowed to have a nonzero deficit angle 𝛼 at infinity, i.e., the correspond-
ing line element in spherical polar coordinates takes the form −𝑑𝑟2 − 𝑟2(1−𝛼)(𝑑𝜃2 + sin2(𝜃) 𝑑𝜑2).
Then, a canonical analysis of the minimally-coupled Einstein–Higgs field is carried out on such a
background, and, following a Regge-Teitelboim–type argumentation, an ADM-type total energy is
introduced. It is shown that for appropriately chosen 𝛼 this energy is finite for the global monopole
solution, though the standard ADM energy is infinite.

3.2.2 Spatial infinity: Angular momentum

The value of the Hamiltonian of Beig and Ó Murchadha [56], together with the appropriately-
defined asymptotic rotation-boost Killing vectors [458], define the spatial angular momentum and
center-of-mass, provided 𝑘 ≥ 1 and, in addition to the familiar falloff conditions, certain global
integral conditions are also satisfied. These integral conditions can be ensured by the explicit
parity conditions of Regge and Teitelboim [399] on the leading nontrivial parts of the metric ℎ𝑎𝑏

and extrinsic curvature 𝜒𝑎𝑏; the components in the Cartesian coordinates {𝑥i} of the former must
be even and the components of the latter must be odd parity functions of 𝑥i/𝑟 (see also [56]). Thus,
in what follows we assume that 𝑘 = 1. Then the value of the Beig–Ó Murchadha Hamiltonian
parameterized by the asymptotic rotation Killing vectors is the spatial angular momentum of
Regge and Teitelboim [399], while that parameterized by the asymptotic boost Killing vectors
deviates from the center-of-mass of Beig and Ó Murchadha [56] by a term, which is the spatial
momentum times the coordinate time. (As Beig and Ó Murchadha pointed out [56], the center-of-
mass term of the Hamiltonian of Regge and Teitelboim is not finite on the whole phase space.) The
spatial angular momentum and the new center-of-mass form an anti-symmetric Lorentz four-tensor,
which transforms in the correct way under the four-translation of the origin of the asymptotically
Cartesian coordinate system, and is conserved by the evolution equations [458].

The center-of-mass of Beig and Ó Murchadha was re-expressed recently [50] as the 𝑟 → ∞
limit of two-surface integrals of the curvature in the form (3.7) with 𝜔𝑎𝑏𝜇𝑐𝑑 proportional to the
lapse 𝑁 times 𝑞𝑎𝑐𝑞𝑏𝑑 − 𝑞𝑎𝑑𝑞𝑏𝑐, where 𝑞𝑎𝑏 is the induced two-metric on 𝒮 (see Section 4.1.1). The
geometric notion of center-of-mass introduced by Huisken and Yau [257] is another form of the
Beig–Ó Murchadha center-of-mass [144].

The Ashtekar–Hansen definition for the angular momentum is introduced in their specific con-
formal model of spatial infinity as a certain two-surface integral near infinity. However, their
angular momentum expression is finite and unambiguously defined only if the magnetic part of
the spacetime curvature tensor (with respect to the Ω = const. timelike level hypersurfaces of the
conformal factor) falls off faster than would follow from the 1/𝑟 falloff of the metric (but no global
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integral, e.g. a parity condition had to be imposed) [30, 21].
If the spacetime admits a Killing vector of axisymmetry, then the usual interpretation of the

corresponding Komar integral is the appropriate component of the angular momentum (see, for
example, [490]). However, the value of the Komar integral (with the usual normalization) is twice
the expected angular momentum. In particular, if the Komar integral is normalized such that for
the Killing field of stationarity in the Kerr solution the integral is 𝑚/𝐺, for the Killing vector of
axisymmetry it is 2𝑚𝑎/𝐺 instead of the expected 𝑚𝑎/𝐺 (‘factor-of-two anomaly’) [280]. We return
to the discussion of the Komar integral in Section 12.1.

3.2.3 Null infinity: Energy-momentum

The study of the gravitational radiation of isolated sources led Bondi to the observation that the
two-sphere integral of a certain expansion coefficient 𝑚(𝑢, 𝜃, 𝜑) of the line element of a radiative
spacetime in an asymptotically-retarded spherical coordinate system (𝑢, 𝑟, 𝜃, 𝜑) behaves as the
energy of the system at the retarded time 𝑢; this energy is not constant in time, but decreases with
𝑢, showing that gravitational radiation carries away positive energy (‘Bondi’s mass-loss’) [82, 83].
The set of transformations leaving the asymptotic form of the metric invariant was identified as a
group, currently known as the BMS group, having a structure very similar to that of the Poincaré
group [405]. The only difference is that while the Poincaré group is a semidirect product of the
Lorentz group and a four-dimensional commutative group (of translations), the BMS group is the
semidirect product of the Lorentz group and an infinite-dimensional commutative group, called
the group of the supertranslations. A four-parameter subgroup in the latter can be identified in a
natural way as the group of the translations. This makes it possible to compare the Bondi–Sachs
four-momenta defined on different cuts of scri, and to calculate the energy-momentum carried
away by the gravitational radiation in an unambiguous way. (For further discussion of the flux,
see the fourth paragraph of Section 3.2.4.) At the same time the study of asymptotic solutions
of the field equations led Newman and Unti to another concept of energy at null infinity [361].
However, this energy (currently known as the Newman–Unti energy) does not seem to have the
same significance as the Bondi (or Bondi–Sachs [392] or Trautman–Bondi [135, 136, 134]) energy,
because its monotonicity can be proven only between special, e.g., stationary, states. The Bondi
energy, which is the time component of a Lorentz vector, the Bondi–Sachs energy-momentum, has
a remarkable uniqueness property [135, 136].

Without additional conditions on 𝐾𝑎, Komar’s expression does not reproduce the Bondi–Sachs
energy-momentum in nonstationary spacetimes either [506, 202]; for the ‘obvious’ choice for 𝐾𝑎

Komar’s expression yields the Newman–Unti energy. This anomalous behavior in the radiative
regime could be corrected in at least two ways. The first is by modifying the Komar integral
according to

𝐿𝒮 [K] :=
1

8𝜋𝐺

∮︁
𝒮

(︁
∇[𝑐𝐾𝑑] + 𝛼∇𝑒𝐾

𝑒 ⊥𝜀𝑐𝑑
)︁ 1

2
𝜀𝑐𝑑𝑎𝑏, (3.8)

where ⊥𝜀𝑐𝑑 is the area two-form on the Lorentzian two-planes orthogonal to 𝒮 (see Section 4.1.1)
and 𝛼 is some real constant. For 𝛼 = 1 the integral 𝐿𝒮 [K], suggested by Winicour and Tamburino,
is called the linkage [506]. In addition, to define physical quantities by linkages associated to a cut
of the null infinity one should prescribe how the two-surface 𝒮 tends to the cut and how the vector
field 𝐾𝑎 should be propagated from the spacetime to null infinity into a BMS generator [506, 505].
The other way is to consider the original Komar integral (i.e., 𝛼 = 0) on the cut of infinity in
the conformally-rescaled spacetime and while requiring that 𝐾𝑎 be divergence-free [191]. For such
asymptotic BMS translations both prescriptions give the correct expression for the Bondi–Sachs
energy-momentum.

The Bondi–Sachs energy-momentum can also be expressed by the integral of the Nester–Witten
two-form [262, 314, 315, 253]. However, in nonstationary spacetimes the spinor fields that are
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asymptotically constant at null infinity are vanishing [97]. Thus, the spinor fields in the Nester–
Witten two-form must satisfy a weaker boundary condition at infinity such that the spinor fields
themselves are the spinor constituents of the BMS translations. The first such condition, suggested
by Bramson [97], was to require the spinor fields to be the solutions of the asymptotic twistor
equation (see Section 4.2.4). One can impose several such inequivalent conditions, and all of these,
based only on the linear first-order differential operators coming from the two natural connections
on the cuts (see Section 4.1.2), are determined in [457].

The Bondi–Sachs energy-momentum has a Hamiltonian interpretation as well. Although the
fields on a spacelike hypersurface extending to null rather than spatial infinity do not form a closed
system, a suitable generalization of the standard Hamiltonian analysis could be developed [134]
and used to recover the Bondi–Sachs energy-momentum.

Similar to the ADM case, the simplest proofs of the positivity of the Bondi energy [411] are
probably those that are based on the Nester–Witten two-form [262] and, in particular, the use of
two-component spinors [314, 315, 253, 251, 401]; the Bondi–Sachs mass (i.e., the Lorentzian length
of the Bondi–Sachs energy-momentum) of a cut of future null infinity is non-negative if there is a
spacelike hypersurface Σ intersecting null infinity in the given cut such that the dominant energy
condition is satisfied on Σ, and the mass is zero iff the domain of dependence 𝐷(Σ) of Σ is flat.

3.2.4 Null infinity: Angular momentum

At null infinity we have a generally accepted definition for angular momentum only in stationary,
but not in general, radiative spacetime, where there are various, mathematically-inequivalent sug-
gestions for it. Here we review only some of those total angular momentum definitions that can be
‘quasi-localized’ or connected somehow to quasi-local expressions, i.e., those that can be considered
as the null-infinity limit of some quasi-local expression. We will continue their discussion in the
main part of the review, namely in Sections 7.2, 11.1 and 9.

In their classic paper Bergmann and Thomson [70] raise the idea that while the gravita-
tional energy-momentum is connected with the spacetime diffeomorphisms, the angular momentum
should be connected with its intrinsic 𝑂(1, 3) symmetry. Thus, the angular momentum should be
analogous with the spin. Based on the tetrad formalism of general relativity and following the
prescription of constructing the Noether currents in Yang–Mills theories, Bramson suggested a
superpotential for the six conserved currents corresponding to the internal Lorentz-symmetry [98,
99, 100]. (For another derivation of this superpotential from Møller’s Lagrangian (3.1) see [457].)
If {𝜆𝐴

𝐴 }, 𝐴 = 0, 1, is a normalized spinor dyad corresponding to the orthonormal frame in Equa-
tion (3.1), then the integral of the spinor form of the anti-self-dual part of this superpotential on
a closed orientable two-surface 𝒮 is

𝐽
𝐴 𝐵
𝒮 :=

1
8𝜋𝐺

∮︁
𝒮
−i𝜆𝐴

(𝐴𝜆
𝐵
𝐵)𝜀𝐴′𝐵′ , (3.9)

where 𝜀𝐴′𝐵′ is the symplectic metric on the bundle of primed spinors. We will denote its integrand
by 𝑤(𝜆𝐴 , 𝜆𝐵 )𝑎𝑏, and we call it the Bramson superpotential. To define angular momentum on a
given cut of the null infinity by the formula (3.9), we should consider its limit when 𝒮 tends to
the cut in question and we should specify the spinor dyad, at least asymptotically. Bramson’s
suggestion for the spinor fields was to take the solutions of the asymptotic twistor equation [97].
He showed that this definition yields a well-defined expression. For stationary spacetimes this
reduces to the generally accepted formula (4.15), and the corresponding Pauli–Lubanski spin,
constructed from 𝜀𝐴 ′𝐵 ′

𝐽𝐴 𝐵 + 𝜀𝐴 𝐵 𝐽𝐴 ′𝐵 ′
and the Bondi–Sachs energy-momentum 𝑃𝐴 𝐴 ′

(given,
for example, in the Newman–Penrose formalism by Equation (4.14)), is invariant with respect to
supertranslations of the cut (‘active supertranslations’). Note that since Bramson’s expression is
based on the solutions of a system of partial differential equations on the cut in question, it is
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independent of the parameterization of the BMS vector fields. Hence, in particular, it is invariant
with respect to the supertranslations of the origin cut (‘passive supertranslations’). Therefore,
Bramson’s global angular momentum behaves like the spin part of the total angular momentum.
For a suggestion based on Bramson’s superpotential at the quasi-local level, but using a different
prescription for the spinor dyad, see Section 9.

The construction based on the Winicour–Tamburino linkage (3.8) can be associated with any
BMS vector field [506, 310, 38]. In the special case of translations it reproduces the Bondi–Sachs
energy-momentum. The quantities that it defines for the proper supertranslations are called the
super-momenta. For the boost-rotation vector fields they can be interpreted as angular momentum.
However, in addition to the factor-of-two anomaly, this notion of angular momentum contains a
huge ambiguity (‘supertranslation ambiguity’); the actual form of both the boost-rotation Killing
vector fields of Minkowski spacetime and the boost-rotation BMS vector fields at future null in-
finity depend on the choice of origin, a point in Minkowski spacetime and a cut of null infinity,
respectively. However, while the set of the origins of Minkowski spacetime is parameterized by four
numbers, the set of the origins at null infinity requires a smooth function of the form 𝑢 : 𝑆2 → R.
Consequently, while the corresponding angular momentum in the Minkowski spacetime has the
familiar origin-dependence (containing four parameters), the analogous transformation of the an-
gular momentum defined by using the boost-rotation BMS vector fields depends on an arbitrary
smooth real valued function on the two-sphere. This makes the angular momentum defined at null
infinity by the boost-rotation BMS vector fields ambiguous unless a natural selection rule for the
origins, making them form a four parameter family of cuts, is found.

Motivated by Penrose’s idea that the ‘conserved’ quantities at null infinity should be searched
for in the form of a charge integral of the curvature (which will be discussed in detail in Section 7),
a general expression 𝑄𝒮 [𝐾𝑎], associated with any BMS generator 𝐾𝑎 on and any cut 𝒮 of scri, was
introduced [160]. For real 𝐾𝑎 this is real; it is vanishing in Minkowski spacetime; it reproduces
the Bondi–Sachs energy-momentum for BMS translations; it yields nontrivial results for proper
supertranslations; and for BMS rotations the resulting expressions can be interpreted as angular
momentum. It was shown in [418, 159] that the difference 𝑄𝒮′ [𝐾𝑎] − 𝑄𝒮′′ [𝐾𝑎] for any two cuts
𝒮 ′ and 𝒮 ′′ can be written as the integral of some local function on the subset of scri bounded
by the cuts 𝒮 ′ and 𝒮 ′′, and this is precisely the flux integral of [37]. Unfortunately, however, the
angular momentum introduced in this way still suffers from the same supertranslation ambiguity.
A possible resolution of this difficulty could be the suggestion by Dain and Moreschi [155] in the
charge integral approach to angular momentum of Moreschi [337, 338]. Their basic idea is that the
requirement of the vanishing of the supermomenta (i.e., the quantities corresponding to the proper
supertranslations) singles out a four–real-parameter family of cuts, called nice cuts, by means of
which the BMS group can be reduced to a Poincaré subgroup that yields a well-defined notion
of angular momentum. For further discussion of certain other angular momentum expressions,
especially from the points of view of numerical calculations, see also [185].

Another promising approach might be that of Chruściel, Jezierski, and Kijowski [134], which
is based on a Hamiltonian analysis of general relativity on asymptotically-hyperbolic spacelike
hypersurfaces. They chose the six BMS vector fields tangent to the intersection of the spacelike
hypersurface and null infinity as the generators of their angular momentum. Since the motions that
their angular momentum generators define leave the domain of integration fixed, and apparently
there is no Lorentzian four-space of origins, they appear to be the generators with respect to some
fixed ‘center-of-the-cut’, and the corresponding angular momentum appears to be the intrinsic
angular momentum.

In addition to the supertranslation ambiguity in the definition of angular momentum, there
could be another potential ambiguity, even if the angular momentum is well defined on every cut of
future null infinity. In fact, if, for example, the definition of the angular momentum is based on the
solutions of some linear partial differential equation on the cut (such as Bramson’s definition, or
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the ones discussed in Sections 7 and 9), then in general there is no canonical isomorphism between
the spaces of the solutions on different cuts, even if the solution spaces, as abstract vector spaces,
are isomorphic. Therefore, the angular momenta on two different cuts belong to different vector
spaces, and, without any natural correspondence between the solution spaces on the different cuts,
it is meaningless to speak about the difference of the angular momenta. Thus, we cannot say
anything about, e.g., the angular momentum carried away by gravitational radiation between two
retarded time instants represented by two different cuts.

One possible resolution of this difficulty was suggested by Helfer [242]. He followed the twistorial
approach presented in Section 7 and used a special bijective map between the two-surface twistor
spaces on different cuts. His map is based on the special structures available only at null infinity.
Though this map is nonlinear, it is shown that the angular momenta on the different cuts can indeed
be compared. Another suggestion for (only) the spatial angular momentum was given in [462]. This
is based on the quasi-local Hamiltonian analysis that is discussed in Section 11.1, and the use of
the divergence-free vector fields built from the eigenspinors with the smallest eigenvalue of the
two-surface Dirac operators. The angular momenta, defined in these ways on different cuts, can
also be compared. We give a slightly more detailed discussion of them in Sections 7.2 and 11.1,
respectively.

The main idea behind the recent definition of the total angular momentum at future null
infinity of Kozameh, Newman and Silva-Ortigoza, suggested in [299, 300], is analogous to finding
the center-of-charge (i.e., the time-dependent position vector with respect to which the electric
dipole moment is vanishing) in flat-space electromagnetism; by requiring that the dipole part of an
appropriate null rotated Weyl tensor component 𝜓0

1 be vanishing, a preferred set of origins, namely
a (complex) center-of-mass line can be found in the four–complex-dimensional solution space of
the good-cut equation (the 𝐻-space). Then the asymptotic Bianchi identities take the form of
conservation equations, and certain terms in these can (in the given approximation) be identified
with angular momentum. The resulting expression is just Equation (4.15), to which all the other
reasonable angular momentum expressions are expected to reduce in stationary spacetimes. A
slightly more detailed discussion of the necessary technical background is given in Section 4.2.4.

3.3 The necessity of quasi-locality for observables in general relativity

3.3.1 Nonlocality of the gravitational energy-momentum and angular momentum

One reaction to the nontensorial nature of the gravitational energy-momentum density expressions
was to consider the whole problem ill defined and the gravitational energy-momentum meaningless.
However, the successes discussed in Section 3.2 show that the global gravitational energy-momenta
and angular momenta are useful notions, and hence, it could also be useful to introduce them,
even if the spacetime is not asymptotically flat. Furthermore, the nontensorial nature of an object
does not imply that it is meaningless. For example, the Christoffel symbols are not tensorial, but
they do have geometric, and hence physical content, namely the linear connection. Indeed, the
connection is a nonlocal geometric object, connecting the fibers of the vector bundle over different
points of the base manifold. Hence, any expression of the connection coefficients, in particular the
gravitational energy-momentum or angular momentum, must also be nonlocal. In fact, although
the connection coefficients at a given point can be taken to zero by an appropriate coordinate/gauge
transformation, they cannot be transformed to zero on an open domain unless the connection is
flat.

Furthermore, the superpotential of many of the classical pseudotensors (e.g., of the Einstein,
Bergmann, Møller’s tetrad, Landau–Lifshitz pseudotensors), being linear in the connection coef-
ficients, can be recovered as the pullback to the spacetime manifold of various forms of a single
geometric object on the linear frame bundle, namely of the Nester–Witten two-form, along var-
ious local cross sections [176, 329, 447, 448], and the expression of the pseudotensors by their
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superpotentials are the pullbacks of the Sparling equation [437, 161, 329]. In addition, Chang,
Nester, and Chen [121] found a natural quasi-local Hamiltonian interpretation of each of the pseu-
dotensorial expressions in the metric formulation of the theory (see Section 11.3.4). Therefore, the
pseudotensors appear to have been ‘rehabilitated’, and the gravitational energy-momentum and
angular momentum are necessarily associated with extended subsets of the spacetime.

This fact is a particular consequence of a more general phenomenon [68, 404, 261]; since the
physical spacetime is the isomorphism class of the pairs (𝑀, 𝑔𝑎𝑏), instead of a single such pair,
it is meaningless to speak about the ‘value of a scalar or vector field at a point 𝑝 ∈ 𝑀 ’. What
could have meaning are the quantities associated with curves (the length of a curve, or the holon-
omy along a closed curve), two-surfaces (e.g., the area of a closed two-surface) etc. determined
by some body or physical fields. In addition, as Torre showed [479] (see also [481]), in spatially-
closed vacuum spacetimes there can be no nontrivial observable, built as spatial integrals of local
functions of the canonical variables and their finitely many derivatives. Thus, if we want to asso-
ciate energy-momentum and angular momentum not only to the whole (necessarily asymptotically
flat) spacetime, then these quantities must be associated with extended but finite subsets of the
spacetime, i.e., must be quasi-local.

The results of Friedrich and Nagy [183] show that under appropriate boundary conditions
the initial boundary value problem for the vacuum Einstein equations, written into a first-order
symmetric hyperbolic form, has a unique solution. Thus, there is a solid mathematical basis for
the investigations of the evolution of subsystems of the universe, and hence, it is natural to ask
about the observables, and in particular the conserved quantities, of their dynamics.

3.3.2 Domains for quasi-local quantities

The quasi-local quantities (usually the integral of some local expression of the field variables) are
associated with a certain type of subset of spacetime. In four dimensions there are three natural
candidates:

1. the globally hyperbolic domains 𝐷 ⊂𝑀 with compact closure,

2. the compact spacelike (in fact, acausal) hypersurfaces Σ with boundary (interpreted as
Cauchy surfaces for globally hyperbolic domains 𝐷), and

3. the closed, orientable spacelike two-surfaces 𝒮 (interpreted as the boundary 𝜕Σ of Cauchy
surfaces for globally hyperbolic domains).

A typical example of Type 3 is any charge integral expression: The quasi-local quantity is the
integral of some superpotential two-form built from the data given on the two-surface, as in Equa-
tion (3.4), or the expression 𝑄𝒮 [K] for the matter fields given by Equation (2.5). An example of
Type 2 might be the integral of the Bel–Robinson ‘momentum’ on the hypersurface Σ:

𝐸Σ[𝜉𝑎] :=
∫︁

Σ

𝜉𝑑𝑇𝑑𝑒𝑓𝑔𝑡
𝑒𝑡𝑓 1

3!𝜀
𝑔
𝑎𝑏𝑐. (3.10)

This quantity is analogous to the integral 𝐸Σ[𝜉𝑎] for the matter fields given by Equation (2.6)
(though, by the remarks on the Bel–Robinson ‘energy’ in Section 3.1.1, its physical dimension
cannot be of energy). If 𝜉𝑎 is a future-pointing nonspacelike vector then 𝐸Σ[𝜉𝑎] ≥ 0. Obviously,
if such a quantity were independent of the actual hypersurface Σ, then it could also be rewritten
as a charge integral on the boundary 𝜕Σ. The gravitational Hamiltonian provides an interesting
example for the mixture of Type 2 and 3 expressions, because the form of the Hamiltonian is the
three-surface integral of the constraints on Σ and a charge integral on its boundary 𝜕Σ, and thus, if
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the constraints are satisfied then the Hamiltonian reduces to a charge integral. Finally, an example
of Type 1 might be

𝐸𝐷 := inf {𝐸Σ[t] | Σ is a Cauchy surface for 𝐷} , (3.11)

the infimum of the ‘quasi-local Bel–Robinson energies’, where the infimum is taken on the set of
all the Cauchy surfaces Σ for 𝐷 with given boundary 𝜕Σ. (The infimum always exists because the
Bel–Robinson ‘energy density’ 𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑 is non-negative.) Quasi-locality in any of these three
senses agrees with the quasi-locality of Haag and Kastler [209, 210]. The specific quasi-local energy-
momentum constructions provide further examples both for charge-integral–type expressions and
those based on spacelike hypersurfaces.

3.3.3 Strategies to construct quasi-local quantities

There are two natural ways of finding the quasi-local energy-momentum and angular momentum.
The first is to follow some systematic procedure, while the second is the ‘quasi-localization’ of
the global energy-momentum and angular momentum expressions. One of the two systematic
procedures could be called the Lagrangian approach; the quasi-local quantities are integrals of
some superpotential derived from the Lagrangian via a Noether-type analysis. The advantage of
this approach could be its manifest Lorentz-covariance. On the other hand, since the Noether
current is determined only through the Noether identity, which contains only the divergence of the
current itself, the Noether current and its superpotential is not uniquely determined. In addition
(as in any approach), a gauge reduction (for example in the form of a background metric or
reference configuration) and a choice for the ‘translations’ and ‘boost-rotations’ should be made.

The other systematic procedure might be called the Hamiltonian approach; at the end of a
fully quasi-local (covariant or not) Hamiltonian analysis we would have a Hamiltonian, and its
value on the constraint surface in the phase space yields the expected quantities. Here the main
idea is that of Regge and Teitelboim [399], that the Hamiltonian must reproduce the correct
field equations as the flows of the Hamiltonian vector fields, and hence, in particular, the correct
Hamiltonian must be functionally differentiable with respect to the canonical variables. This
differentiability may restrict the possible ‘translations’ and ‘boost-rotations’ too. However, if we
are not interested in the structure of the quasi-local phase space, then, as a short cut, we can use
the Hamilton–Jacobi method to define the quasi-local quantities. The resulting expression is a
two-surface integral. Nevertheless, just as in the Lagrangian approach, this general expression is
not uniquely determined, because the action can be modified by adding an (almost freely chosen)
boundary term to it. Furthermore, the ‘translations’ and ‘boost-rotations’ are still to be specified.

On the other hand, at least from a pragmatic point of view, the most natural strategy to in-
troduce the quasi-local quantities would be some ‘quasi-localization’ of those expressions that gave
the global energy-momentum and angular momentum of asymptotically flat spacetimes. Therefore,
respecting both strategies, it is also legitimate to consider the Winicour–Tamburino-type (linkage)
integrals and the charge integrals of the curvature.

Since the global energy-momentum and angular momentum of asymptotically flat spacetimes
can be written as two-surface integrals at infinity (and, as we will see in Section 7.1.1, both
the energy-momentum and angular momentum of the source in the linear approximation and the
gravitational mass in the Newtonian theory of gravity can also be written as two-surface integrals),
the two-surface observables can be expected to have special significance. Thus, to summarize, if
we want to define reasonable quasi-local energy-momentum and angular momentum as two-surface
observables, then three things must be specified:

1. an appropriate general two-surface integral (e.g., in the Lagrangian approaches the integral
of a superpotential two-form, or in the Hamiltonian approaches a boundary term together
with the boundary conditions for the canonical variables),
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32 László B. Szabados

2. a gauge choice (in the form of a distinguished coordinate system in the pseudotensorial
approaches, or a background metric/connection in the background field approaches or a
distinguished tetrad field in the tetrad approach), and

3. a definition for the ‘quasi-symmetries’ of the two-surface (i.e., the ‘generator vector fields’ of
the quasi-local quantities in the Lagrangian, and the lapse and the shift in the Hamiltonian
approaches, respectively, which, in the case of timelike ‘generator vector fields’, can also be
interpreted as a fleet of observers on the two-surface).

In certain approaches the definition of the ‘quasi-symmetries’ is linked to the gauge choice, for
example by using the Killing symmetries of the flat background metric.
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4 Tools to Construct and Analyze Quasi-Local Quantities

Having accepted that the gravitational energy-momentum and angular momentum should be in-
troduced at the quasi-local level, we next need to discuss the special tools and concepts that are
needed in practice to construct (or even to understand) the various special quasi-local expressions.
Thus, first, in Section 4.1 we review the geometry of closed spacelike two-surfaces, with special
emphasis on two-surface data. Then, in Sections 4.2 and 4.3, we discuss the special situations
where there is a more-or-less generally accepted ‘standard’ definition for the energy-momentum
(or at least for the mass) and angular momentum. In these situations any reasonable quasi-local
quantity should reduce to them.

4.1 The geometry of spacelike two-surfaces

The first systematic study of the geometry of spacelike two-surfaces from the point of view of
quasi-local quantities is probably due to Tod [473, 478]. Essentially, his approach is based on
the Geroch–Held–Penrose (GHP) formalism [190]. Although this is a very effective and flexible
formalism [190, 391, 392, 254, 440], its form is not spacetime covariant. Since in many cases the
covariance of a formalism itself already gives some hint as to how to treat and solve the problem
at hand, we concentrate here mainly on a spacetime-covariant description of the geometry of the
spacelike two-surfaces, developed gradually in [450, 452, 453, 454, 181, 461]. The emphasis will
be on the geometric structures rather than the technicalities. In the last paragraph, we comment
on certain objects appearing in connection with families of spacelike two-surfaces. Our standard
differential geometric reference is [292, 293].

4.1.1 The Lorentzian vector bundle

The restriction V𝑎(𝒮) to the closed, orientable spacelike two-surface 𝒮 of the tangent bundle 𝑇𝑀
of the spacetime has a unique decomposition to the 𝑔𝑎𝑏-orthogonal sum of the tangent bundle 𝑇𝒮
of 𝒮 and the bundle of the normals, denoted by 𝑁𝒮. Then, all the geometric structures of the
spacetime (metric, connection, curvature) can be decomposed in this way. If 𝑡𝑎 and 𝑣𝑎 are timelike
and spacelike unit normals, respectively, being orthogonal to each other, then the projections to
𝑇𝒮 and 𝑁𝒮 are Π𝑎

𝑏 := 𝛿𝑎
𝑏 −𝑡𝑎𝑡𝑏+𝑣𝑎𝑣𝑏 and 𝑂𝑎

𝑏 := 𝛿𝑎
𝑏 −Π𝑎

𝑏 , respectively. The induced two-metric and
the corresponding area two-form on 𝒮 will be denoted by 𝑞𝑎𝑏 = 𝑔𝑎𝑏−𝑡𝑎𝑡𝑏+𝑣𝑎𝑣𝑏 and 𝜀𝑎𝑏 = 𝑡𝑐𝑣𝑑𝜀𝑐𝑑𝑎𝑏,
respectively, while the area two-form on the normal bundle will be ⊥𝜀𝑎𝑏 = 𝑡𝑎𝑣𝑏− 𝑡𝑏𝑣𝑎. The bundle
V𝑎(𝒮) together with the fiber metric 𝑔𝑎𝑏 and the projection Π𝑎

𝑏 will be called the Lorentzian vector
bundle over 𝒮. For the discussion of the global topological properties of the closed orientable two-
manifolds, see, for example, [5, 461].

4.1.2 Connections

The spacetime covariant derivative operator ∇𝑒 defines two connections on V𝑎(𝒮). The first
covariant derivative, denoted by 𝛿𝑒, is analogous to the induced (intrinsic) covariant derivative on
(one-codimensional) hypersurfaces: 𝛿𝑒𝑋𝑎 := Π𝑎

𝑏 Π𝑓
𝑒∇𝑓 (Π𝑏

𝑐𝑋
𝑐) + 𝑂𝑎

𝑏 Π𝑓
𝑒∇𝑓 (𝑂𝑏

𝑐𝑋
𝑐) for any section

𝑋𝑎 of V𝑎(𝒮). Obviously, 𝛿𝑒 annihilates both the fiber metric 𝑔𝑎𝑏 and the projection Π𝑎
𝑏 . However,

since for two-surfaces in four dimensions the normal is not uniquely determined, we have the ‘boost
gauge freedom’ 𝑡𝑎 ↦→ 𝑡𝑎 cosh𝑢 + 𝑣𝑎 sinh𝑢, 𝑣𝑎 ↦→ 𝑡𝑎 sinh𝑢 + 𝑣𝑎 cosh𝑢. The induced connection
will have a nontrivial part on the normal bundle, too. The corresponding (normal part of the)
connection one-form on 𝒮 can be characterized, for example, by 𝐴𝑒 := Π𝑓

𝑒 (∇𝑓 𝑡𝑎)𝑣𝑎. Therefore,
the connection 𝛿𝑒 can be considered as a connection on V𝑎(𝒮) coming from a connection on the
𝑂(2)⊗𝑂(1, 1)-principal bundle of the 𝑔𝑎𝑏-orthonormal frames adapted to 𝒮.
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The other connection, Δ𝑒, is analogous to the Sen connection [412], and is defined simply
by Δ𝑒𝑋

𝑎 := Π𝑓
𝑒∇𝑓𝑋

𝑎. This annihilates only the fiber metric, but not the projection. The
difference of the connections Δ𝑒 and 𝛿𝑒 turns out to be just the extrinsic curvature tensor: Δ𝑒𝑋

𝑎 =
𝛿𝑒𝑋

𝑎 + 𝑄𝑎
𝑒𝑏𝑋

𝑏 − 𝑋𝑏𝑄𝑏𝑒
𝑎. Here 𝑄𝑎

𝑒𝑏 := −Π𝑎
𝑐Δ𝑒Π𝑐

𝑏 = 𝜏𝑎
𝑒𝑡𝑏 − 𝜈𝑎

𝑒𝑣𝑏, and 𝜏𝑎𝑏 := Π𝑐
𝑎Π𝑑

𝑏∇𝑐𝑡𝑑 and
𝜈𝑎𝑏 := Π𝑐

𝑎Π𝑑
𝑏∇𝑐𝑣𝑑 are the standard (symmetric) extrinsic curvatures corresponding to the individual

normals 𝑡𝑎 and 𝑣𝑎, respectively. The familiar expansion tensors of the future-pointing outgoing
and ingoing null normals, 𝑙𝑎 := 𝑡𝑎 + 𝑣𝑎 and 𝑛𝑎 := 1

2 (𝑡𝑎 − 𝑣𝑎), respectively, are 𝜃𝑎𝑏 = 𝑄𝑎𝑏𝑐𝑙
𝑐 and

𝜃′𝑎𝑏 = 𝑄𝑎𝑏𝑐𝑛
𝑐, and the corresponding shear tensors 𝜎𝑎𝑏 and 𝜎′𝑎𝑏 are defined by their trace-free part.

Obviously, 𝜏𝑎𝑏 and 𝜈𝑎𝑏 (and hence the expansion and shear tensors 𝜃𝑎𝑏, 𝜃′𝑎𝑏, 𝜎𝑎𝑏, and 𝜎′𝑎𝑏) are
boost-gauge–dependent quantities (and it is straightforward to derive their transformation from
the definitions), but their combination 𝑄𝑎

𝑒𝑏 is boost-gauge invariant. In particular, it defines a
natural normal vector field to 𝒮 as 𝑄𝑏 := 𝑄𝑎

𝑎𝑏 = 𝜏𝑡𝑏 − 𝜈𝑣𝑏 = 𝜃′𝑙𝑏 + 𝜃𝑛𝑏, where 𝜏 , 𝜈, 𝜃 and 𝜃′

are the relevant traces. 𝑄𝑎 is called the mean extrinsic curvature vector of 𝒮. If �̃�𝑏 := ⊥𝜀𝑎
𝑏𝑄

𝑏 =
𝜈𝑡𝑏 − 𝜏𝑣𝑏 = −𝜃′𝑙𝑎 + 𝜃𝑛𝑎, called the dual mean curvature vector, then the norm of 𝑄𝑎 and �̃�𝑎 is
𝑄𝑎𝑄𝑏𝑔

𝑎𝑏 = −�̃�𝑎�̃�𝑏𝑔
𝑎𝑏 = 𝜏2−𝜈2 = 2𝜃𝜃′, and they are orthogonal to each other: 𝑄𝑎�̃�𝑏𝑔

𝑎𝑏 = 0. It is
easy to show that Δ𝑎�̃�

𝑎 = 0, i.e., �̃�𝑎 is the uniquely pointwise-determined direction orthogonal to
the two-surface in which the expansion of the surface is vanishing. If 𝑄𝑎 is not null, then {𝑄𝑎, �̃�𝑎}
defines an orthonormal frame in the normal bundle (see, for example, [9]). If 𝑄𝑎 is nonzero, but
(e.g., future-pointing) null, then there is a uniquely determined null normal 𝑆𝑎 to 𝒮, such that
𝑄𝑎𝑆

𝑎 = 1, and hence, {𝑄𝑎, 𝑆𝑎} is a uniquely determined null frame. Therefore, the two-surface
admits a natural gauge choice in the normal bundle, unless 𝑄𝑎 is vanishing. Geometrically, Δ𝑒 is a
connection coming from a connection on the 𝑂(1, 3)-principal fiber bundle of the 𝑔𝑎𝑏-orthonormal
frames. The curvature of the connections 𝛿𝑒 and Δ𝑒, respectively, are

𝑓𝑎
𝑏𝑐𝑑 = −⊥𝜀𝑎

𝑏 (𝛿𝑐𝐴𝑑 − 𝛿𝑑𝐴𝑐) + 1
2
𝒮𝑅 (Π𝑎

𝑐𝑞𝑏𝑑 −Π𝑎
𝑑𝑞𝑏𝑐) , (4.1)

𝐹 𝑎
𝑏𝑐𝑑 = 𝑓𝑎

𝑏𝑐𝑑 − 𝛿𝑐 (𝑄𝑎
𝑑𝑏 −𝑄𝑏𝑑

𝑎) + 𝛿𝑑 (𝑄𝑎
𝑐𝑏 −𝑄𝑏𝑐

𝑎) +
+𝑄𝑎

𝑐𝑒𝑄𝑏𝑑
𝑒 +𝑄𝑒𝑐

𝑎𝑄𝑒
𝑑𝑏 −𝑄𝑎

𝑑𝑒𝑄𝑏𝑐
𝑒 −𝑄𝑒𝑑

𝑎𝑄𝑒
𝑐𝑏, (4.2)

where 𝒮𝑅 is the curvature scalar of the familiar intrinsic Levi-Civita connection of (𝒮, 𝑞𝑎𝑏). The
curvature of Δ𝑒 is just the pullback to 𝒮 of the spacetime curvature two-form: 𝐹 𝑎

𝑏𝑐𝑑 = 𝑅𝑎
𝑏𝑒𝑓 Π𝑒

𝑐Π𝑓
𝑑 .

Therefore, the well-known Gauss, Codazzi–Mainardi, and Ricci equations for the embedding of 𝒮
in 𝑀 are just the various projections of Equation (4.2).

4.1.3 Embeddings and convexity conditions

To prove certain statements about quasi-local quantities, various forms of the convexity of 𝒮 must
be assumed. The convexity of 𝒮 in a three-geometry is defined by the positive definiteness of its
extrinsic curvature tensor. If, in addition, the three-geometry is flat, then by the Gauss equation
this is equivalent to the positivity of the scalar curvature of the intrinsic metric of 𝒮. It is this
convexity condition that appears in the solution of the Weyl problem of differential geometry
[364]: if (𝑆2, 𝑞𝑎𝑏) is a 𝐶4 Riemannian two-manifold with positive scalar curvature, then this can be
isometrically embedded (i.e., realized as a closed convex two-surface) in the Euclidean three-space
R3, and this embedding is unique up to rigid motions [438]. However, there are counterexamples
even to local isometric embedability, when the convexity condition, i.e., the positivity of the scalar
curvature, is violated [341]. We continue the discussion of this embedding problem in Section 10.1.6.

In the context of general relativity the isometric embedding of a closed orientable two-surface
into the Minkowski spacetime R1,3 is perhaps more interesting. However, even a näıve function
counting shows that if such an embedding exists then it is not unique. An existence theorem
for such an embedding, 𝑖 : 𝒮 → R1,3, (with 𝑆2 topology) was given by Wang and Yau [497];
they controlled these isometric embeddings in terms of a single function 𝜏 on the two-surface.
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This function is just 𝑥𝑎 𝑇𝑎 , the ‘time function’ of the surface in the Cartesian coordinates of the
Minkowski space in the direction of a constant unit timelike vector field 𝑇𝑎 . Interestingly enough,
(𝒮, 𝑞𝑎𝑏) is not needed to have positive scalar curvature, only the sum of the scalar curvature and a
positive definite expression of the derivative 𝛿𝑒𝜏 is required to be positive. This condition is just
the requirement that the surface must have a convex ‘shadow’ in the direction 𝑇 𝑎 , i.e., the scalar
curvature of the projection of the two-surface 𝑖(𝒮) ⊂ R1,3 to the spacelike hyperplane orthogonal
to 𝑇 𝑎 is positive. The Laplacian 𝛿𝑒𝛿

𝑒𝜏 of the ‘time function’ gives the mean curvature vector of
𝑖(𝒮) in R1,3 in the direction 𝑇 𝑎 .

If 𝒮 is in a Lorentzian spacetime, then the weakest convexity conditions are conditions only
on the mean null curvatures; 𝒮 will be called weakly future convex if the outgoing null normals 𝑙𝑎

are expanding on 𝒮, i.e., 𝜃 := 𝑞𝑎𝑏𝜃𝑎𝑏 > 0, and weakly past convex if 𝜃′ := 𝑞𝑎𝑏𝜃′𝑎𝑏 < 0 [478]. 𝒮 is
called mean convex [225] if 𝜃𝜃′ < 0 on 𝒮, or, equivalently, if �̃�𝑎 is timelike. To formulate stronger
convexity conditions we must consider the determinant of the null expansions 𝐷 := det ‖𝜃𝑎

𝑏‖ =
1
2 (𝜃𝑎𝑏𝜃𝑐𝑑 − 𝜃𝑎𝑐𝜃𝑏𝑑)𝑞𝑎𝑏𝑞𝑐𝑑 and 𝐷′ := det ‖𝜃′𝑎𝑏‖ = 1

2 (𝜃′𝑎𝑏𝜃
′
𝑐𝑑 − 𝜃′𝑎𝑐𝜃

′
𝑏𝑑)𝑞𝑎𝑏𝑞𝑐𝑑. Note that, although the

expansion tensors, and in particular the functions 𝜃, 𝜃′, 𝐷, and 𝐷′ are boost-gauge–dependent,
their sign is gauge invariant. Then 𝒮 will be called future convex if 𝜃 > 0 and 𝐷 > 0, and past
convex if 𝜃′ < 0 and 𝐷′ > 0 [478, 453]. These are equivalent to the requirement that the two
eigenvalues of 𝜃𝑎

𝑏 be positive and those of 𝜃′𝑎𝑏 be negative everywhere on 𝒮, respectively. A
different kind of convexity condition, based on global concepts, will be used in Section 6.1.3.

4.1.4 The spinor bundle

The connections 𝛿𝑒 and Δ𝑒 determine connections on the pullback S𝐴(𝒮) to 𝒮 of the bundle of
unprimed spinors. The natural decomposition V𝑎(𝒮) = 𝑇𝒮 ⊕𝑁𝒮 defines a chirality on the spinor
bundle S𝐴(𝒮) in the form of the spinor 𝛾𝐴

𝐵 := 2𝑡𝐴𝐴′𝑣𝐵𝐴′ , which is analogous to the 𝛾5 matrix in
the theory of Dirac spinors. Then, the extrinsic curvature tensor above is a simple expression of
𝑄𝐴

𝑒𝐵 := 1
2 (Δ𝑒𝛾

𝐴
𝐶)𝛾𝐶

𝐵 and 𝛾𝐴
𝐵 (and their complex conjugate), and the two covariant derivatives

on S𝐴(𝒮) are related to each other by Δ𝑒𝜆
𝐴 = 𝛿𝑒𝜆

𝐴 +𝑄𝐴
𝑒𝐵𝜆

𝐵 . The curvature 𝐹𝐴
𝐵𝑐𝑑 of Δ𝑒 can

be expressed by the curvature 𝑓𝐴
𝐵𝑐𝑑 of 𝛿𝑒, the spinor 𝑄𝐴

𝑒𝐵 , and its 𝛿𝑒-derivative. We can form
the scalar invariants of the curvatures according to

𝑓 := 𝑓𝑎𝑏𝑐𝑑
1
2
(︀
𝜀𝑎𝑏 − i⊥𝜀𝑎𝑏

)︀
𝜀𝑐𝑑 = i𝛾𝐴

𝐵𝑓
𝐵

𝐴𝑐𝑑𝜀
𝑐𝑑 = 𝒮𝑅− 2i𝛿𝑐

(︀
𝜀𝑐𝑑𝐴𝑑

)︀
, (4.3)

𝐹 := 𝐹𝑎𝑏𝑐𝑑
1
2
(︀
𝜀𝑎𝑏 − i⊥𝜀𝑎𝑏

)︀
𝜀𝑐𝑑 = i𝛾𝐴

𝐵𝐹
𝐵

𝐴𝑐𝑑𝜀
𝑐𝑑 = 𝑓 + 𝜃𝜃′ − 2𝜎′𝑒𝑎𝜎

𝑒
𝑏

(︀
𝑞𝑎𝑏 + i𝜀𝑎𝑏

)︀
. (4.4)

𝑓 is four times the complex Gauss curvature [391] of 𝒮, by means of which the whole curvature
𝑓𝐴

𝐵𝑐𝑑 can be characterized: 𝑓𝐴
𝐵𝑐𝑑 = − i

4𝑓𝛾
𝐴

𝐵𝜀𝑐𝑑. If the spacetime is space and time orientable,
at least on an open neighborhood of 𝒮, then the normals 𝑡𝑎 and 𝑣𝑎 can be chosen to be globally well
defined, and hence, 𝑁𝒮 is globally trivializable and the imaginary part of 𝑓 is a total divergence
of a globally well-defined vector field.

An interesting decomposition of the 𝑆𝑂(1, 1) connection one-form 𝐴𝑒, i.e., the vertical part of
the connection 𝛿𝑒, was given by Liu and Yau [311]; there are real functions 𝛼 and 𝛾, unique up
to additive constants, such that 𝐴𝑒 = 𝜀𝑒

𝑓𝛿𝑓𝛼 + 𝛿𝑒𝛾. 𝛼 is globally defined on 𝒮, but in general
𝛾 is defined only on the local trivialization domains of 𝑁𝒮 that are homeomorphic to R2. It is
globally defined if 𝐻1(𝒮) = 0. In this decomposition 𝛼 is the boost-gauge–invariant part of 𝐴𝑒,
while 𝛾 represents its gauge content. Since 𝛿𝑒𝐴𝑒 = 𝛿𝑒𝛿

𝑒𝛾, the ‘Coulomb-gauge condition’ 𝛿𝑒𝐴𝑒 = 0
uniquely fixes 𝐴𝑒 (see also Section 10.4.1).

By the Gauss–Bonnet theorem one has
∮︀
𝒮 𝑓 𝑑𝒮 =

∮︀
𝒮
𝒮𝑅𝑑𝒮 = 8𝜋(1− 𝑔), where 𝑔 is the genus

of 𝒮. Thus geometrically the connection 𝛿𝑒 is rather poor, and can be considered as a part of
the ‘universal structure of 𝒮’. On the other hand, the connection Δ𝑒 is much richer, and, in
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particular, the invariant 𝐹 carries information on the mass aspect of the gravitational ‘field’. The
two-surface data for charge-type quasi-local quantities (i.e., for two-surface observables) are the
universal structure (i.e., the intrinsic metric 𝑞𝑎𝑏, the projection Π𝑎

𝑏 and the connection 𝛿𝑒) and the
extrinsic curvature tensor 𝑄𝑎

𝑒𝑏.

4.1.5 Curvature identities

The complete decomposition of Δ𝐴𝐴′𝜆𝐵 into its irreducible parts gives Δ𝐴′𝐴𝜆
𝐴, the Dirac–Witten

operator, and 𝒯𝐸′𝐸𝐴
𝐵𝜆𝐵 := Δ𝐸′(𝐸𝜆𝐴) + 1

2𝛾𝐸𝐴𝛾
𝐶𝐷Δ𝐸′𝐶𝜆𝐷, the two-surface twistor operator. The

former is essentially the anti-symmetric part Δ𝐴′[𝐴𝜆𝐵], the latter is the symmetric and (with
respect to the complex metric 𝛾𝐴𝐵) trace-free part of the derivative. (The trace 𝛾𝐴𝐵Δ𝐴′𝐴𝜆𝐵 can
be shown to be the Dirac–Witten operator, too.) A Sen-Witten–type identity for these irreducible
parts can be derived. Taking its integral one has∮︁

𝒮
𝛾𝐴′𝐵′

[︀(︀
Δ𝐴′𝐴𝜆

𝐴
)︀ (︀

Δ𝐵′𝐵𝜇
𝐵
)︀

+
(︀
𝒯𝐴′𝐶𝐷

𝐸𝜆𝐸

)︀ (︀
𝒯𝐵′

𝐶𝐷𝐹𝜇𝐹

)︀]︀
𝑑𝒮 = − i

2

∮︁
𝒮
𝜆𝐴𝜇𝐵𝐹𝐴𝐵𝑐𝑑, (4.5)

where 𝜆𝐴 and 𝜇𝐴 are two arbitrary spinor fields on 𝒮, and the right-hand side is just the charge
integral of the curvature 𝐹𝐴

𝐵𝑐𝑑 on 𝒮.

4.1.6 The GHP formalism

A GHP spin frame on the two-surface 𝒮 is a normalized spinor basis 𝜀𝐴
A := {𝑜𝐴, 𝜄𝐴}, A = 0, 1, such

that the complex null vectors 𝑚𝑎 := 𝑜𝐴�̄�𝐴
′

and �̄�𝑎 := 𝜄𝐴𝑜𝐴′ are tangent to 𝒮 (or, equivalently,
the future-pointing null vectors 𝑙𝑎 := 𝑜𝐴𝑜𝐴′ and 𝑛𝑎 := 𝜄𝐴�̄�𝐴

′
are orthogonal to 𝒮). Note, however,

that in general a GHP spin frame can be specified only locally, but not globally on the whole 𝒮.
This fact is connected with the nontriviality of the tangent bundle 𝑇𝒮 of the two-surface. For
example, on the two-sphere every continuous tangent vector field must have a zero, and hence, in
particular, the vectors 𝑚𝑎 and �̄�𝑎 cannot form a globally-defined basis on 𝒮. Consequently, the
GHP spin frame cannot be globally defined either. The only closed orientable two-surface with a
globally-trivial tangent bundle is the torus.

Fixing a GHP spin frame {𝜀𝐴
A} on some open 𝑈 ⊂ 𝒮, the components of the spinor and tensor

fields on 𝑈 will be local representatives of cross sections of appropriate complex line bundles 𝐸(𝑝, 𝑞)
of scalars of type (𝑝, 𝑞) [190, 391]: A scalar 𝜑 is said to be of type (𝑝, 𝑞) if, under the rescaling 𝑜𝐴 ↦→
𝜆𝑜𝐴, 𝜄𝐴 ↦→ 𝜆−1𝜄𝐴 of the GHP spin frame with some nowhere-vanishing complex function 𝜆 : 𝑈 → C,
the scalar transforms as 𝜑 ↦→ 𝜆𝑝�̄�𝑞𝜑. For example, 𝜌 := 𝜃𝑎𝑏𝑚

𝑎�̄�𝑏 = − 1
2𝜃, 𝜌

′ := 𝜃′𝑎𝑏𝑚
𝑎�̄�𝑏 = − 1

2𝜃
′,

𝜎 := 𝜃𝑎𝑏𝑚
𝑎𝑚𝑏 = 𝜎𝑎𝑏𝑚

𝑎𝑚𝑏, and 𝜎′ := 𝜃′𝑎𝑏�̄�
𝑎�̄�𝑏 = 𝜎′𝑎𝑏�̄�

𝑎�̄�𝑏 are of type (1, 1), (−1,−1), (3,−1),
and (−3, 1), respectively. The components of the Weyl and Ricci spinors, 𝜓0 := 𝜓𝐴𝐵𝐶𝐷𝑜

𝐴𝑜𝐵𝑜𝐶𝑜𝐷,
𝜓1 := 𝜓𝐴𝐵𝐶𝐷𝑜

𝐴𝑜𝐵𝑜𝐶𝜄𝐷, 𝜓2 := 𝜓𝐴𝐵𝐶𝐷𝑜
𝐴𝑜𝐵𝜄𝐶𝜄𝐷, . . . , 𝜑00 := 𝜑𝐴𝐵′𝑜

𝐴𝑜𝐵′ , 𝜑01 := 𝜑𝐴𝐵′𝑜
𝐴�̄�𝐵

′
, . . . ,

etc., also have definite (𝑝, 𝑞)-type. In particular, Λ := 𝑅/24 has type (0, 0). A global section of
𝐸(𝑝, 𝑞) is a collection of local cross sections {(𝑈, 𝜑), (𝑈 ′, 𝜑′), . . . } such that {𝑈,𝑈 ′, . . . } forms a
covering of 𝒮 and on the nonempty overlappings, e.g., on 𝑈 ∩ 𝑈 ′, the local sections are related to
each other by 𝜑 = 𝜓𝑝𝜓𝑞𝜑′, where 𝜓 : 𝑈 ∩𝑈 ′ → C is the transition function between the GHP spin
frames: 𝑜𝐴 = 𝜓𝑜′𝐴 and 𝜄𝐴 = 𝜓−1𝜄′𝐴.

The connection 𝛿𝑒 defines a connection k𝑒 on the line bundles 𝐸(𝑝, 𝑞) [190, 391]. The usual
edth operators, k and k′, are just the directional derivatives k := 𝑚𝑎k𝑎 and k′ := �̄�𝑎k𝑎 on the
domain 𝑈 ⊂ 𝒮 of the GHP spin frame {𝜀𝐴

A}. These locally-defined operators yield globally-defined
differential operators, denoted also by k and k′, on the global sections of 𝐸(𝑝, 𝑞). It might be worth
emphasizing that the GHP spin coefficients 𝛽 and 𝛽′, which do not have definite (𝑝, 𝑞)-type, play
the role of the two components of the connection one-form, and are built both from the connection
one-form for the intrinsic Riemannian geometry of (𝒮, 𝑞𝑎𝑏) and the connection one-form 𝐴𝑒 in the
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normal bundle. k and k′ are elliptic differential operators, thus, their global properties, e.g., the
dimension of their kernel, are connected with the global topology of the line bundle they act on,
and, in particular, with the global topology of 𝒮. These properties are discussed in [181] in general,
and in [163, 51, 451] for spherical topology.

4.1.7 Irreducible parts of the derivative operators

Using the projection operators 𝜋±𝐴
𝐵 := 1

2 (𝛿𝐴
𝐵±𝛾𝐴

𝐵), the irreducible parts Δ𝐴′𝐴𝜆
𝐴 and 𝒯𝐸′𝐸𝐴

𝐵𝜆𝐵

can be decomposed further into their right-handed and left-handed parts. In the GHP formalism
these chiral irreducible parts are

−Δ−𝜆 := k𝜆1 + 𝜌′𝜆0, Δ+𝜆 := k′𝜆0 + 𝜌𝜆1,

𝒯 −𝜆 := k𝜆0 + 𝜎𝜆1, −𝒯 +𝜆 := k′𝜆1 + 𝜎′𝜆0,
(4.6)

where 𝜆 := (𝜆0, 𝜆1) and the spinor components are defined by 𝜆𝐴 =: 𝜆1𝑜𝐴 − 𝜆0𝜄𝐴. The various
first-order linear differential operators acting on spinor fields, e.g., the two-surface twistor operator,
the holomorphy/antiholomorphy operators or the operators whose kernel defines the asymptotic
spinors of Bramson [97], are appropriate direct sums of these elementary operators. Their global
properties under various circumstances are studied in [51, 451, 457].

4.1.8 𝑆𝑂(1, 1)-connection one-form versus anholonomicity

Obviously, all the structures we have considered can be introduced on the individual surfaces of
one or two-parameter families of surfaces, as well. In particular [224], let the two-surface 𝒮 be
considered as the intersection 𝒩+ ∩ 𝒩− of the null hypersurfaces formed, respectively, by the
outgoing and the ingoing light rays orthogonal to 𝒮, and let the spacetime (or at least a neigh-
borhood of 𝒮) be foliated by two one-parameter families of smooth hypersurfaces {𝜈+ = const.}
and {𝜈− = const.}, where 𝜈± : 𝑀 → R, such that 𝒩+ = {𝜈+ = 0} and 𝒩− = {𝜈− = 0}. One
can form the two normals, 𝑛±𝑎 := ∇𝑎𝜈±, which are null on 𝒩+ and 𝒩−, respectively. Then we
can define 𝛽±𝑒 := (Δ𝑒𝑛±𝑎)𝑛𝑎

∓, for which 𝛽+𝑒 + 𝛽−𝑒 = Δ𝑒𝑛
2, where 𝑛2 := 𝑔𝑎𝑏𝑛

𝑎
+𝑛

𝑏
−. (If 𝑛2 is

chosen to be 1 on 𝒮, then 𝛽−𝑒 = −𝛽+𝑒 is precisely the 𝑆𝑂(1, 1)-connection one-form 𝐴𝑒 above.)
Then the anholonomicity is defined by 𝜔𝑒 := 1

2𝑛2 [𝑛−, 𝑛+]𝑓𝑞𝑓𝑒 = 1
2𝑛2 (𝛽+𝑒 − 𝛽−𝑒). Since 𝜔𝑒 is

invariant with respect to the rescalings 𝜈+ ↦→ exp(𝐴)𝜈+ and 𝜈− ↦→ exp(𝐵)𝜈− of the functions,
defining the foliations by those functions 𝐴,𝐵 : 𝑀 → R, which preserve ∇[𝑎𝑛±𝑏] = 0, it was
claimed in [224] that 𝜔𝑒 depends only on 𝒮. However, this implies only that 𝜔𝑒 is invariant with
respect to a restricted class of the change of the foliations, and that 𝜔𝑒 is invariantly defined only
by this class of the foliations rather than the two-surface. In fact, 𝜔𝑒 does depend on the foliation;
starting with a different foliation defined by the functions 𝜈+ := exp(𝛼)𝜈+ and 𝜈− := exp(𝛽)𝜈−
for some 𝛼, 𝛽 : 𝑀 → R, the corresponding anholonomicity �̄�𝑒 would also be invariant with respect
to the restricted changes of the foliations above, but the two anholonomicities, 𝜔𝑒 and �̄�𝑒, would
be different: �̄�𝑒 − 𝜔𝑒 = 1

2Δ𝑒(𝛼 − 𝛽). Therefore, the anholonomicity is still a gauge-dependent
quantity.

4.2 Standard situations to evaluate the quasi-local quantities

There are exact solutions to the Einstein equations and classes of special (e.g., asymptotically flat)
spacetimes in which there is a commonly accepted definition of energy-momentum (or at least
mass) and angular momentum. In this section we review these situations and recall the definition
of these ‘standard’ expressions.
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4.2.1 Round spheres

If the spacetime is spherically symmetric, then a two-sphere, which is a transitivity surface of
the rotation group, is called a round sphere. Then in a spherical coordinate system (𝑡, 𝑟, 𝜃, 𝜑) the
spacetime metric takes the form 𝑔𝑎𝑏 = diag(exp(2𝛾),− exp(2𝛼),−𝑟2,−𝑟2 sin2 𝜃), where 𝛾 and 𝛼
are functions of 𝑡 and 𝑟. (Hence, 𝑟 is called the area-coordinate.) Then, with the notation of
Section 4.1, one obtains 𝑅𝑎𝑏𝑐𝑑𝜀

𝑎𝑏𝜀𝑐𝑑 = 4
𝑟2 (1 − exp(−2𝛼)). Based on the investigations of Misner,

Sharp, and Hernandez [333, 245], Cahill and McVitte [113] found

𝐸(𝑡, 𝑟) :=
1

8𝐺
𝑟3𝑅𝑎𝑏𝑐𝑑𝜀

𝑎𝑏𝜀𝑐𝑑 =
𝑟

2𝐺
(︀
1− 𝑒−2𝛼

)︀
(4.7)

to be an appropriate (and hence, suggested to be the general) notion of energy contained in the
two-sphere 𝒮 := {𝑡 = const., 𝑟 = const.}. (For another expression of 𝐸(𝑡, 𝑟) in terms of the norm
of the Killing fields and the metric, see [523].) In particular, for the Reissner–Nordström solution
𝐺𝐸(𝑡, 𝑟) = 𝑚 − 𝑒2/2𝑟, while for the isentropic fluid solutions 𝐸(𝑡, 𝑟) = 4𝜋

∫︀ 𝑟

0
𝑟′2𝜇(𝑡, 𝑟′) 𝑑𝑟′, where

𝑚 and 𝑒 are the usual parameters of the Reissner–Nordström solutions and 𝜇 is the energy density
of the fluid [333, 245] (for the static solution, see, e.g., Appendix B of [218]). Using Einstein’s
equations, simple equations can be derived for the derivatives 𝜕𝑡𝐸(𝑡, 𝑟) and 𝜕𝑟𝐸(𝑡, 𝑟), and if the
energy-momentum tensor satisfies the dominant energy condition, then 𝜕𝑟𝐸(𝑡, 𝑟) > 0. Thus, 𝐸(𝑡, 𝑟)
is a monotonic function of 𝑟, provided 𝑟 is the area-coordinate. Since, by spherical symmetry all
the quantities with nonzero spin weight, in particular the shears 𝜎 and 𝜎′, are vanishing and 𝜓2 is
real, by the GHP form of Equations (4.3, 4.4) the energy function 𝐸(𝑡, 𝑟) can also be written as

𝐸 (𝒮) =
1
𝐺
𝑟3
(︂

1
4
𝒮𝑅+ 𝜌𝜌′

)︂
=

1
𝐺
𝑟3 (−𝜓2 + 𝜑11 + Λ) =

√︂
Area(𝒮)
16𝜋𝐺2

(︂
1 +

1
2𝜋

∮︁
𝒮
𝜌𝜌′ 𝑑𝒮

)︂
. (4.8)

Any of hese expressions is considered to be the ‘standard’ definition of the energy for round spheres4.
The last of these expressions does not depend on whether 𝑟 is an area-coordinate or not. 𝐸(𝒮)
contains a contribution from the gravitational ‘field’ too. For example, for fluids it is not simply the
volume integral of the energy density 𝜇 of the fluid, because that would be 4𝜋

∫︀ 𝑟

0
𝑟′2 exp(𝛼)𝜇𝑑𝑟′.

This deviation can be interpreted as the contribution of the gravitational potential energy to the
total energy. Consequently, 𝐸(𝒮) is not a globally monotonic function of 𝑟, even if 𝜇 ≥ 0. For
example, in the closed Friedmann–Robertson–Walker spacetime (where, to cover the whole space,
𝑟 cannot be chosen to be the area–radius and 𝑟 ∈ [0, 𝜋]) 𝐸(𝒮) is increasing for 𝑟 ∈ [0, 𝜋/2), taking
its maximal value at 𝑟 = 𝜋/2, and decreasing for 𝑟 ∈ (𝜋/2, 𝜋].

This example suggests a slightly more exotic spherically-symmetric spacetime. Its spacelike
slice Σ will be assumed to be extrinsically flat, and its intrinsic geometry is the matching of
two conformally flat metrics. The first is a ‘large’ spherically-symmetric part of a 𝑡 = const.
hypersurface of the closed Friedmann–Robertson–Walker spacetime with the line element 𝑑𝑙2 =
Ω2

FRW𝑑𝑙
2
0, where 𝑑𝑙20 is the line element for the flat three-space and Ω2

FRW := 𝐵(1 + 𝑟2

4𝑇 2 )−2 with
positive constants 𝐵 and 𝑇 2, and the range of the Euclidean radial coordinate 𝑟 is [0, 𝑟0], where
𝑟0 ∈ (2𝑇,∞). It contains a maximal two-surface at 𝑟 = 2𝑇 with round-sphere mass parameter
𝑀 := 𝐺𝐸(2𝑇 ) = 1

2𝑇
√
𝐵. The scalar curvature is 𝑅 = 6/𝐵𝑇 2, and hence, by the constraint parts

of the Einstein equations and by the vanishing of the extrinsic curvature, the dominant energy
condition is satisfied. The other metric is the metric of a piece of a 𝑡 = const. hypersurface in the
Schwarzschild solution with mass parameter 𝑚 (see [194]): 𝑑�̄�2 = Ω2

𝑆 𝑑�̄�
2
0, where Ω2

𝑆 := (1 + 𝑚
2𝑟 )4

and the Euclidean radial coordinate 𝑟 runs from 𝑟0 to ∞, where 𝑟0 ∈ (0,𝑚/2). In this geometry
there is a minimal surface at 𝑟 = 𝑚/2, the scalar curvature is zero, and the round-sphere energy is

4𝐸(𝒮) can be thought of as the 0-component of some quasi-local energy-momentum four-vector, but, because of
the spherical symmetry, its spatial parts are vanishing. Thus, 𝐸(𝒮) can also be interpreted as the mass, the length
of this energy-momentum four-vector.
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𝐸(𝑟) = 𝑚/𝐺. These two metrics can be matched to obtain a differentiable metric with a Lipschitz-
continuous derivative at the two-surface of the matching (where the scalar curvature has a jump),
with arbitrarily large ‘internal mass’ 𝑀/𝐺 and arbitrarily small ADM mass 𝑚/𝐺. (Obviously, the
two metrics can be joined smoothly, as well, by an ‘intermediate’ domain between them.) Since
this space looks like a big spherical bubble on a nearly flat three-plane – like the capital Greek
letter Ω – for later reference we will call it an ‘Ω𝑀,𝑚-spacetime’.

Spherically-symmetric spacetimes admit a special vector field, called the Kodama vector field
𝐾𝑎, such that 𝐾𝑎𝐺

𝑎𝑏 is divergence free [295]. In asymptotically flat spacetimes 𝐾𝑎 is timelike in
the asymptotic region, in stationary spacetimes it reduces to the Killing symmetry of stationarity
(in fact, this is hypersurface-orthogonal), but, in general, it is not a Killing vector. However, by
∇𝑎(𝐺𝑎𝑏𝐾𝑏) = 0, the vector field 𝑆𝑎 := 𝐺𝑎𝑏𝐾𝑏 has a conserved flux on a spacelike hypersurface
Σ. In particular, in the coordinate system (𝑡, 𝑟, 𝜃, 𝜑) and in the line element given in the first
paragraph above 𝐾𝑎 = exp[−(𝛼 + 𝛾)](𝜕/𝜕𝑡)𝑎. If Σ is a solid ball of radius 𝑟, then the flux of 𝑆𝑎

is precisely the standard round-sphere expression (4.7) for the two-sphere 𝜕Σ [343].
An interesting characterization of the dynamics of the spherically-symmetric gravitational fields

can be given in terms of the energy function 𝐸(𝑡, 𝑟) given by (4.7) (or by (4.8)) (see, for exam-
ple, [524, 324, 228]). In particular, criteria for the existence and formation of trapped surfaces
and for the presence and nature of the central singularity can be given by 𝐸(𝑡, 𝑟). Other interest-
ing quasi-locally–defined quantities are introduced and used to study nonlinear perturbations and
backreaction in a wide class of spherically-symmetric spacetimes in [444]. For other applications
of 𝐸(𝑡, 𝑟) in cosmology see, e.g., [445, 120].

4.2.2 Small surfaces

In the literature there are two kinds of small surfaces. The first is that of the small spheres
(both in the light cone of a point and in a spacelike hypersurface), introduced first by Horowitz
and Schmidt [252], and the other is the concept of small ellipsoids in a spacelike hypersurface,
considered first by Woodhouse in [287]. A small sphere in the light cone is a cut of the future null
cone in the spacetime by a spacelike hypersurface, and the geometry of the sphere is characterized
by data at the vertex of the cone. The sphere in a hypersurface consists of those points of a
given spacelike hypersurface, whose geodesic distance in the hypersurface from a given point 𝑝,
the center, is a small given value, and the geometry of this sphere is characterized by data at this
center. Small ellipsoids are two-surfaces in a spacelike hypersurface with a more general shape.

To define the first, let 𝑝 ∈ 𝑀 be a point, and 𝑡𝑎 a future-directed unit timelike vector at 𝑝.
Let 𝒩𝑝 := 𝜕𝐼+(𝑝), the ‘future null cone of 𝑝 in 𝑀 ’ (i.e., the boundary of the chronological future
of 𝑝). Let 𝑙𝑎 be the future pointing null tangent to the null geodesic generators of 𝒩𝑝, such that,
at the vertex 𝑝, 𝑙𝑎𝑡𝑎 = 1. With this condition we fix the scale of the affine parameter 𝑟 on the
different generators, and hence, by requiring 𝑟(𝑝) = 0, we fix the parameterization completely.
Then, in an open neighborhood of the vertex 𝑝, 𝒩𝑝−{𝑝} is a smooth null hypersurface, and hence,
for sufficiently small 𝑟, the set 𝒮𝑟 := {𝑞 ∈𝑀 | 𝑟(𝑞) = 𝑟} is a smooth spacelike two-surface and is
homeomorphic to 𝑆2. 𝒮𝑟 is called a small sphere of radius 𝑟 with vertex 𝑝. Note that the condition
𝑙𝑎𝑡𝑎 = 1 fixes the boost gauge, too.

Completing 𝑙𝑎 to get a Newman–Penrose complex null tetrad {𝑙𝑎, 𝑛𝑎,𝑚𝑎, �̄�𝑎} such that the
complex null vectors 𝑚𝑎 and �̄�𝑎 are tangent to the two-surfaces 𝒮𝑟, the components of the metric
and the spin coefficients with respect to this basis can be expanded as a series in 𝑟. If, in addition,
the spinor constituent 𝑜𝐴 of 𝑙𝑎 = 𝑜𝐴𝑜𝐴′ is required to be parallelly propagated along 𝑙𝑎, then
the tetrad becomes completely fixed, yielding the vanishing of several (combinations of the) spin
coefficients. Then the GHP equations can be solved with any prescribed accuracy for the expansion
coefficients of the metric 𝑞𝑎𝑏 on 𝒮𝑟, the GHP spin coefficients 𝜌, 𝜎, 𝜏 , 𝜌′, 𝜎′, and 𝛽, and the higher-
order expansion coefficients of the curvature in terms of the lower-order curvature components at
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40 László B. Szabados

𝑝. Hence, the expression of any quasi-local quantity 𝑄𝒮𝑟 for the small sphere 𝒮𝑟 can be expressed
as a series of 𝑟,

𝑄𝒮𝑟 =
∮︁
𝒮

(︁
𝑄(0) + 𝑟𝑄(1) + 1

2𝑟
2𝑄(2) + · · ·

)︁
𝑑𝒮,

where the expansion coefficients 𝑄(𝑘) are still functions of the coordinates, (𝜁, 𝜁) or (𝜃, 𝜑), on the
unit sphere 𝒮. If the quasi-local quantity 𝑄 is spacetime-covariant, then the unit sphere integrals
of the expansion coefficients 𝑄(𝑘) must be spacetime covariant expressions of the metric and its
derivatives up to some finite order at 𝑝 and the ‘time axis’ 𝑡𝑎. The necessary degree of the accuracy
of the solution of the GHP equations depends on the nature of 𝑄𝒮𝑟 and on whether the spacetime is
Ricci-flat in the neighborhood of 𝑝 or not5. These solutions of the GHP equations, with increasing
accuracy, are given in [252, 287, 109, 455].

Obviously, we can calculate the small-sphere limit of various quasi-local quantities built from
the matter fields in the Minkowski spacetime, as well. In particular [455], the small-sphere expres-
sions for the quasi-local energy-momentum and the (anti-self-dual part of the) quasi-local angular
momentum of the matter fields based on 𝑄𝒮 [K], are, respectively,

𝑃
𝐴 𝐵 ′

𝒮𝑟
=

4𝜋
3
𝑟3𝑇𝐴𝐴′𝐵𝐵′𝑡𝐴𝐴′ℰ𝐴

𝐵 ℰ̄
𝐵 ′

𝐵′ +𝒪
(︀
𝑟4
)︀
, (4.9)

𝐽
𝐴 𝐵
𝒮𝑟

=
4𝜋
3
𝑟3𝑇𝐴𝐴′𝐵𝐵′𝑡

𝐴𝐴′
(︁
𝑟𝑡𝐵

′𝐸𝜀𝐵𝐹ℰ𝐴
(𝐸ℰ

𝐵
𝐹 )

)︁
+𝒪

(︀
𝑟5
)︀
, (4.10)

where {ℰ𝐴
𝐴 }, 𝐴 = 0, 1, is the ‘Cartesian spin frame’ at 𝑝 and the origin of the Cartesian coordinate

system is chosen to be the vertex 𝑝. Here 𝐾𝐴 𝐵 ′

𝑎 = ℰ𝐴
𝐴 ℰ̄

𝐵 ′

𝐴′ can be interpreted as the translation
one-forms, while 𝐾

𝐴 𝐵
𝑎 = 𝑟𝑡𝐴′

𝐸ℰ𝐴
(𝐸ℰ

𝐵
𝐴) is an average on the unit sphere of the boost-rotation

Killing one-forms that vanish at the vertex 𝑝. Thus, 𝑃𝐴 𝐵 ′

𝒮𝑟
and 𝐽

𝐴 𝐵
𝒮𝑟

are the three-volume times
the energy-momentum and angular momentum density with respect to 𝑝, respectively, that the
observer with four-velocity 𝑡𝑎 sees at 𝑝.

Interestingly enough, a simple dimensional analysis already shows the structure of the leading
terms in a large class of quasi-local spacetime covariant energy-momentum and angular momentum
expressions. In fact, if 𝑄𝒮 is any coordinate-independent quasi-local quantity built from the first
derivatives 𝜕𝜇𝑔𝛼𝛽 of the spacetime metric, then in its expansion the difference of the power of 𝑟
and the number of the derivatives in every term must be one, i.e., it must have the form

𝑄𝒮𝑟
= 𝑄2 [𝜕𝑔] 𝑟2 +𝑄3

[︁
𝜕2𝑔, (𝜕𝑔)2

]︁
𝑟3 +𝑄4

[︁
𝜕3𝑔,

(︀
𝜕2𝑔
)︀

(𝜕𝑔) , (𝜕𝑔)3
]︁
𝑟4 +

+𝑄5

[︁
𝜕4𝑔,

(︀
𝜕3𝑔
)︀

(𝜕𝑔) ,
(︀
𝜕2𝑔
)︀2
,
(︀
𝜕2𝑔
)︀

(𝜕𝑔)2 , (𝜕𝑔)4
]︁
𝑟5 + . . . ,

where 𝑄𝑖[𝐴,𝐵, . . . ], 𝑖 = 2, 3, . . . , are scalars. They are polynomial expressions of 𝑡𝑎, 𝑔𝑎𝑏 and 𝜀𝑎𝑏𝑐𝑑

at the vertex 𝑝, and they depend linearly on the tensors that are constructed at 𝑝 from 𝑔𝛼𝛽 ,
𝑔𝛼𝛽 and linearly from the coordinate-dependent quantities 𝐴, 𝐵, . . . . Since there is no nontrivial
tensor built from the first derivative 𝜕𝜇𝑔𝛼𝛽 and 𝑔𝛼𝛽 , the leading term is of order 𝑟3. Its coefficient
𝑄3[𝜕2𝑔, (𝜕𝑔)2] must be a linear expression of 𝑅𝑎𝑏 and 𝐶𝑎𝑏𝑐𝑑, and polynomial in 𝑡𝑎, 𝑔𝑎𝑏 and 𝜀𝑎𝑏𝑐𝑑.
In particular, if 𝑄𝒮 is to represent energy-momentum with generator 𝐾𝑐 at 𝑝, then the leading
term must be

𝑄𝒮𝑟
[K] = 𝑟3

[︀
𝑎
(︀
𝐺𝑎𝑏𝑡

𝑎𝑡𝑏
)︀
𝑡𝑐 + 𝑏𝑅𝑡𝑐 + 𝑐

(︀
𝐺𝑎𝑏𝑡

𝑎𝑃 𝑏
𝑐

)︀]︀
𝐾𝑐 +𝒪

(︀
𝑟4
)︀

(4.11)

for some unspecified constants 𝑎, 𝑏, and 𝑐, where 𝑃 𝑎
𝑏 := 𝛿𝑎

𝑏 − 𝑡𝑎𝑡𝑏, the projection to the subspace
orthogonal to 𝑡𝑎. If, in addition to the coordinate-independence of 𝑄𝒮 , it is Lorentz-covariant,

5As we will soon see, the leading term of the small-sphere expression of the energy-momenta in nonvacuum is of
order 𝑟3, in vacuum it is of order 𝑟5, while those of the relativistic angular momentum are 𝑟4 and 𝑟6, respectively.
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i.e., it does not, for example, depend on the choice for a normal to 𝒮 (e.g., in the small-sphere
approximation on 𝑡𝑎) intrinsically, then the different terms in the above expression must depend
on the boost gauge of the external observer 𝑡𝑎 in the same way. Therefore, 𝑎 = 𝑐, in which case the
first and the third terms can in fact be written as 𝑟3 𝑎 𝑡𝑎𝐺𝑎𝑏𝐾

𝑏. Then, comparing Equation (4.11)
with Equation (4.9), we see that 𝑎 = −1/(6𝐺), and hence the term 𝑟3 𝑏𝑅𝑡𝑎𝐾

𝑎 would have to be
interpreted as the contribution of the gravitational ‘field’ to the quasi-local energy-momentum of
the matter + gravity system. However, this contributes only to energy, but not to linear momen-
tum in any frame defined by the observer 𝑡𝑎, even in a general spacetime. This seems to be quite
unacceptable. Furthermore, even if the matter fields satisfy the dominant energy condition, 𝑄𝒮𝑟

given by Equation (4.11) can be negative, even for 𝑐 = 𝑎, unless 𝑏 = 0. Thus, in the leading 𝑟3 or-
der in nonvacuum, any coordinate and Lorentz-covariant quasi-local energy-momentum expression
which is nonspacelike and future pointing, should be proportional to the energy-momentum density
of the matter fields seen by the observer 𝑡𝑎 times the Euclidean volume of the three-ball of radius
𝑟. No contribution from the gravitational ‘field’ is expected at this order.

If the neighborhood of 𝑝 is vacuum, then the 𝑟3-order term is vanishing, and the fourth-order
term must be built from ∇𝑒𝐶𝑎𝑏𝑐𝑑. However, the only scalar polynomial expression of 𝑡𝑎, 𝑔𝑎𝑏, 𝜀𝑎𝑏𝑐𝑑,
∇𝑒𝐶𝑎𝑏𝑐𝑑 and the generator vector 𝐾𝑎, depending linearly on the latter two, is the zero tensor field.
Thus, the 𝑟4-order term in vacuum is also vanishing. At the fifth order the only nonzero terms are
quadratic in the various parts of the Weyl tensor, yielding

𝑄𝒮𝑟
[K] = 𝑟5

[︀(︀
𝑎𝐸𝑎𝑏𝐸

𝑎𝑏 + 𝑏𝐻𝑎𝑏𝐻
𝑎𝑏 + 𝑐𝐸𝑎𝑏𝐻

𝑎𝑏
)︀
𝑡𝑐 + 𝑑𝐸𝑎𝑒𝐻

𝑒
𝑏𝜀

𝑎𝑏
𝑐

]︀
𝐾𝑐 +𝒪

(︀
𝑟6
)︀

(4.12)

for constants 𝑎, 𝑏, 𝑐, and 𝑑, where 𝐸𝑎𝑏 := 𝐶𝑎𝑒𝑏𝑓 𝑡
𝑒𝑡𝑓 is the electric part and 𝐻𝑎𝑏 := *𝐶𝑎𝑒𝑏𝑓 𝑡

𝑒𝑡𝑓 :=
1
2𝜀𝑎𝑒

𝑐𝑑𝐶𝑐𝑑𝑏𝑓 𝑡
𝑒𝑡𝑓 is the magnetic part of the Weyl curvature, and 𝜀𝑎𝑏𝑐 := 𝜀𝑎𝑏𝑐𝑑𝑡

𝑑 is the induced
volume three-form. However, using the identities 𝐶𝑎𝑏𝑐𝑑𝐶

𝑎𝑏𝑐𝑑 = 8(𝐸𝑎𝑏𝐸
𝑎𝑏−𝐻𝑎𝑏𝐻

𝑎𝑏), 𝐶𝑎𝑏𝑐𝑑*𝐶𝑎𝑏𝑐𝑑 =
16𝐸𝑎𝑏𝐻

𝑎𝑏, 4𝑇𝑎𝑏𝑐𝑑𝑡
𝑎𝑡𝑏𝑡𝑐𝑡𝑑 = 𝐸𝑎𝑏𝐸

𝑎𝑏 + 𝐻𝑎𝑏𝐻
𝑎𝑏 and 2𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑃 𝑑
𝑒 = 𝐸𝑎𝑏𝐻

𝑎
𝑐𝜀

𝑏𝑐
𝑒, we can rewrite

the above formula to be

𝑄𝒮𝑟 [K] = 𝑟5
[︀(︀

2(𝑎+ 𝑏)𝑇𝑎𝑏𝑐𝑑𝑡
𝑎𝑡𝑏𝑡𝑐𝑡𝑑 + 1

16 (𝑎− 𝑏)𝐶𝑎𝑏𝑐𝑑𝐶
𝑎𝑏𝑐𝑑+

+ 1
16𝑐𝐶𝑎𝑏𝑐𝑑 * 𝐶𝑎𝑏𝑐𝑑

)︀
𝑡𝑒 + 2𝑑𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑃 𝑑
𝑒

]︀
𝐾𝑒 +𝒪

(︀
𝑟6
)︀
. (4.13)

Again, if 𝑄𝒮 does not depend on 𝑡𝑎 intrinsically, then 𝑑 = (𝑎 + 𝑏), in which case the first and
the fourth terms together can be written into the Lorentz covariant form 2𝑟5 𝑑 𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝐾𝑑. In
a general expression the curvature invariants 𝐶𝑎𝑏𝑐𝑑𝐶

𝑎𝑏𝑐𝑑 and 𝐶𝑎𝑏𝑐𝑑 *𝐶𝑎𝑏𝑐𝑑 may be present. Since,
however, 𝐸𝑎𝑏 and 𝐻𝑎𝑏 at a given point are independent, these invariants can be arbitrarily large
positive or negative, and hence, for 𝑎 ̸= 𝑏 or 𝑐 ̸= 0 the quasi-local energy-momentum could not
be future pointing and nonspacelike. Therefore, in vacuum in the leading 𝑟5 order any coordinate
and Lorentz-covariant quasi-local energy-momentum expression, which is nonspacelike and future
pointing must be proportional to the Bel–Robinson ‘momentum’ 𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐.
Obviously, the same analysis can be repeated for any other quasi-local quantity. For the energy-

momentum, 𝑄𝒮 has the structure
∮︀
𝒮 𝒬(𝜕𝜇𝑔𝛼𝛽) 𝑑𝒮, for angular momentum it is

∮︀
𝒮 𝒬(𝜕𝜇𝑔𝛼𝛽)𝑟 𝑑𝒮,

while the area of 𝒮 is
∮︀
𝒮 𝑑𝒮. Therefore, the leading term in the expansion of the angular momentum

is 𝑟4 and 𝑟6 order in nonvacuum and vacuum with the energy-momentum and the Bel–Robinson
tensors, respectively, while the first nontrivial correction to the area 4𝜋𝑟2 is of order 𝑟4 and 𝑟6 in
nonvacuum and vacuum, respectively.

On the small geodesic sphere 𝒮𝑟 of radius 𝑟 in the given spacelike hypersurface Σ one can
introduce the complex null tangents 𝑚𝑎 and �̄�𝑎 above, and if 𝑡𝑎 is the future-pointing unit normal
of Σ and 𝑣𝑎 the outward directed unit normal of 𝒮𝑟 in Σ, then we can define 𝑙𝑎 := 𝑡𝑎 + 𝑣𝑎 and
2𝑛𝑎 := 𝑡𝑎− 𝑣𝑎. Then {𝑙𝑎, 𝑛𝑎,𝑚𝑎, �̄�𝑎} is a Newman–Penrose complex null tetrad, and the relevant
GHP equations can be solved for the spin coefficients in terms of the curvature components at 𝑝.

The small ellipsoids are defined as follows [287]. If 𝑓 is any smooth function on Σ with a
nondegenerate minimum at 𝑝 ∈ Σ with minimum value 𝑓(𝑝) = 0, then, at least on an open
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neighborhood 𝑈 of 𝑝 in Σ, the level surfaces 𝒮𝑟 :=
{︀
𝑞 ∈ Σ | 2𝑓(𝑞) = 𝑟2

}︀
are smooth compact two-

surfaces homeomorphic to 𝑆2. Then, in the 𝑟 → 0 limit, the surfaces 𝒮𝑟 look like small nested
ellipsoids centered at 𝑝. The function 𝑓 is usually ‘normalized’ so that ℎ𝑎𝑏𝐷𝑎𝐷𝑏𝑓 |𝑝 = −3.

A slightly different framework for calculations in small regions was used in [301, 156, 213].
Instead of the Newman–Penrose (or the GHP) formalism and the spin coefficient equations, holo-
nomic (Riemann or Fermi type normal) coordinates on an open neighborhood 𝑈 of a point 𝑝 ∈𝑀
or a timelike curve 𝛾 are used, in which the metric, as well as the Christoffel symbols on 𝑈 , are
expressed by the coordinates on 𝑈 and the components of the Riemann tensor at 𝑝 or on 𝛾. In
these coordinates and the corresponding frames, the various pseudotensorial and tetrad expressions
for the energy-momentum have been investigated. It has been shown that a quadratic expression
of these coordinates with the Bel–Robinson tensor as their coefficient appears naturally in the
local conservation law for the matter energy-momentum tensor [301]; the Bel–Robinson tensor can
be recovered as some ‘double gradient’ of a special combination of the Einstein and the Landau–
Lifshitz pseudotensors [156]; Møller’s tetrad expression, as well as certain combinations of several
other classical pseudotensors, yield the Bel–Robinson tensor [435, 433, 434]. (For this kind of
investigation see also [430, 431, 432]).

In [213] a new kind of approximate symmetries, namely approximate affine collineations, are
introduced both near a point and a world line, and used to introduce Komar-type ‘conserved’ cur-
rents. (For a readable text on the non-Killing type symmetries see, e.g., [211].) These symmetries
turn out to yield a nontrivial gravitational contribution to the matter energy-momentum, even in
the leading 𝑟3 order.

4.2.3 Large spheres near spatial infinity

Near spatial infinity we have the a priori 1/𝑟 and 1/𝑟2 falloff for the three-metric ℎ𝑎𝑏 and ex-
trinsic curvature 𝜒𝑎𝑏, respectively, and both the evolution equations of general relativity and the
conservation equation 𝑇 𝑎𝑏

;𝑏 = 0 for the matter fields preserve these conditions. The spheres 𝒮𝑟

of coordinate radius 𝑟 in Σ are called large spheres if the values of 𝑟 are large enough, such that
the asymptotic expansions of the metric and extrinsic curvature are legitimate6. Introducing some
coordinate system, e.g., the complex stereographic coordinates, on one sphere and then extending
that to the whole Σ along the normals 𝑣𝑎 of the spheres, we obtain a coordinate system (𝑟, 𝜁, 𝜁)
on Σ. Let 𝜀𝐴

A = {𝑜𝐴, 𝜄𝐴}, A = 0, 1, be a GHP spinor dyad on Σ adapted to the large spheres in
such a way that 𝑚𝑎 := 𝑜𝐴�̄�𝐴

′
and �̄�𝑎 = 𝜄𝐴𝑜𝐴′ are tangent to the spheres and 𝑡𝑎 = 1

2𝑜
𝐴𝑜𝐴′ + 𝜄𝐴�̄�𝐴

′
,

the future directed unit normal of Σ. These conditions fix the spinor dyad completely, and, in
particular, 𝑣𝑎 = 1

2𝑜
𝐴𝑜𝐴′ − 𝜄𝐴�̄�𝐴

′
, the outward directed unit normal to the spheres tangent to Σ.

The falloff conditions yield that the spin coefficients tend to their flat spacetime value as 1/𝑟2

and the curvature components to zero like 1/𝑟3. Expanding the spin coefficients and curvature
components as a power series of 1/𝑟, one can solve the field equations asymptotically (see [57, 53]
for a different formalism). However, in most calculations of the large sphere limit of the quasi-local
quantities, only the leading terms of the spin coefficients and curvature components appear. Thus,
it is not necessary to solve the field equations for their second or higher-order nontrivial expansion
coefficients.

Using the flat background metric 0ℎ𝑎𝑏 and the corresponding derivative operator 0𝐷𝑒 we can
define a spinor field 0𝜆𝐴 to be constant if 0𝐷𝑒0𝜆𝐴 = 0. Obviously, the constant spinors form a
two–complex-dimensional vector space. Then, by the falloff properties 𝐷𝑒0𝜆𝐴 = 𝒪(𝑟−2). Thus, we
can define the asymptotically constant spinor fields to be those 𝜆𝐴 that satisfy 𝐷𝑒𝜆𝐴 = 𝒪(𝑟−2),
where 𝐷𝑒 is the intrinsic Levi-Civita derivative operator. Note that this implies that, with the

6Because of the falloff, no essential ambiguity in the definition of the large spheres arises from the use of the
coordinate radius instead of the physical radial distance.
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notation of Equation (4.6), all the chiral irreducible parts, Δ+𝜆, Δ−𝜆, 𝒯 +𝜆, and 𝒯 −𝜆 of the
derivative of the asymptotically constant spinor field 𝜆𝐴 are 𝒪(𝑟−2).

4.2.4 Large spheres near null infinity

Let the spacetime be asymptotically flat at future null infinity in the sense of Penrose [379, 380, 381,
392] (see also [189]), i.e., the physical spacetime can be conformally compactified by an appropriate
boundary I +. Then future null infinity I + will be a null hypersurface in the conformally rescaled
spacetime. Topologically it is R×𝑆2, and the conformal factor can always be chosen such that the
induced metric on the compact spacelike slices of I + is the metric of the unit sphere. Fixing such
a slice 𝒮0 (called ‘the origin cut of I +’) the points of I + can be labeled by a null coordinate,
namely the affine parameter 𝑢 ∈ R along the null geodesic generators of I + measured from 𝒮0

and, for example, the familiar complex stereographic coordinates (𝜁, 𝜁) ∈ 𝑆2, defined first on the
unit sphere 𝒮0 and then extended in a natural way along the null generators to the whole I +.
Then any other cut 𝒮 of I + can be specified by a function 𝑢 = 𝑓(𝜁, 𝜁). In particular, the cuts
𝒮𝑢 := {𝑢 = const.} are obtained from 𝒮0 by a pure time translation.

The coordinates (𝑢, 𝜁, 𝜁) can be extended to an open neighborhood of I + in the spacetime in
the following way. Let 𝒩𝑢 be the family of smooth outgoing null hypersurfaces in a neighborhood
of I +, such that they intersect the null infinity just in the cuts 𝒮𝑢, i.e., 𝒩𝑢 ∩I + = 𝒮𝑢. Then let
𝑟 be the affine parameter in the physical metric along the null geodesic generators of 𝒩𝑢. Then
(𝑢, 𝑟, 𝜁, 𝜁) forms a coordinate system. The 𝑢 = const., 𝑟 = const. two-surfaces 𝒮𝑢,𝑟 (or simply 𝒮𝑟

if no confusion can arise) are spacelike topological two-spheres, which are called large spheres of
radius 𝑟 near future null infinity. Obviously, the affine parameter 𝑟 is not unique, its origin can be
changed freely: 𝑟 := 𝑟 + 𝑔(𝑢, 𝜁, 𝜁) is an equally good affine parameter for any smooth 𝑔. Imposing
certain additional conditions to rule out such coordinate ambiguities we arrive at a ‘Bondi-type
coordinate system’7. In many of the large-sphere calculations of the quasi-local quantities the
large spheres should be assumed to be large spheres not only in a general null, but in a Bondi-type
coordinate system. For a detailed discussion of the coordinate freedom left at the various stages
in the introduction of these coordinate systems, see, for example, [361, 360, 98].

In addition to the coordinate system, we need a Newman–Penrose null tetrad, or rather a GHP
spinor dyad, 𝜀𝐴

A = {𝑜𝐴, 𝜄𝐴}, A = 0, 1, on the hypersurfaces𝒩𝑢. (Thus boldface indices are referring
to the GHP spin frame.) It is natural to choose 𝑜𝐴 such that 𝑙𝑎 := 𝑜𝐴𝑜𝐴′ be the tangent (𝜕/𝜕𝑟)𝑎

of the null geodesic generators of 𝒩𝑢, and 𝑜𝐴 itself be constant along 𝑙𝑎. Newman and Unti [361]
chose 𝜄𝐴 to be parallelly propagated along 𝑙𝑎. This choice yields the vanishing of a number of spin
coefficients (see, for example, the review [360]). The asymptotic solution of the Einstein–Maxwell
equations as a series of 1/𝑟 in this coordinate and tetrad system is given in [361, 165, 391], where
all the nonvanishing spin coefficients and metric and curvature components are listed. In this
formalism the gravitational waves are represented by the 𝑢-derivative �̇�0 of the asymptotic shear
of the null geodesic generators of the outgoing null hypersurfaces 𝒩𝑢.

From the point of view of the large sphere calculations of the quasi-local quantities, the choice of
Newman and Unti for the spinor basis is not very convenient. It is more natural to adapt the GHP
spin frame to the family of the large spheres of constant ‘radius’ 𝑟, i.e., to require 𝑚𝑎 := 𝑜𝐴�̄�𝐴

′
and

�̄�𝑎 = 𝜄𝐴𝑜𝐴′ to be tangents of the spheres. This can be achieved by an appropriate null rotation of
the Newman–Unti basis about the spinor 𝑜𝐴. This rotation yields a change of the spin coefficients
and the metric and curvature components. As far as the present author is aware, the rotation with
the highest accuracy was done for the solutions of the Einstein–Maxwell system by Shaw [420].

In contrast to the spatial-infinity case, the ‘natural’ definition of the asymptotically constant
spinor fields yields identically zero spinors in general [97]. Nontrivial constant spinors in this sense

7In the Bondi coordinate system the radial coordinate is the luminosity distance 𝑟D := −1/𝜌, which tends to the
affine parameter 𝑟 asymptotically.
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could exist only in the absence of the outgoing gravitational radiation, i.e., when �̇�0 = 0. In
the language of Section 4.1.7, this definition would be lim𝑟→∞ 𝑟Δ+𝜆 = 0, lim𝑟→∞ 𝑟Δ−𝜆 = 0,
lim𝑟→∞ 𝑟𝒯 +𝜆 = 0 and lim𝑟→∞ 𝑟𝒯 −𝜆 = 0. However, as Bramson showed [97], half of these
conditions can be imposed. Namely, at future null infinity 𝒞+𝜆 := (Δ+ ⊕ 𝒯 −)𝜆 = 0 (and at
past null infinity 𝒞−𝜆 := (Δ− ⊕ 𝒯 +)𝜆 = 0) can always be imposed asymptotically, and has two
linearly-independent solutions 𝜆𝐴

𝐴 , 𝐴 = 0, 1, on I + (or on I −, respectively). The space S𝐴
∞

of its solutions turns out to have a natural symplectic metric 𝜀𝐴 𝐵 , and we refer to (S𝐴
∞, 𝜀𝐴 𝐵 )

as future asymptotic spin space. Its elements are called asymptotic spinors, and the equations
lim𝑟→∞ 𝑟𝒞±𝜆 = 0, the future/past asymptotic twistor equations. At I + asymptotic spinors are
the spinor constituents of the BMS translations; any such translation is of the form 𝐾𝐴 𝐴 ′

𝜆𝐴
𝐴 �̄�

𝐴′

𝐴 ′ =
𝐾𝐴 𝐴 ′

𝜆1
𝐴 �̄�

1′

𝐴 ′𝜄𝐴�̄�𝐴
′

for some constant Hermitian matrix 𝐾𝐴 𝐴 ′
. Similarly, (apart from the proper

supertranslation content) the components of the anti-self-dual part of the boost-rotation BMS
vector fields are −𝜎𝐴 𝐵

i 𝜆1
𝐴 𝜆

1
𝐵 , where 𝜎

𝐴 𝐵
i are the standard 𝑆𝑈(2) Pauli matrices (divided by√

2) [457]. Asymptotic spinors can be recovered as the elements of the kernel of several other
operators built from Δ+, Δ−, 𝒯 +, and 𝒯 −, too. In the present review we use only the fact that
asymptotic spinors can be introduced as antiholomorphic spinors (see also Section 8.2.1), i.e., the
solutions of ℋ−𝜆 := (Δ− ⊕ 𝒯 −)𝜆 = 0 (and at past null infinity as holomorphic spinors), and as
special solutions of the two-surface twistor equation 𝒯 𝜆 := (𝒯 +⊕𝒯 −)𝜆 = 0 (see also Section 7.2.1).
These operators, together with others reproducing the asymptotic spinors, are discussed in [457].

The Bondi–Sachs energy-momentum given in the Newman–Penrose formalism has already be-
come its ‘standard’ form. It is the unit sphere integral on the cut 𝒮 of a combination of the leading
term 𝜓0

2 of the Weyl spinor component 𝜓2, the asymptotic shear 𝜎0 and its 𝑢-derivative, weighted
by the first four spherical harmonics (see, for example, [360, 392]):

𝑃
𝐴 𝐵 ′

𝐵𝑆 = − 1
4𝜋𝐺

∮︁ (︀
𝜓0

2 + 𝜎0 ˙̄𝜎0
)︀
𝜆

𝐴
0 �̄�

𝐵 ′

0′ 𝑑𝒮, (4.14)

where 𝜆𝐴
0 := 𝜆

𝐴
𝐴 𝑜

𝐴, 𝐴 = 0, 1, are the 𝑜𝐴-component of the vectors of a spin frame in the space
of the asymptotic spinors. (For the various realizations of these spinors see, for example, [457].)
The minimal assumptions on the physical Ricci tensor that already ensure that the Bondi–Sachs
energy-momentum and Bondi’s mass-loss are well defined are determined by Tafel [464]. The
expression of the Bondi–Sachs energy-momentum in terms of the conformal factor is also given
there.

Similarly, the various definitions for angular momentum at null infinity could be rewritten in
this formalism. Although there is no generally accepted definition for angular momentum at null
infinity in general spacetimes, in stationary spacetimes there is. It is the unit sphere integral
on the cut 𝒮 of the leading term of the Weyl spinor component 𝜓1′ , weighted by appropriate
(spin-weighted) spherical harmonics:

𝐽𝐴 𝐵 =
1

8𝜋𝐺

∮︁
𝜓0

1′𝜆
𝐴
0 𝜆

𝐵
0 𝑑𝒮. (4.15)

In particular, Bramson’s expression also reduces to this ‘standard’ expression in the absence of the
outgoing gravitational radiation [100].

Instead of the Bondi type coordinates above, one can introduce other ‘natural’ coordinates
in a neighborhood of I +. Such is the one based on the outgoing asymptotically–shear-free null
geodesics [20]. While the Bondi-type coordinate system is based on the null geodesic generators
of the outgoing null hypersurfaces 𝒩𝑢, and hence, in the rescaled metric these generators are
orthogonal to the cuts 𝒮𝑢, the new coordinate system is based on the use of outgoing null geodesic
congruences that extend to I + but are not orthogonal to the cuts of I + (and hence, in general,
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they have twist). The definition of the new coordinates (𝑢, 𝑟, 𝜁, 𝜁) is analogous to that of the Bondi-
type coordinates; (𝑢, 𝜁, 𝜁) labels the intersection point of the actual geodesic and I +, while 𝑟 is
the affine parameter along the geodesic. The tangent �̃�𝑎 of this null congruence is asymptotically
null rotated about 𝑛𝑎; in the NP basis {𝑙𝑎, 𝑛𝑎,𝑚𝑎, �̄�𝑎} above �̃�𝑎 = 𝑙𝑎 + 𝑏�̄�𝑎 + �̄�𝑚𝑎 + 𝑏�̄�𝑛𝑎, where
𝑏 = −𝐿(𝑢, 𝜁, 𝜁)/𝑟+𝒪(𝑟−2) and 𝐿 = 𝐿(𝑢, 𝜁, 𝜁) is a complex valued function (with spin weight one)
on I +. Then Aronson and Newman show in [20] that if 𝐿 is chosen to satisfy k𝐿+𝐿�̇� = 𝜎0, then
the asymptotic shear of the congruence is, in fact, of order 𝑟−3, and by an appropriate choice for
the other vectors of the NP basis many spin coefficients can be made zero. In this framework it
is the function 𝐿 that plays a role analogous to that of 𝜎0, and, indeed, the asymptotic solution
of the field equations is given in terms of 𝐿 in [20]. This 𝐿 can be derived from the solution 𝑍 of
the good-cut equation, which, however, is not uniquely determined, but depends on four complex
parameters: 𝑍 = 𝑍(𝑧𝑎 , 𝜁, 𝜁). It is this freedom that is used in [299, 300] to introduce the angular
momentum at future null infinity (see Section 3.2.4). Further discussion of these structures, in
particular their connection with the solutions of the good-cut equation and the 𝐻-space, as well
as their applications, is given in [298, 299, 300].

4.2.5 Other special situations

In the weak field approximation of general relativity [482, 29, 490, 392, 278] the gravitational field
is described by a symmetric tensor field ℎ𝑎𝑏 on Minkowski spacetime (R4, 𝑔0

𝑎𝑏), and the dynamics
of the field ℎ𝑎𝑏 is governed by the linearized Einstein equations, i.e., essentially the wave equa-
tion. Therefore, the tools and techniques of the Poincaré-invariant field theories, in particular the
Noether–Belinfante–Rosenfeld procedure outlined in Section 2.1 and the ten Killing vectors of the
background Minkowski spacetime, can be used to construct the conserved quantities. It turns out
that the symmetric energy-momentum tensor of the field ℎ𝑎𝑏 is essentially the second-order term in
the Einstein tensor of the metric 𝑔𝑎𝑏 := 𝑔0

𝑎𝑏 + ℎ𝑎𝑏. Thus, in the linear approximation the field ℎ𝑎𝑏

does not contribute to the global energy-momentum and angular momentum of the matter + gravity
system, and hence these quantities have the form (2.5) with the linearized energy-momentum tensor
of the matter fields. However, as we will see in Section 7.1.1, this energy-momentum and angular
momentum can be re-expressed as a charge integral of the (linearized) curvature [442, 254, 392].

pp-waves spacetimes are defined to be those that admit a constant null vector field 𝐿𝑎, and
they interpreted as describing pure plane-fronted gravitational waves with parallel rays. If matter
is present, then it is necessarily pure radiation with wave-vector 𝐿𝑎, i.e., 𝑇 𝑎𝑏𝐿𝑏 = 0 holds [439].
A remarkable feature of the pp-wave metrics is that, in the usual coordinate system, the Einstein
equations become a two-dimensional linear equation for a single function. In contrast to the
approach adopted almost exclusively, Aichelburg [3] considered this field equation as an equation
for a boundary value problem. As we will see, from the point of view of the quasi-local observables
this is a particularly useful and natural standpoint. If a pp-wave spacetime admits an additional
spacelike Killing vector 𝐾𝑎 with closed 𝑆1 orbits, i.e., it is cyclically symmetric too, then 𝐿𝑎 and
𝐾𝑎 are necessarily commuting and are orthogonal to each other, because otherwise an additional
timelike Killing vector would also be admitted [446].

Since the final state of stellar evolution (the neutron star or black hole state) is expected
to be described by an asymptotically flat, stationary, axisymmetric spacetime, the significance
of these spacetimes is obvious. It is conjectured that this final state is described by the Kerr–
Newman (either outer or black hole) solution with some well-defined mass, angular momentum and
electric charge parameters [490]. Thus, axisymmetric two-surfaces in these solutions may provide
domains, which are general enough but for which the quasi-local quantities are still computable.
According to a conjecture by Penrose [384], the (square root of the) area of the event horizon
provides a lower bound for the total ADM energy. For the Kerr–Newman black hole this area is
4𝜋(2𝑚2 − 𝑒2 + 2𝑚

√
𝑚2 − 𝑒2 − 𝑎2). Thus, particularly interesting two-surfaces in these spacetimes
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are the spacelike cross sections of the event horizon [72].
There is a well-defined notion of total energy-momentum not only in the asymptotically flat, but

even in the asymptotically anti-de Sitter spacetimes as well. This is the Abbott–Deser energy [1],
whose positivity has also been proven under similar conditions that we had to impose in the
positivity proof of the ADM energy [200]. (In the presence of matter fields, e.g., a self-interacting
scalar field, the falloff properties of the metric can be weakened such that the ‘charges’ defined
at infinity and corresponding to the asymptotic symmetry generators remain finite [243].) The
conformal technique, initiated by Penrose, is used to give a precise definition of the asymptotically
anti-de Sitter spacetimes and to study their general, basic properties in [35]. A comparison and
analysis of the various definitions of mass for asymptotically anti-de Sitter metrics is given in [138].

Extending the spinorial proof [321] of the positivity of the total energy in asymptotically anti-de
Sitter spacetime, Chruściel, Maerten and Tod [137] give an upper bound for the angular momen-
tum and center-of-mass in terms of the total mass and the cosmological constant. (Analogous
investigations show that there is a similar bound at the future null infinity of asymptotically
flat spacetimes with no outgoing energy flux, provided the spacetime contains a constant–mean-
curvature, hyperboloidal, initial-data set on which the dominant energy condition is satisfied. In
this bound the role of the cosmological constant is played by the (constant) mean curvature of
the hyperboloidal spacelike hypersurface [139].) Thus, it is natural to ask whether or not a spe-
cific quasi-local energy-momentum or angular momentum expression has the correct limit for large
spheres in asymptotically anti-de Sitter spacetimes.

4.3 On lists of criteria of reasonableness of the quasi-local quantities

In the literature there are various, more or less ad hoc, ‘lists of criteria of reasonableness’ of the
quasi-local quantities (see, for example, [162, 131]). However, before discussing them, it seems
useful to first formulate some general principles that any quasi-local quantity should satisfy.

4.3.1 General expectations

In nongravitational physics the notions of conserved quantities are connected with symmetries of
the system, and they are introduced through some systematic procedure in the Lagrangian and/or
Hamiltonian formalism. In general relativity the total energy-momentum and angular momentum
are two-surface observables, thus, we concentrate on them even at the quasi-local level. These facts
motivate our three a priori expectations:

1. The quasi-local quantities that are two-surface observables should depend only on the two-
surface data, but they cannot depend, e.g., on the way that the various geometric structures
on 𝒮 are extended off the two-surface. There seems to be no a priori reason why the two-
surface would have to be restricted to spherical topology. Thus, in the ideal case, the general
construction of the quasi-local energy-momentum and angular momentum should work for
any closed orientable spacelike two-surface.

2. It is desirable to derive the quasi-local energy-momentum and angular momentum as the
charge integral (Lagrangian interpretation) and/or as the value of the Hamiltonian on the
constraint surface in the phase space (Hamiltonian interpretation). If they are introduced in
some other way, they should have a Lagrangian and/or Hamiltonian interpretation.

3. These quantities should correspond to the ‘quasi-symmetries’ of the two-surface. In particu-
lar, the quasi-local energy-momentum should be expected to be in the dual of the space of
the ‘quasi-translations’, and the angular momentum in the dual of the space of the ‘quasi-
rotations’.
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To see that these conditions are nontrivial, let us consider the expressions based on the linkage
integral (3.8). 𝐿𝒮 [K] does not satisfy the first part of Requirement 1. In fact, it depends on the
derivative of the normal components of 𝐾𝑎 in the direction orthogonal to 𝒮 for any value of the
parameter 𝛼. Thus it depends not only on the geometry of 𝒮 and the vector field 𝐾𝑎 given on the
two-surface, but on the way in which 𝐾𝑎 is extended off the two-surface. Therefore, 𝐿𝒮 [K] is ‘less
quasi-local’ than 𝐴𝒮 [𝜔] or 𝐻𝒮 [𝜆, �̄�] introduced in Sections 7.2.1 and 7.2.2, respectively.

We will see that the Hawking energy satisfies Requirement 1, but not Requirements 2 and 3.
The Komar integral (i.e., the linkage for 𝛼 = 0) has the form of the charge integral of a superpoten-
tial: 8𝜋𝐺𝐾𝒮 [K] :=

∮︀
𝒮 ∇

[𝑎𝐾𝑏] 1
2𝜀𝑎𝑏𝑐𝑑, i.e., it has a Lagrangian interpretation. The corresponding

conserved Komar-current is defined by 8𝜋𝐺𝐾𝐶
𝑎[K] := 𝐺𝑎

𝑏𝐾
𝑏 + ∇𝑏∇[𝑎𝐾𝑏]. However, its flux

integral on some compact spacelike hypersurface with boundary 𝒮 := 𝜕Σ cannot be a Hamiltonian
on the ADM phase space in general. In fact, it is

𝐾𝐻 [K] :=
∫︁

Σ
𝐾𝐶

𝑎 [K] 𝑡𝑎 𝑑Σ

=
∫︁

Σ

(𝑐𝑁 + 𝑐𝑎𝑁
𝑎) 𝑑Σ +

1
8𝜋𝐺

∮︁
𝒮
𝑣𝑎

(︂
𝜒𝑎

𝑏𝑁
𝑏 −𝐷𝑎𝑁 +

1
2𝑁

�̇�𝑎

)︂
𝑑𝒮. (4.16)

Here 𝑐 and 𝑐𝑎 are, respectively, the Hamiltonian and momentum constraints of the vacuum theory,
𝑡𝑎 is the future-directed unit normal to Σ, 𝑣𝑎 is the outward-directed unit normal to 𝒮 in Σ, and
𝑁 and 𝑁𝑎 are the lapse and shift part of 𝐾𝑎, respectively, defined by 𝐾𝑎 =: 𝑁𝑡𝑎 + 𝑁𝑎. Thus,
𝐾𝐻[K] is a well-defined function of the configuration and velocity variables (𝑁,𝑁𝑎, ℎ𝑎𝑏) and
(�̇� , �̇�𝑎, ℎ̇𝑎𝑏), respectively. However, since the velocity �̇�𝑎 cannot be expressed by the canonical
variables [507, 55], 𝐾𝐻[K] can be written as a function on the ADM phase space only if the
boundary conditions at 𝜕Σ ensure the vanishing of the integral of 𝑣𝑎�̇�

𝑎/𝑁 .

4.3.2 Pragmatic criteria

Since in certain special situations there are generally accepted definitions for the energy-momen-
tum and angular momentum, it seems reasonable to expect that in these situations the quasi-local
quantities reduce to them. One half of the pragmatic criteria is just this expectation, and the other
is a list of some a priori requirements on the behavior of the quasi-local quantities.

One such list for the energy-momentum and mass, based mostly on [162, 131] and the properties
of the quasi-local energy-momentum of the matter fields of Section 2.2, might be the following:
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1.1 The quasi-local energy-momentum 𝑃
𝑎
𝒮 must be a future-pointing nonspacelike vector (as-

suming that the matter fields satisfy the dominant energy condition on some Σ for which
𝒮 = 𝜕Σ, and maybe some form of the convexity of 𝒮 should be required) (‘positivity’).

1.2 𝑃
𝑎
𝒮 must be zero iff 𝐷(Σ) is flat, and null iff 𝐷(Σ) has a pp-wave geometry with pure

radiation (‘rigidity’).

1.3 𝑃
𝑎
𝒮 must give the correct weak field limit.

1.4 𝑃
𝑎
𝒮 must reproduce the ADM, Bondi–Sachs and Abbott–Deser energy-momenta in the

appropriate limits (‘correct large-sphere behavior’).

1.5 For small spheres 𝑃 𝑎
𝒮 must give the expected results (‘correct small sphere behavior’):

1. 4
3𝜋𝑟

3𝑇 𝑎𝑏𝑡𝑏 in nonvacuum and

2. 𝑘𝑟5𝑇 𝑎𝑏𝑐𝑑𝑡𝑏𝑡𝑐𝑡𝑑 in vacuum for some positive constant 𝑘 and the Bel–Robinson tensor
𝑇 𝑎𝑏𝑐𝑑.

1.6 For round spheres 𝑃 𝑎
𝒮 must yield the ‘standard’ round-sphere expression.

1.7 For marginally trapped surfaces the quasi-local mass 𝑚𝒮 must be the irreducible mass√︀
Area(𝒮)/16𝜋𝐺2.

For a different view on the positivity of the quasi-local energy see [358]. Item 1.7 is motivated by the
expectation that the quasi-local mass associated with the apparent horizon of a black hole (i.e., the
outermost marginally-trapped surface in a spacelike slice) be just the irreducible mass [162, 131].
Usually, 𝑚𝒮 is expected to be monotonic in some appropriate sense [131]. For example, if 𝒮1 = 𝜕Σ
for some achronal (and hence spacelike or null) hypersurface Σ in which 𝒮2 is a spacelike closed
two-surface and the dominant energy condition is satisfied on Σ, then 𝑚𝒮1 ≥ 𝑚𝒮2 seems to be
a reasonable expectation [162]. (See also Section 4.3.3.) On the other hand, in contrast to the
energy-momentum and angular momentum of the matter fields on the Minkowski spacetime, the
additivity of the energy-momentum (and angular momentum) is not expected. In fact, if 𝒮1 and 𝒮2

are two connected two-surfaces, then, for example, the corresponding quasi-local energy-momenta
would belong to different vector spaces, namely to the dual of the space of the quasi-translations of
the first and second two-surface, respectively. Thus, even if we consider the disjoint union 𝒮1 ∪ 𝒮2

to surround a single physical system, we can add the energy-momentum of the first to that of the
second only if there is some physically/geometrically distinguished rule defining an isomorphism
between the different vector spaces of the quasi-translations. Such an isomorphism would be
provided for example by some naturally-chosen globally-defined flat background. However, as we
discussed in Section 3.1.1, general relativity itself does not provide any background; the use of such
a background would contradict the complete diffeomorphism invariance of the theory. Nevertheless,
the quasi-local mass and the length of the quasi-local Pauli–Lubanski spin of different surfaces can
be compared, because they are scalar quantities.

Similarly, any reasonable quasi-local angular momentum expression 𝐽
𝑎 𝑏
𝒮 may be expected to

satisfy the following:
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2.1 𝐽
𝑎 𝑏
𝒮 must give zero for round spheres.

2.2 For two-surfaces with zero quasi-local mass, the Pauli–Lubanski spin should be proportional
to the (null) energy-momentum four-vector 𝑃 𝑎

𝒮 .

2.3 𝐽
𝑎 𝑏
𝒮 must give the correct weak field limit.

2.4 𝐽
𝑎 𝑏
𝒮 must reproduce the generally-accepted spatial angular momentum at spatial infinity,

and in stationary spacetimes it should reduce to the ‘standard’ expression at the null
infinity as well (‘correct large-sphere behavior’).

2.5 For small spheres the anti-self-dual part of 𝐽𝑎 𝑏
𝒮 , defined with respect to the center of the

small sphere (the ‘vertex’ in Section 4.2.2) is expected to give 4
3𝜋𝑟

3𝑇𝑐𝑑𝑡
𝑐(𝑟𝜀𝐷(𝐴𝑡𝐵)𝐷′) in

nonvacuum and 𝐶𝑟5𝑇𝑐𝑑𝑒𝑓 𝑡
𝑐𝑡𝑑𝑡𝑒(𝑟𝜀𝐹 (𝐴𝑡𝐵)𝐹 ′) in vacuum for some constant 𝐶 (‘correct small

sphere behavior’).

Since there is no generally accepted definition for the angular momentum at null infinity, we
cannot expect anything definite there in nonstationary spacetimes. Similarly, there are inequivalent
suggestions for the center-of-mass at spatial infinity (see Sections 3.2.2 and 3.2.4).

4.3.3 Incompatibility of certain ‘natural’ expectations

As Eardley noted in [162], probably no quasi-local energy definition exists, which would satisfy
all of his criteria. In fact, it is easy to see that this is the case. Namely, any quasi-local energy
definition, which reduces to the ‘standard’ expression for round spheres cannot be monotonic, as the
closed Friedmann–Robertson–Walker or the Ω𝑀,𝑚 spacetimes show explicitly. The points where
the monotonicity breaks down are the extremal (maximal or minimal) surfaces, which represent an
event horizon in the spacetime. Thus, one may argue that since the event horizon hides a portion of
spacetime, we cannot know the details of the physical state of the matter + gravity system behind
the horizon. Hence, in particular, the monotonicity of the quasi-local mass may be expected to
break down at the event horizon. However, although for stationary systems (or at the moment of
time symmetry of a time-symmetric system) the event horizon corresponds to an apparent horizon
(or to an extremal surface, respectively), for general nonstationary systems the concepts of the
event and apparent horizons deviate. Thus, it does not seem possible to formulate the causal
argument of Section 4.3.2 in the hypersurface Σ. Actually, the root of the nonmonotonicity is
the fact that the quasi-local energy is a two-surface observable in the sense of Requirement 1
in Section 4.3.1 above. This does not mean, of course, that in certain restricted situations the
monotonicity (‘local monotonicity’) could not be proven. This local monotonicity may be based,
for example, on Lie dragging of the two-surface along some special spacetime vector field.

On the other hand, in the literature the positivity and monotonicity requirements are sometimes
confused, and there is an ‘argument’ that the quasi-local gravitational energy cannot be positive
definite, because the total energy of the closed universes must be zero. However, this argument
is based on the implicit assumption that the quasi-local energy is associated with a compact
three-dimensional domain, which, together with the positive definiteness requirement would, in
fact, imply the monotonicity and a positive total energy for the closed universe. If, on the other
hand, the quasi-local energy-momentum is associated with two-surfaces, then the energy may be
positive definite and not monotonic. The standard round sphere energy expression (4.7) in the
closed Friedmann–Robertson–Walker spacetime, or, more generally, the Dougan–Mason energy-
momentum (see Section 8.2.3) are such examples.
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5 The Bartnik Mass and its Modifications

5.1 The Bartnik mass

5.1.1 The main idea

One of the most natural ideas of quasi-localization of the familiar ADM mass is due to Bartnik [47,
46]. His idea is based on the positivity of the ADM energy, and, roughly, can be summarized as
follows. Let Σ be a compact, connected three-manifold with connected boundary 𝒮, and let ℎ𝑎𝑏

be a (negative definite) metric and 𝜒𝑎𝑏 a symmetric tensor field on Σ, such that they, as an initial
data set, satisfy the dominant energy condition: if 16𝜋𝐺𝜇 := 𝑅 + 𝜒2 − 𝜒𝑎𝑏𝜒

𝑎𝑏 and 8𝜋𝐺𝑗𝑎 :=
𝐷𝑏(𝜒𝑎𝑏 − 𝜒ℎ𝑎𝑏), then 𝜇 ≥ (−𝑗𝑎𝑗𝑎)1/2. For the sake of simplicity we denote the triple (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏)
by Σ. Then let us consider all the possible asymptotically flat initial data sets (Σ̂, ℎ̂𝑎𝑏, �̂�𝑎𝑏) with
a single asymptotic end, denoted simply by Σ̂, which satisfy the dominant energy condition, have
finite ADM energy and are extensions of Σ above through its boundary 𝒮. The set of these
extensions will be denoted by ℰ(Σ). By the positive energy theorem, Σ̂ has non-negative ADM
energy 𝐸ADM(Σ̂), which is zero precisely when Σ̂ is a data set for the flat spacetime. Then we
can consider the infimum of the ADM energies, inf

{︁
𝐸ADM(Σ̂) | Σ̂ ∈ ℰ(Σ)

}︁
, where the infimum is

taken on ℰ(Σ). Obviously, by the non-negativity of the ADM energies, this infimum exists and is
non-negative, and it is tempting to define the quasi-local mass of Σ by this infimum8. However,
it is easy to see that, without further conditions on the extensions of (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏), this infimum is
zero. In fact, Σ can be extended to an asymptotically flat initial data set Σ̂ with arbitrarily small
ADM energy such that Σ̂ contains a horizon (for example in the form of an apparent horizon)
between the asymptotically flat end and Σ. In particular, in the ‘Ω𝑀,𝑚-spacetime’ discussed in
Section 4.2.1 on round spheres, the spherically symmetric domain bounded by the maximal surface
(with arbitrarily-large round-sphere mass 𝑀/𝐺) has an asymptotically flat extension, the Ω𝑀,𝑚-
spacetime itself, with arbitrarily small ADM mass 𝑚/𝐺.

Obviously, the fact that the ADM energies of the extensions can be arbitrarily small is a
consequence of the presence of a horizon hiding Σ from the outside. This led Bartnik [47, 46]
to formulate his suggestion for the quasi-local mass of Σ. He concentrated on time-symmetric
data sets (i.e., those for which the extrinsic curvature 𝜒𝑎𝑏 is vanishing), when the horizon appears
to be a minimal surface of topology 𝑆2 in Σ̂ (see, for example, [194]), and the dominant energy
condition is just the requirement of the non-negativity of the scalar curvature: 𝑅 ≥ 0. Thus, if
ℰ0(Σ) denotes the set of asymptotically flat Riemannian geometries Σ̂ = (Σ̂, ℎ̂𝑎𝑏) with non-negative
scalar curvature and finite ADM energy that contain no stable minimal surface, then Bartnik’s
mass is

𝑚B (Σ) := inf
{︁
𝐸ADM(Σ̂) | Σ̂ ∈ ℰ0 (Σ)

}︁
. (5.1)

The ‘no-horizon’ condition on Σ̂ implies that topologically Σ is a three-ball. Furthermore, the
definition of ℰ0(Σ) in its present form does not allow one to associate the Bartnik mass to those
three-geometries (Σ, ℎ𝑎𝑏) that contain minimal surfaces inside Σ. Although formally the maximal
two-surfaces inside Σ are not excluded, any asymptotically flat extension of such a Σ would contain
a minimal surface. In particular, the spherically-symmetric three-geometry, with line element
𝑑𝑙2 = −𝑑𝑟2 − sin2 𝑟(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2) with (𝜃, 𝜑) ∈ 𝑆2 and 𝑟 ∈ [0, 𝑟0], 𝜋/2 < 𝑟0 < 𝜋, has a
maximal two-surface at 𝑟 = 𝜋/2, and any of its asymptotically flat extensions necessarily contains
a minimal surface of area not greater than 4𝜋 sin2 𝑟0. Thus, the Bartnik mass (according to the
original definition given in [47, 46]) cannot be associated with every compact time-symmetric data
set (Σ, ℎ𝑎𝑏), even if Σ is topologically trivial. Since for 0 < 𝑟0 < 𝜋/2 this data set can be extended

8Since we take the infimum, we could equally take the ADM masses, which are the minimum values of the zero-th
component of the energy-momentum four-vectors in the different Lorentz frames, instead of the energies.
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without any difficulty, this example shows that 𝑚B is associated with the three-dimensional data
set Σ, and not only to the two-dimensional boundary 𝜕Σ.

Of course, to rule out this limitation, one can modify the original definition by considering the
set ℰ̃0(𝒮) of asymptotically flat Riemannian geometries Σ̂ = (Σ̂, ℎ̂𝑎𝑏) (with non-negative scalar
curvature, finite ADM energy and with no stable minimal surface), which contain (𝒮, 𝑞𝑎𝑏) as an
isometrically-embedded Riemannian submanifold, and define �̃�B(𝒮) by Equation (5.1) with ℰ̃0(𝒮)
instead of ℰ0(Σ). Obviously, this �̃�B(𝒮) could be associated with a larger class of two-surfaces
than the original 𝑚B(Σ) can be to compact three-manifolds, and 0 ≤ �̃�B(𝜕Σ) ≤ 𝑚B(Σ) holds.

In [256, 49] the set ℰ0(Σ) was allowed to include extensions Σ̂ of Σ having boundaries as compact
outermost horizons, when the corresponding ADM energies are still non-negative [197], and hence
𝑚B(Σ) is still well defined and non-negative. (For another description of ℰ0(Σ) allowing horizons
in the extensions but excluding them between Σ and the asymptotic end, see [102] and Section 5.2
of this paper.)

Bartnik suggests a definition for the quasi-local mass of a spacelike two-surface 𝒮 (together
with its induced metric and the two extrinsic curvatures), as well [47]. He considers those globally-
hyperbolic spacetimes �̂� := (�̂�, 𝑔𝑎𝑏) that satisfy the dominant energy condition, admit an asymp-
totically flat (metrically-complete) Cauchy surface Σ̂ with finite ADM energy, have no event horizon
and in which 𝒮 can be embedded with its first and second fundamental forms. Let ℰ0(𝒮) denote
the set of these spacetimes. Since the ADM energy 𝐸ADM(�̂�) is non-negative for any �̂� ∈ ℰ0(𝒮)
(and is zero precisely for flat �̂�), the infimum

𝑚B (𝒮) := inf
{︁
𝐸ADM(�̂�) | �̂� ∈ ℰ0 (𝒮)

}︁
(5.2)

exists and is non-negative. Although it seems plausible that 𝑚B(𝜕Σ) is only the ‘spacetime version’
of 𝑚B(Σ), without the precise form of the no-horizon conditions in ℰ0(Σ) and that in ℰ0(𝒮) they
cannot be compared, even if the extrinsic curvature were allowed in the extensions Σ̂ of Σ.

5.1.2 The main properties of 𝑚B(Σ)

The first immediate consequence of Equation (5.1) is the monotonicity of the Bartnik mass. If
Σ1 ⊂ Σ2, then ℰ0(Σ2) ⊂ ℰ0(Σ1), and hence, 𝑚B(Σ1) ≤ 𝑚B(Σ2). Obviously, by definition (5.1) one
has 𝑚B(Σ) ≤ 𝑚ADM(Σ̂) for any Σ̂ ∈ ℰ0(Σ). Thus, if 𝑚 is any quasi-local mass functional that
is larger than 𝑚B (i.e., that assigns a non-negative real to any Σ such that 𝑚(Σ) ≥ 𝑚B(Σ) for
any allowed Σ), furthermore if 𝑚(Σ) ≤ 𝑚ADM(Σ̂) for any Σ̂ ∈ ℰ0(Σ), then by the definition of the
infimum in Equation (5.1) one has 𝑚B(Σ) ≥ 𝑚(Σ)−𝜀 ≥ 𝑚B(Σ)−𝜀 for any 𝜀 > 0. Therefore, 𝑚B is
the largest mass functional satisfying 𝑚B(Σ) ≤ 𝑚ADM(Σ̂) for any Σ̂ ∈ ℰ0(Σ). Another interesting
consequence of the definition of 𝑚B, due to Simon (see [49]), is that if Σ̂ is any asymptotically flat,
time-symmetric extension of Σ with non-negative scalar curvature satisfying 𝑚ADM(Σ̂) < 𝑚B(Σ),
then there is a black hole in Σ̂ in the form of a minimal surface between Σ and the infinity of Σ̂.
For further discussion of 𝑚B(Σ) from the point of view of black holes, as well as the relationship
between the Bartnik mass and other expressions (e.g., the Hawking energy), see [425].

As we saw, the Bartnik mass is non-negative, and, obviously, if Σ is flat (and hence is a data
set for flat spacetime), then 𝑚B(Σ) = 0. The converse of this statement is also true [256]; if
𝑚B(Σ) = 0, then Σ is locally flat. The Bartnik mass tends to the ADM mass [256]; if (Σ̂, ℎ̂𝑎𝑏) is
an asymptotically flat Riemannian three-geometry with non-negative scalar curvature and finite
ADM mass 𝑚ADM(Σ̂), and if {Σ𝑛}, 𝑛 ∈ N, is a sequence of solid balls of coordinate radius 𝑛 in Σ̂,
then lim𝑛→∞𝑚B(Σ𝑛) = 𝑚ADM(Σ̂). The proof of these two results is based on the use of Hawking
energy (see Section 6.1), by means of which a positive lower bound for 𝑚B(Σ) can be given near
the nonflat points of Σ. In the proof of the second statement one must use the fact that Hawking
energy tends to the ADM energy, which, in the time-symmetric case, is just the ADM mass.
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The proof that the Bartnik mass reduces to the ‘standard expression’ for round spheres is a nice
application of the Riemannian Penrose inequality [256]. Let Σ be a spherically-symmetric Rieman-
nian three-geometry with spherically-symmetric boundary 𝒮 := 𝜕Σ. One can form its ‘standard’
round-sphere energy 𝐸(𝒮) (see Section 4.2.1), and take its spherically-symmetric asymptotically
flat vacuum extension Σ̂SS (see [47, 49]). By the Birkhoff theorem the exterior part of Σ̂SS is a
part of a 𝑡 = const. hypersurface of the vacuum Schwarzschild solution, and its ADM mass is
just 𝐸(𝒮). Then, any asymptotically flat extension Σ̂ of Σ can also be considered as (a part of)
an asymptotically flat time-symmetric hypersurface with minimal surface, whose area is 16𝜋𝐺2

𝐸ADM(Σ̂SS). Thus, by the Riemannian Penrose inequality [256] 𝐸ADM(Σ̂) ≥ 𝐸ADM(Σ̂SS) = 𝐸(𝒮).
Therefore, the Bartnik mass of Σ is just the ‘standard’ round-sphere expression 𝐸(𝒮).

5.1.3 The computability of the Bartnik mass

Since for any given Σ the set ℰ0(Σ) of its extensions is a huge set, it is almost hopeless to param-
eterize it. Thus, by its very definition, it seems very difficult to compute the Bartnik mass for a
given, specific (Σ, ℎ𝑎𝑏). Without some computational method the potentially useful properties of
𝑚B(Σ) would be lost from the working relativist’s arsenal.

Such a computational method might be based on a conjecture of Bartnik [47, 49]: the infimum
in definition (5.1) of the mass 𝑚B(Σ) is realized by an extension (Σ̂, ℎ̂𝑎𝑏) of (Σ, ℎ𝑎𝑏) such that the
exterior region, (Σ̂−Σ, ℎ̂𝑎𝑏|Σ̂−Σ), is static, the metric is Lipschitz-continuous across the two-surface
𝜕Σ ⊂ Σ̂, and the mean curvatures of 𝜕Σ of the two sides are equal. Therefore, to compute 𝑚B for
a given (Σ, ℎ𝑎𝑏), one should find an asymptotically flat, static vacuum metric ℎ̂𝑎𝑏 satisfying the
matching conditions on 𝜕Σ, and where the Bartnik mass is the ADM mass of ℎ̂𝑎𝑏. As Corvino
shows [142], if there is an allowed extension Σ̂ of Σ for which 𝑚ADM(Σ̂) = 𝑚B(Σ), then the
extension Σ̂ − Σ is static; furthermore, if Σ1 ⊂ Σ2, 𝑚B(Σ1) = 𝑚B(Σ2) and Σ2 has an allowed
extension Σ̂ for which 𝑚B(Σ2) = 𝑚ADM(Σ̂), then Σ2 − Σ1 is static. Thus, the proof of Bartnik’s
conjecture is equivalent to the proof of the existence of such an allowed extension. The existence of
such an extension is proven in [331] for geometries (Σ, ℎ𝑎𝑏) close enough to the Euclidean one and
satisfying a certain reflection symmetry, but the general existence proof is still lacking. Bartnik’s
conjecture is that (Σ, ℎ𝑎𝑏) determines this exterior metric uniquely [49]. He conjectures [47, 49]
that a similar computation method can be found for the mass 𝑚B(𝒮), defined in Equation (5.2), as
well, where the exterior metric should be stationary. This second conjecture is also supported by
partial results [143]; if (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏) is any compact vacuum data set, then it has an asymptotically
flat vacuum extension, which is a spacelike slice of a Kerr spacetime outside a large sphere near
spatial infinity.

To estimate 𝑚B(Σ) one can construct admissible extensions of (Σ, ℎ𝑎𝑏) in the form of the metrics
in quasi-spherical form [48]. If the boundary 𝜕Σ is a metric sphere of radius 𝑟 with non-negative
mean curvature 𝑘, then 𝑚B(Σ) can be estimated from above in terms of 𝑟 and 𝑘.

5.2 Bray’s modifications

Another, slightly modified definition for the quasi-local mass is suggested by Bray [102, 105]. Here
we summarize his ideas.

Let Σ = (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏) be any asymptotically flat initial data set with finitely-many asymptotic
ends and finite ADM masses, and suppose that the dominant energy condition is satisfied on Σ.
Let 𝒮 be any fixed two-surface in Σ, which encloses all the asymptotic ends except one, say the
𝑖-th (i.e., let 𝒮 be homologous to a large sphere in the 𝑖-th asymptotic end). The outside region
with respect to 𝒮, denoted by 𝑂(𝒮), will be the subset of Σ containing the 𝑖-th asymptotic end
and bounded by 𝒮, while the inside region, 𝐼(𝒮), is the (closure of) Σ−𝑂(𝒮). Next, Bray defines
the ‘extension’ Σ̂𝑒 of 𝒮 by replacing 𝑂(𝒮) by a smooth asymptotically flat end of any data set
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satisfying the dominant energy condition. Similarly, the ‘fill-in’ Σ̂f of 𝒮 is obtained from Σ by
replacing 𝐼(𝒮) by a smooth asymptotically flat end of any data set satisfying the dominant energy
condition. Finally, the surface 𝒮 will be called outer-minimizing if, for any closed two-surface 𝒮
enclosing 𝒮, one has Area(𝒮) ≤ Area(𝒮).

Let 𝒮 be outer-minimizing, and let ℰ(𝒮) denote the set of extensions of 𝒮 in which 𝒮 is still
outer-minimizing, and ℱ(𝒮) denote the set of fill-ins of 𝒮. If Σ̂f ∈ ℱ(𝒮) and 𝐴Σ̂f

denotes the
infimum of the area of the two-surfaces enclosing all the ends of Σ̂f except the outer one, then Bray
defines the outer and inner mass, 𝑚out(𝒮) and 𝑚in(𝒮), respectively, by

𝑚out (𝒮) :=
{︁
𝑚ADM(Σ̂𝑒) | Σ̂𝑒 ∈ ℰ (𝒮)

}︁
,

𝑚in (𝒮) :=
{︁
𝐴Σ̂f

| Σ̂f ∈ ℱ (𝒮)
}︁
.

𝑚out(𝒮) deviates slightly from Bartnik’s mass (5.1) even if the latter would be defined for non–
time-symmetric data sets, because Bartnik’s ‘no-horizon condition’ excludes apparent horizons
from the extensions, while Bray’s condition is that 𝒮 be outer-minimizing.

A simple consequence of the definitions is the monotonicity of these masses; if 𝒮2 and 𝒮1 are
outer-minimizing two-surfaces such that 𝒮2 encloses 𝒮1, then 𝑚in(𝒮2) ≥ 𝑚in(𝒮1) and 𝑚out(𝒮2) ≥
𝑚out(𝒮1). Furthermore, if the Penrose inequality holds (for example, in a time-symmetric data
set, for which the inequality has been proven), then for outer-minimizing surfaces 𝑚out(𝒮) ≥
𝑚in(𝒮) [102, 105]. Furthermore, if Σ𝑖 is a sequence such that the boundaries 𝜕Σ𝑖 shrink to a mini-
mal surface 𝒮, then the sequence 𝑚out(𝜕Σ𝑖) tends to the irreducible mass

√︀
Area(𝒮)/(16𝜋𝐺2) [49].

Bray defines the quasi-local mass of a surface not simply to be a number, but the whole closed
interval [𝑚in(𝒮),𝑚out(𝒮)]. If 𝒮 encloses the horizon in the Schwarzschild data set, then the inner
and outer masses coincide, and Bray expects that the converse is also true; if 𝑚in(𝒮) = 𝑚out(𝒮)
then 𝒮 can be embedded into the Schwarzschild spacetime with the given two-surface data on
𝒮 [105].
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6 The Hawking Energy and its Modifications

6.1 The Hawking energy

6.1.1 The definition

Studying the perturbation of the dust-filled 𝑘 = −1 Friedmann–Robertson–Walker spacetimes,
Hawking found that

𝐸H (𝒮) :=

√︂
Area(𝒮)
16𝜋𝐺2

(︂
1 +

1
2𝜋

∮︁
𝒮
𝜌𝜌′ 𝑑𝒮

)︂
=

=

√︂
Area(𝒮)
16𝜋𝐺2

1
4𝜋

∮︁
𝒮

(︀
𝜎𝜎′ + �̄��̄�′ − 𝜓2 − 𝜓2′ + 2𝜑11 + 2Λ

)︀
𝑑𝒮 (6.1)

behaves as an appropriate notion of energy surrounded by the spacelike topological two-sphere
𝒮 [214]. Here we used the Gauss–Bonnet theorem and the GHP form of Equations (4.3) and (4.4)
for 𝐹 to express 𝜌𝜌′ by the curvature components and the shears. Thus, Hawking energy is
genuinely quasi-local.

Hawking energy has the following clear physical interpretation even in a general spacetime,
and, in fact, 𝐸H can be introduced in this way. Starting with the rough idea that the mass-
energy surrounded by a spacelike two-sphere 𝒮 should be the measure of bending of the ingoing
and outgoing light rays orthogonal to 𝒮, and recalling that under a boost gauge transformation
𝑙𝑎 ↦→ 𝛼𝑙𝑎, 𝑛𝑎 ↦→ 𝛼−1𝑛𝑎 the convergences 𝜌 and 𝜌′ transform as 𝜌 ↦→ 𝛼𝜌 and 𝜌′ ↦→ 𝛼−1𝜌′, respectively,
the energy must have the form 𝐶 + 𝐷

∮︀
𝒮 𝜌𝜌

′ 𝑑𝒮, where the unspecified parameters 𝐶 and 𝐷 can
be determined in some special situations. For metric two-spheres of radius 𝑟 in the Minkowski
spacetime, for which 𝜌 = −1/𝑟 and 𝜌′ = 1/2𝑟, we expect zero energy, thus, 𝐷 = 𝐶/(2𝜋). For the
event horizon of a Schwarzschild black hole with mass parameter 𝑚, for which 𝜌 = 0 = 𝜌′, we
expect 𝑚/𝐺, which can be expressed by the area of 𝒮. Thus, 𝐶2 = Area(𝒮)/(16𝜋𝐺2), and hence,
we arrive at Equation (6.1).

6.1.2 Hawking energy for spheres

Obviously, for round spheres, 𝐸H reduces to the standard expression (4.7). This implies, in par-
ticular, that the Hawking energy is not monotonic in general, since for a Killing horizon (e.g.,
for a stationary event horizon) 𝜌 = 0, the Hawking energy of its spacelike spherical cross sections
𝒮 is

√︀
Area(𝒮)/(16𝜋𝐺2). In particular, for the event horizon of a Kerr–Newman black hole it is

just the familiar irreducible mass
√︀

2𝑚2 − 𝑒2 + 2𝑚
√
𝑚2 − 𝑒2 − 𝑎2/(2𝐺). For more general surfaces

Hawking energy is calculated numerically in [249].
For a small sphere of radius 𝑟 with center 𝑝 ∈ 𝑀 in nonvacuum spacetimes it is 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏,
while in vacuum it is 2

45𝐺𝑟
5𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑, where 𝑇𝑎𝑏 is the energy-momentum tensor and 𝑇𝑎𝑏𝑐𝑑 is
the Bel–Robinson tensor at 𝑝 [252]. The first result shows that in the lowest order the gravitational
‘field’ does not have a contribution to Hawking energy that is due exclusively to the matter fields.
Thus, in vacuum the leading order of 𝐸H must be higher than 𝑟3. Then, even a simple dimensional
analysis shows that the number of the derivatives of the metric in the coefficient of the 𝑟𝑘-order
term in the power series expansion of 𝐸H is (𝑘−1). However, there are no tensorial quantities built
from the metric and its derivatives such that the total number of the derivatives involved would
be three. Therefore, in vacuum, the leading term is necessarily of order 𝑟5, and its coefficient must
be a quadratic expression of the curvature tensor. It is remarkable that for small spheres 𝐸H is
positive definite both in nonvacuum (provided the matter fields satisfy, for example, the dominant
energy condition) and vacuum. This shows, in particular, that 𝐸H should be interpreted as energy
rather than as mass; for small spheres in a pp-wave spacetime 𝐸H is positive, while, as we saw
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for matter fields in Section 2.2.3, a mass expression could be expected to be zero. (We will see in
Sections 8.2.3 and 13.5 that, for the Dougan–Mason energy-momentum, the vanishing of the mass
characterizes the pp-wave metrics completely.)

Using the second expression in Equation (6.1) it is easy to see that at future null infinity 𝐸H

tends to the Bondi–Sachs energy. A detailed discussion of the asymptotic properties of 𝐸H near null
infinity, both for radiative and stationary spacetimes is given in [420, 422]. Similarly, calculating
𝐸H for large spheres near spatial infinity in an asymptotically flat spacelike hypersurface, one can
show that it tends to the ADM energy.

6.1.3 Positivity and monotonicity properties

In general, Hawking energy may be negative, even in Minkowski spacetime. Geometrically this
should be clear, since for an appropriately general (e.g., concave) two-surface 𝒮, the integral∮︀
𝒮 𝜌𝜌

′ 𝑑𝒮 could be less than−2𝜋. Indeed, in flat spacetime 𝐸H is proportional to
∮︀
𝒮(𝜎𝜎′+�̄��̄�′) 𝑑𝒮 by

the Gauss equation. For topologically-spherical two-surfaces in the 𝑡 = const. spacelike hyperplane
of Minkowski spacetime 𝜎𝜎′ is real and nonpositive, and it is zero precisely for metric spheres,
while for two-surfaces in the 𝑟 = const. timelike cylinder 𝜎𝜎′ is real and non-negative, and it is
zero precisely for metric spheres9. If, however, 𝒮 is ‘round enough’ (not to be confused with the
round spheres in Section 4.2.1), which is some form of a convexity condition, then 𝐸H behaves
nicely [131]: 𝒮 will be called round enough if it is a submanifold of a spacelike hypersurface Σ, and
if among the two-dimensional surfaces in Σ, which enclose the same volume as 𝒮 does, 𝒮 has the
smallest area. It is proven by Christodoulou and Yau [131] that if 𝒮 is round enough in a maximal
spacelike slice Σ on which the energy density of the matter fields is non-negative (for example, if
the dominant energy condition is satisfied), then the Hawking energy is non-negative.

Although Hawking energy is not monotonic in general, it has interesting monotonicity properties
for special families of two-surfaces. Hawking considered one-parameter families of spacelike two-
surfaces foliating the outgoing and the ingoing null hypersurfaces, and calculated the change of
𝐸H [214]. These calculations were refined by Eardley [162]. Starting with a weakly future convex
two-surface 𝒮 and using the boost gauge freedom, he introduced a special family 𝒮𝑟 of spacelike
two-surfaces in the outgoing null hypersurface 𝒩 , where 𝑟 will be the luminosity distance along the
outgoing null generators. He showed that 𝐸H(𝒮𝑟) is nondecreasing with 𝑟, provided the dominant
energy condition holds on 𝒩 . Similarly, for weakly past convex 𝒮 and the analogous family of
surfaces in the ingoing null hypersurface 𝐸H(𝒮𝑟) is nonincreasing. Eardley also considered a special
spacelike hypersurface, filled by a family of two-surfaces, for which 𝐸H(𝒮𝑟) is nondecreasing. By
relaxing the normalization condition 𝑙𝑎𝑛

𝑎 = 1 for the two null normals to 𝑙𝑎𝑛𝑎 = exp(𝑓) for some
𝑓 : 𝒮 → R, Hayward obtained a flexible enough formalism to introduce a double-null foliation (see
Section 11.2 below) of a whole neighborhood of a mean convex two-surface by special mean convex
two-surfaces [225]. (For the more general GHP formalism in which 𝑙𝑎𝑛

𝑎 is not fixed, see [391].)
Assuming that the dominant energy condition holds, he showed that the Hawking energy of these
two-surfaces is nondecreasing in the outgoing, and nonincreasing in the ingoing direction.

In contrast to the special foliations of the null hypersurfaces above, Frauendiener defined a
special spacelike vector field, the inverse mean curvature vector in the spacetime [178]. If 𝒮 is a
weakly future and past convex two-surface, then 𝑞𝑎 := 2𝑄𝑎/(𝑄𝑏𝑄

𝑏) = −[1/(2𝜌)]𝑙𝑎 − [1/(2𝜌′)]𝑛𝑎 is
an outward-directed spacelike normal to 𝒮. Here 𝑄𝑏 is the trace of the extrinsic curvature tensor:
𝑄𝑏 := 𝑄𝑎

𝑎𝑏 (see Section 4.1.2). Starting with a single weakly future and past convex two-surface,
Frauendiener gives an argument for the construction of a one-parameter family 𝒮𝑡 of two-surfaces
being Lie-dragged along its own inverse mean curvature vector 𝑞𝑎. Assuming that such a family of
surfaces (and hence, the vector field 𝑞𝑎 on the three-submanifold swept by 𝒮𝑡) exists, Frauendiener
showed that the Hawking energy is nondecreasing along the vector field 𝑞𝑎 if the dominant energy

9I thank Paul Tod for pointing this out to me.
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condition is satisfied. This family of surfaces would be analogous to the solution of the geodesic
equation, where the initial point and direction at that point specify the whole solution, at least
locally. However, it is known (Frauendiener, private communication) that the corresponding flow
is based on a system of parabolic equations such that it does not admit a well-posed initial value
formulation.10 Motivated by this result, Malec, Mars, and Simon [323] considered the inverse
mean curvature flow of Geroch on spacelike hypersurfaces (see Section 6.2.2). They showed that
if the dominant energy condition and certain additional (essentially technical) assumptions hold,
then the Hawking energy is monotonic. These two results are the natural adaptations for the
Hawking energy of the corresponding results known for some time for the Geroch energy, aiming
to prove the Penrose inequality. (We return to this latter issue in Section 13.2, only for a very
brief summary.) The necessary conditions on flows of two-surfaces on null, as well as spacelike,
hypersurfaces ensuring the monotonicity of the Hawking energy are investigated in [101].

For a discussion of the relationship between Hawking energy and other expressions (e.g., the
Bartnik mass and the Brown–York energy), see [425].

6.1.4 Two generalizations

Hawking defined not only energy, but spatial momentum as well, completely analogously to how
the spatial components of Bondi–Sachs energy-momentum are related to Bondi energy:

𝑃
𝑎
H (𝒮) =

√︂
Area(𝒮)
16𝜋𝐺2

1
4𝜋

∮︁
𝒮

(︀
𝜎𝜎′ + �̄��̄�′ − 𝜓2 − 𝜓2′ + 2𝜑11 + 2Λ

)︀
𝑊 𝑎 𝑑𝒮, (6.2)

where 𝑊 𝑎 , 𝑎 = 0, . . . , 3, are essentially the first four spherical harmonics:

𝑊 0 = 1, 𝑊 1 =
𝜁 + 𝜁

1 + 𝜁𝜁
, 𝑊 2 =

1
i
𝜁 − 𝜁

1 + 𝜁𝜁
, 𝑊 3 =

1− 𝜁𝜁

1 + 𝜁𝜁
. (6.3)

Here 𝜁 and 𝜁 are the standard complex stereographic coordinates on 𝒮 ≈ 𝑆2.
Hawking considered the extension of the definition of 𝐸H(𝒮) to higher genus two-surfaces as

well by the second expression in Equation (6.1). Then, in the expression analogous to the first one
in Equation (6.1), the genus of 𝒮 appears.

6.2 The Geroch energy

6.2.1 The definition

Suppose that the two-surface 𝒮 for which 𝐸H is defined is embedded in the spacelike hypersurface
Σ. Let 𝜒𝑎𝑏 be the extrinsic curvature of Σ in 𝑀 and 𝑘𝑎𝑏 the extrinsic curvature of 𝒮 in Σ. (In
Section 4.1.2 we denote the latter by 𝜈𝑎𝑏.) Then 8𝜌𝜌′ = (𝜒𝑎𝑏𝑞

𝑎𝑏)2 − (𝑘𝑎𝑏𝑞
𝑎𝑏)2, by means of which

𝐸H (𝒮) =

√︂
Area(𝒮)
16𝜋𝐺2

(︂
1− 1

16𝜋

∮︁
𝒮

(︀
𝑘𝑎𝑏𝑞

𝑎𝑏
)︀2
𝑑𝒮 +

1
16𝜋

∮︁
𝒮

(︀
𝜒𝑎𝑏𝑞

𝑎𝑏
)︀2
𝑑𝒮
)︂
≥

≥
√︂

Area(𝒮)
16𝜋𝐺2

(︂
1− 1

16𝜋

∮︁
𝒮

(︀
𝑘𝑎𝑏𝑞

𝑎𝑏
)︀2
𝑑𝒮
)︂

=

=
1

16𝜋

√︂
Area(𝒮)
16𝜋𝐺2

∮︁
𝒮

(︁
2 𝒮𝑅−

(︀
𝑘𝑎𝑏𝑞

𝑎𝑏
)︀2)︁

𝑑𝒮 =: 𝐸G (𝒮) . (6.4)

In the last step we use the Gauss–Bonnet theorem for 𝒮 ≈ 𝑆2. 𝐸G(𝒮) is known as the Geroch
energy [188]. Thus, it is not greater than the Hawking energy, and, in contrast to 𝐸H, it depends
not only on the two-surface 𝒮, but on the hypersurface Σ as well.

10I am grateful to Jörg Frauendiener and one of the referees for clarifying this point.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://www.livingreviews.org/lrr-2009-4


Quasi-Local Energy-Momentum and Angular Momentum in General Relativity 57

The calculation of the small sphere limit of the Geroch energy was saved by observing [252]
that, by Equation (6.4), the difference of the Hawking and the Geroch energies is proportional to√︀

Area(𝒮)×
∮︀
𝒮(𝜒𝑎𝑏𝑞

𝑎𝑏)2 𝑑𝒮. Since, however, 𝜒𝑎𝑏𝑞
𝑎𝑏 – for the family of small spheres 𝒮𝑟 – does

not tend to zero in the 𝑟 → 0 limit, in general, this difference is 𝒪(𝑟3). It is zero if Σ is spanned
by spacelike geodesics orthogonal to 𝑡𝑎 at 𝑝. Thus, for general Σ, the Geroch energy does not
give the expected 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏 result. Similarly, in vacuum, the Geroch energy deviates from the
Bel–Robinson energy in 𝑟5 order even if Σ is geodesic at 𝑝.

Since 𝐸H(𝒮) ≥ 𝐸G(𝒮) and since the Hawking energy tends to the ADM energy, the large sphere
limit of 𝐸G(𝒮) in an asymptotically flat Σ cannot be greater than the ADM energy. In fact, it is
also precisely the ADM energy [188].

6.2.2 Monotonicity properties

The Geroch energy has interesting positivity and monotonicity properties along a special flow in
Σ [188, 268]. This flow is the inverse mean curvature flow defined as follows. Let 𝑡 : Σ → R be a
smooth function such that

1. its level surfaces, 𝒮𝑡 := {𝑞 ∈ Σ | 𝑡(𝑞) = 𝑡}, are homeomorphic to 𝑆2,

2. there is a point 𝑝 ∈ Σ such that the surfaces 𝒮𝑡 are shrinking to 𝑝 in the limit 𝑡→ −∞, and

3. they form a foliation of Σ− {𝑝}.

Let 𝑛 be the lapse function of this foliation, i.e., if 𝑣𝑎 is the outward directed unit normal to
𝒮𝑡 in Σ, then 𝑛𝑣𝑎𝐷𝑎𝑡 = 1. Denoting the integral on the right-hand side in Equation (6.4) by
𝑊𝑡, we can calculate its derivative with respect to 𝑡. In general this derivative does not seem
to have any remarkable properties. If, however, the foliation is chosen in a special way, namely
if the lapse is just the inverse mean curvature of the foliation, 𝑛 = 1/𝑘 where 𝑘 := 𝑘𝑎𝑏𝑞

𝑎𝑏, and
furthermore Σ is maximal (i.e., 𝜒 = 0) and the energy density of the matter is non-negative,
then, as shown by Geroch [188], 𝑊𝑡 ≥ 0 holds. Jang and Wald [268] modified the foliation
slightly, such that 𝑡 ∈ [0,∞), and the surface 𝒮0 was assumed to be future marginally trapped
(i.e., 𝜌 = 0 and 𝜌′ ≥ 0). Then they showed that, under the conditions above,

√︀
Area(𝒮0)𝑊0 ≤√︀

Area(𝒮𝑡)𝑊𝑡. Since 𝐸G(𝒮𝑡) tends to the ADM energy as 𝑡 → ∞, these considerations were
intended to argue that the ADM energy should be non-negative (at least for maximal Σ) and
not less than

√︀
Area(𝒮0)/(16𝜋𝐺2) (at least for time-symmetric Σ), respectively. Later Jang [266]

showed that, if a certain quasi-linear elliptic differential equation for a function 𝑤 on a hypersurface
Σ admits a solution (with given asymptotic behavior), then 𝑤 defines a mapping between the data
set (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏) on Σ and a maximal data set (Σ, ℎ̄𝑎𝑏, �̄�𝑎𝑏) (i.e., for which �̄�𝑎𝑏ℎ̄

𝑎𝑏 = 0) such that
the corresponding ADM energies coincide. Then Jang shows that a slightly modified version of
the Geroch energy is monotonic (and tends to the ADM energy) with respect to a new, modified
version of the inverse mean curvature foliation of (Σ, ℎ̄𝑎𝑏).

The existence and the properties of the original inverse-mean–curvature foliation of (Σ, ℎ𝑎𝑏)
above were proven and clarified by Huisken and Ilmanen [255, 256], giving the first complete proof
of the Riemannian Penrose inequality, and, as proven by Schoen and Yau [409], Jang’s quasi-linear
elliptic equation admits a global solution.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://www.livingreviews.org/lrr-2009-4
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6.3 The Hayward energy

We saw that 𝐸H can be nonzero, even in the Minkowski spacetime. This may motivate us to
consider the following expression

𝐼 (𝒮) :=

√︂
Area(𝒮)
16𝜋𝐺2

(︂
1 +

1
4𝜋

∮︁
𝒮

(2𝜌𝜌′ − 𝜎𝜎′ − �̄��̄�′) 𝑑𝒮
)︂

=

√︂
Area(𝒮)
16𝜋𝐺2

1
4𝜋

∮︁
𝒮

(︀
−𝜓2 − 𝜓2′ + 2𝜑11 + 2Λ

)︀
𝑑𝒮. (6.5)

(Thus, the integrand is 1
4 (𝐹 + 𝐹 ), where 𝐹 is given by Equation (4.4).) By the Gauss equation,

this is zero in flat spacetime, furthermore, it is not difficult to see that its limit at spatial infinity
is still the ADM energy. However, using the second expression of 𝐼(𝒮), one can see that its limit
at the future null infinity is the Newman–Unti, rather than the Bondi–Sachs energy.

In the literature there is another modification of Hawking energy, due to Hayward [226]. His
suggestion is essentially 𝐼(𝒮) with the only difference being that the integrands of Equation (6.5)
above contain an additional term, namely the square of the anholonomicity −𝜔𝑎𝜔

𝑎 (see Sec-
tions 4.1.8 and 11.2.1). However, we saw that 𝜔𝑎 is a boost-gauge–dependent quantity, thus, the
physical significance of this suggestion is questionable unless a natural boost gauge choice, e.g.,
in the form of a preferred foliation, is made. (Such a boost gauge might be that given by the
mean extrinsic curvature vector 𝑄𝑎 and �̃�𝑎 discussed in Section 4.1.2.) Although the expression
for the Hayward energy in terms of the GHP spin coefficients given in [73, 75] seems to be gauge
invariant, this is due only to an implicit gauge choice. The correct, general GHP form of the extra
term is −𝜔𝑎𝜔

𝑎 = 2(𝛽 − 𝛽′)(𝛽 − 𝛽′). If, however, the GHP spinor dyad is fixed, as in the large or
small sphere calculations, then 𝛽 − 𝛽′ = 𝜏 = −𝜏 ′, and hence, the extra term is, in fact, the gauge
invariant 2𝜏𝜏 .

Taking into account that 𝜏 = 𝒪(𝑟−2) near the future null infinity (see, for example, [420]), it is
obvious from the remark on the asymptotic behavior of 𝐼(𝒮) above that the Hayward energy tends
to the Newman-Unti, instead of the Bondi–Sachs, energy at the future null infinity. The Hayward
energy has been calculated for small spheres both in nonvacuum and vacuum [73]. In nonvacuum
it gives the expected value 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏. However, in vacuum it is − 8
45𝐺𝑟

5𝑇𝑎𝑏𝑐𝑑𝑡
𝑎𝑡𝑏𝑡𝑐𝑡𝑑, which is

negative.
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7 Penrose’s Quasi-Local Energy-Momentum and Angular
Momentum

The construction of Penrose is based on twistor-theoretical ideas, and motivated by the linearized
gravity integrals for energy-momentum and angular momentum. Since, however, twistor-theore-
tical ideas and basic notions are still considered ‘special knowledge’, the review here of the basic
idea behind the Penrose construction is slightly more detailed than that of the others. The main
introductory references of the field are the volumes [391, 392] by Penrose and Rindler on ‘Spinors
and Spacetime’, especially volume 2, the very readable book by Hugget and Tod [254] and the
comprehensive review article [475] by Tod.

7.1 Motivations

7.1.1 How do the twistors emerge?

In the Newtonian theory of gravity the mass contained in some finite three-volume Σ can be
expressed as the flux integral of the gravitational field strength on the boundary 𝒮 := 𝜕Σ:

𝑚Σ =
1

4𝜋𝐺

∮︁
𝒮
𝑣𝑎 (𝐷𝑎𝜑) 𝑑𝒮, (7.1)

where 𝜑 is the gravitational potential and 𝑣𝑎 is the outward-directed unit normal to 𝒮. If 𝒮 is
deformed in Σ through a source-free region, then the mass does not change. Thus, the mass 𝑚Σ

is analogous to charge in electrostatics.
In the weak field (linear) approximation of general relativity on Minkowski spacetime the source

of the gravitational field, i.e., the linearized energy-momentum tensor, is still analogous to charge.
In fact, the total energy-momentum and angular momentum of the source can be expressed as
appropriate two-surface integrals of the curvature at infinity [442]. Thus, it is natural to expect
that the energy-momentum and angular momentum of the source in a finite three-volume Σ, given
by Equation (2.5), can also be expressed as the charge integral of the curvature on the two-surface
𝒮. However, the curvature tensor can be integrated on 𝒮 only if at least one pair of its indices is
annihilated by some tensor via contraction, i.e., according to Equation (3.7) if some 𝜔𝑎𝑏 = 𝜔[𝑎𝑏] is
chosen and 𝜇𝑎𝑏 = 𝜀𝑎𝑏. To simplify the subsequent analysis, 𝜔𝑎𝑏 will be chosen to be anti-self-dual:
𝜔𝑎𝑏 = 𝜀𝐴′𝐵′𝜔𝐴𝐵 with 𝜔𝐴𝐵 = 𝜔(𝐴𝐵) 11. Thus, our goal is to find an appropriate spinor field 𝜔𝐴𝐵

on 𝒮 such that

𝑄𝒮 [K] :=
∫︁

Σ

𝐾𝑎𝑇
𝑎𝑏 1

3!
𝜀𝑏𝑐𝑑𝑒 =

1
8𝜋𝐺

∮︁
𝒮
𝜔𝐴𝐵𝑅𝐴𝐵𝑐𝑑 =: 𝐴𝒮 [𝜔] . (7.2)

Since the dual of the exterior derivative of the integrand on the right, and, by Einstein’s equations,
the dual of the 8𝜋𝐺 times the integrand on the left, respectively, is

𝜀𝑒𝑐𝑑𝑓∇𝑒(𝜔𝐴𝐵𝑅𝐴𝐵𝑐𝑑) = −2i𝜓𝐹
𝐴𝐵𝐶∇𝐹 ′(𝐴𝜔𝐵𝐶) + 2𝜑𝐴𝐵𝐸′

𝐹 ′ i∇𝐸′𝐹𝜔𝐴𝐵 + 4Λi∇𝐹 ′

𝐴 𝜔𝐹𝐴, (7.3)

−8𝜋𝐺𝐾𝑎𝑇
𝑎𝑓 = 2𝜑𝐹𝐴𝐹 ′𝐴′𝐾𝐴𝐴′ + 6Λ𝐾𝐹𝐹 ′ . (7.4)

Expressions (7.3) and (7.4) are equal if 𝜔𝐴𝐵 satisfies

∇𝐴′𝐴𝜔𝐵𝐶 = −i𝜀𝐴(𝐵𝐾𝐶)𝐴′ . (7.5)

This equation in its symmetrized form, ∇𝐴′(𝐴𝜔𝐵𝐶) = 0, is the valence 2 twistor equation, a specific
example for the general twistor equation∇𝐴′(𝐴𝜔𝐵𝐶...𝐸) = 0 for 𝜔𝐵𝐶...𝐸 = 𝜔(𝐵𝐶...𝐸). Thus, as could

11The analogous calculations using tensor methods and the real 𝜔𝑎𝑏 instead of spinors and the anti-self-dual
(a.s.d.) part of 𝜔𝑎𝑏 would be technically more complicated [386, 387, 392, 203].
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be expected, 𝜔𝐴𝐵 depends on the Killing vector 𝐾𝑎, and, in fact, 𝐾𝑎 can be recovered from 𝜔𝐴𝐵 as
𝐾𝐴′𝐴 = 2

3 i∇𝐴′

𝐵 𝜔𝐴𝐵 . Thus, 𝜔𝐴𝐵 plays the role of a potential for the Killing vector 𝐾𝐴′𝐴. However,
as a consequence of Equation (7.5), 𝐾𝑎 is a self-dual Killing 1-form in the sense that its derivative
is a self-dual (s.d.) two-form: In fact, the general solution of Equation (7.5) and the corresponding
Killing vector are

𝜔𝐴𝐵 = −i𝑥𝐴𝐴′𝑥𝐵𝐵′�̄�𝐴′𝐵′ + i𝑥(𝐴
𝐴′𝑇

𝐵)𝐴′ + Ω𝐴𝐵 ,

𝐾𝐴𝐴′ = 𝑇𝐴𝐴′ + 2𝑥𝐴𝐵′�̄�𝐴′

𝐵′ ,
(7.6)

where �̄�𝐴′𝐵′ , 𝑇𝐴𝐴′ , and Ω𝐴𝐵 are constant spinors, and using the notation 𝑥𝐴𝐴′ := 𝑥𝑎 𝜎
𝐴 𝐴 ′

𝑎 ℰ𝐴
𝐴 ℰ̄𝐴′

𝐴 ′ ,

where {ℰ𝐴
𝐴 } is a constant spin frame (the ‘Cartesian spin frame’) and 𝜎

𝐴 𝐴 ′

𝑎 are the standard
𝑆𝐿(2,C) Pauli matrices (divided by

√
2). These yield that 𝐾𝑎 is, in fact, self-dual, ∇𝐴𝐴′𝐾𝐵𝐵′ =

𝜀𝐴𝐵�̄�𝐴′𝐵′ , 𝑇𝐴𝐴′ is a translation and �̄�𝐴′𝐵′ generates self-dual rotations. Then𝑄𝒮 [K] = 𝑇𝐴𝐴′𝑃
𝐴𝐴′

+2�̄�𝐴′𝐵′𝐽
𝐴′𝐵′ , implying that the charges corresponding to Ω𝐴𝐵 are vanishing; the four compo-

nents of the quasi-local energy-momentum correspond to the real 𝑇𝐴𝐴′s, and the spatial angular
momentum and center-of-mass are combined into the three complex components of the self-dual
angular momentum 𝐽𝐴′𝐵′ , generated by �̄�𝐴′𝐵′ .

7.1.2 Twistor space and the kinematical twistor

Recall that the space of the contravariant valence-one twistors of Minkowski spacetime is the set of
the pairs 𝑍𝛼 := (𝜆𝐴, 𝜋𝐴′) of spinor fields, which solve the valence-one–twistorequation ∇𝐴′𝐴𝜆𝐵 =
−i𝜀𝐴𝐵𝜋𝐴′ . If 𝑍𝛼 is a solution of this equation, then 𝑍𝛼 := (𝜆𝐴, 𝜋𝐴′ + iϒ𝐴′𝐴𝜆

𝐴) is a solution of
the corresponding equation in the conformally-rescaled spacetime, where ϒ𝑎 := Ω−1∇𝑎Ω and Ω
is the conformal factor. In general, the twistor equation has only the trivial solution, but in the
(conformal) Minkowski spacetime it has a four complex-parameter family of solutions. Its general
solution in the Minkowski spacetime is 𝜆𝐴 = Λ𝐴 − i𝑥𝐴𝐴′𝜋𝐴′ , where Λ𝐴 and 𝜋𝐴′ are constant
spinors. Thus, the space T𝛼 of valence-one twistors, called the twistor space, is four–complex-
dimensional, and hence, has the structure T𝛼 = S𝐴 ⊕ S̄𝐴′ . T𝛼 admits a natural Hermitian
scalar product : if 𝑊 𝛽 = (𝜔𝐵 , 𝜎𝐵′) is another twistor, then 𝐻𝛼𝛽′𝑍

𝛼�̄� 𝛽′ := 𝜆𝐴�̄�𝐴 + 𝜋𝐴′ �̄�
𝐴′ . Its

signature is (+,+,−,−), it is conformally invariant, 𝐻𝛼𝛽′𝑍
𝛼 ¯̂
𝑊 𝛽′ = 𝐻𝛼𝛽′𝑍

𝛼�̄� 𝛽′ , and it is constant
on Minkowski spacetime. The metric 𝐻𝛼𝛽′ defines a natural isomorphism between the complex
conjugate twistor space, T̄𝛼′ , and the dual twistor space, T𝛽 := S𝐵⊕S̄𝐵′ , by (�̄�𝐴′ , �̄�𝐴) ↦→ (�̄�𝐴, �̄�

𝐴′).
This makes it possible to use only twistors with unprimed indices. In particular, the complex
conjugate 𝐴𝛼′𝛽′ of the covariant valence 2 twistor 𝐴𝛼𝛽 can be represented by the conjugate twistor
𝐴𝛼𝛽 := 𝐴𝛼′𝛽′𝐻

𝛼′𝛼𝐻𝛽′𝛽 . We should mention two special, higher-valence twistors. The first is the
infinity twistor. This and its conjugate are given explicitly by

𝐼𝛼𝛽 :=
(︂
𝜀𝐴𝐵 0

0 0

)︂
, 𝐼𝛼𝛽 := 𝐼𝛼′𝛽′𝐻𝛼′𝛼𝐻𝛽′𝛽 =

(︂
0 0
0 𝜀𝐴′𝐵′

)︂
. (7.7)

The other is the completely anti-symmetric twistor 𝜀𝛼𝛽𝛾𝛿, whose component 𝜀0123 in an 𝐻𝛼𝛽′ -
orthonormal basis is required to be one. The only nonvanishing spinor parts of 𝜀𝛼𝛽𝛾𝛿 are those
with two primed and two unprimed spinor indices: 𝜀𝐴′𝐵′

𝐶𝐷 = 𝜀𝐴′𝐵′𝜀𝐶𝐷, 𝜀𝐴′
𝐵

𝐶′
𝐷′ = −𝜀𝐴′𝐶′𝜀𝐵𝐷,

𝜀𝐴𝐵
𝐶′𝐷′ = 𝜀𝐴𝐵𝜀

𝐶′𝐷′ , . . . . Thus, for any four twistors 𝑍𝛼
𝑖 = (𝜆𝐴

𝑖 , 𝜋
𝑖
𝐴′), 𝑖 = 1, . . . , 4, the determinant

of the 4×4 matrix, whose 𝑖-th column is (𝜆0
𝑖 , 𝜆

1
𝑖 , 𝜋

𝑖
0′ , 𝜋

𝑖
1′), where the 𝜆0

𝑖 , . . . , 𝜋𝑖
1′ are the components
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of the spinors 𝜆𝐴
𝑖 and 𝜋𝑖

𝐴′ in some spin frame, is

𝜈 := det

⎛⎜⎜⎜⎜⎝
𝜆0

1 𝜆0
2 𝜆0

3 𝜆0
4

𝜆1
1 𝜆1

2 𝜆1
3 𝜆1

4

𝜋1
0′ 𝜋

2
0′ 𝜋

3
0′ 𝜋

4
0′

𝜋1
1′ 𝜋

2
1′ 𝜋

3
1′ 𝜋

4
1′

⎞⎟⎟⎟⎟⎠ = 1
4𝜖

𝑖𝑗
𝑘𝑙𝜆

𝐴
𝑖 𝜆

𝐵
𝑗 𝜋

𝑘
𝐴′𝜋

𝑙
𝐵′𝜀𝐴𝐵𝜀

𝐴′𝐵′ = 1
4𝜀𝛼𝛽𝛾𝛿𝑍

𝛼
1 𝑍

𝛽
2 𝑍

𝛾
3𝑍

𝛿
4 , (7.8)

where 𝜖𝑖𝑗𝑘𝑙 is the totally antisymmetric Levi-Civita symbol. Then 𝐼𝛼𝛽 and 𝐼𝛼𝛽 are dual to each
other in the sense that 𝐼𝛼𝛽 = 1

2𝜀
𝛼𝛽𝛾𝛿𝐼𝛾𝛿, and by the simplicity of 𝐼𝛼𝛽 one has 𝜀𝛼𝛽𝛾𝛿𝐼

𝛼𝛽𝐼𝛾𝛿 = 0.
The solution 𝜔𝐴𝐵 of the valence 2 twistor equation, given by Equation (7.6), can always be

written as a linear combination of the symmetrized product 𝜆(𝐴𝜔𝐵) of the solutions 𝜆𝐴 and 𝜔𝐴

of the valence-one twistor equation. 𝜔𝐴𝐵 uniquely defines a symmetric twistor 𝜔𝛼𝛽 (see, for
example, [392]). Its spinor parts are

𝜔𝛼𝛽 =

(︃
𝜔𝐴𝐵 − 1

2𝐾
𝐴

𝐵′

− 1
2𝐾𝐴′

𝐵 −i�̄�𝐴′𝐵′

)︃
.

However, Equation (7.2) can be interpreted as a C-linear mapping of 𝜔𝛼𝛽 into C, i.e., Equation (7.2)
defines a dual twistor, the (symmetric) kinematical twistor 𝐴𝛼𝛽 , which therefore has the structure

𝐴𝛼𝛽 =

(︃
0 𝑃𝐴

𝐵′

𝑃𝐴′
𝐵 2i𝐽𝐴′𝐵′

)︃
. (7.9)

Thus, the quasi-local energy-momentum and self-dual angular momentum of the source are certain
spinor parts of the kinematical twistor. In contrast to the ten complex components of a general
symmetric twistor, it has only ten real components as a consequence of its structure (its spinor
part 𝐴𝐴𝐵 is identically zero) and the reality of 𝑃𝐴𝐴′ . These properties can be reformulated by the
infinity twistor and the Hermitian metric as conditions on 𝐴𝛼𝛽 ; the vanishing of the spinor part
𝐴𝐴𝐵 is equivalent to 𝐴𝛼𝛽𝐼

𝛼𝛾𝐼𝛽𝛿 = 0 and the energy momentum is the 𝐴𝛼𝛽𝑍
𝛼𝐼𝛽𝛾𝐻𝛾𝛾′𝑍

𝛾′ part of
the kinematical twistor, while the whole reality condition (ensuring both 𝐴𝐴𝐵 = 0 and the reality
of the energy-momentum) is equivalent to

𝐴𝛼𝛽𝐼
𝛽𝛾𝐻𝛾𝛿′ = 𝐴𝛿′𝛽′𝐼

𝛽′𝛾′𝐻𝛾′𝛼. (7.10)

Using the conjugate twistors, this can be rewritten (and, in fact, usually is written) as 𝐴𝛼𝛽𝐼
𝛽𝛾 =

(𝐻𝛾𝛼′𝐴𝛼′𝛽′𝐻
𝛽′𝛿) (𝐻𝛿𝛿′𝐼

𝛿′𝛾′𝐻𝛾′𝛼) = 𝐴𝛾𝛿𝐼𝛿𝛼. The quasi-local mass can also be expressed by the
kinematical twistor as its Hermitian norm [386] or as its determinant [469]:

𝑚2 = −𝑃𝐴
𝐴′𝑃𝐴

𝐴′ = − 1
2𝐴𝛼𝛽𝐴𝛼′𝛽′𝐻

𝛼𝛼′𝐻𝛽𝛽′ = − 1
2𝐴𝛼𝛽𝐴

𝛼𝛽 , (7.11)

𝑚4 = 4 det𝐴𝛼𝛽 = 1
3!𝜀

𝛼𝛽𝛾𝛿𝜀𝜇𝜈𝜌𝜎𝐴𝛼𝜇𝐴𝛽𝜈𝐴𝛾𝜌𝐴𝛿𝜎. (7.12)

Similarly, as Helfer shows [242], the various components of the Pauli–Lubanski spin vector 𝑆𝑎 :=
1
2𝜀𝑎𝑏𝑐𝑑𝑃

𝑏𝐽𝑐𝑑 can also be expressed by the kinematic and infinity twistors and by certain special null
twistors; if 𝑍𝛼 = (−i𝑥𝐴𝐵′𝜋𝐵′ , 𝜋𝐴′) and 𝑊𝛼 = (−i𝑥𝐴𝐵′𝜎𝐵′ , 𝜎𝐴′) are two different (null) twistors
such that 𝐴𝛼𝛽𝑍

𝛼𝑍𝛽 = 0 and 𝐴𝛼𝛽𝑊
𝛼𝑊 𝛽 = 0, then

(2𝑃 𝑒𝜋𝐸′ �̄�𝐸 𝑃
𝑓𝜎𝐹 ′ �̄�𝐹 )−1�̄�𝐴𝜋𝐴′ �̄�𝐵�̄�𝐵′

(︀
𝑆𝑎𝑃 𝑏 − 𝑆𝑏𝑃 𝑎

)︀
= −ℜ

(︂
𝐴𝛼𝛽𝑍

𝛼𝑊 𝛽

𝐼𝛾𝛿𝑍𝛾𝑊 𝛿

)︂
. (7.13)

(ℜ on the right means ‘real part’.)
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Thus, to summarize, the various spinor parts of the kinematical twistor 𝐴𝛼𝛽 are the energy-
momentum and s.d. angular momentum. However, additional structures, namely the infinity
twistor and the Hermitian scalar product, are needed to be able to ‘isolate’ its energy-momentum
and angular momentum parts, and, in particular, to define the mass and express the Pauli–Lubanski
spin. Furthermore, the Hermiticity condition ensuring that 𝐴𝛼𝛽 has the correct number of com-
ponents (ten reals) is also formulated in terms of these additional structures.

7.2 The original construction for curved spacetimes

7.2.1 Two-surface twistors and the kinematical twistor

In general spacetimes, the twistor equations have only the trivial solution. Thus, to be able
to associate a kinematical twistor with a closed orientable spacelike two-surface 𝒮 in general, the
conditions on the spinor field 𝜔𝐴𝐵 have to be relaxed. Penrose’s suggestion [386, 387] is to consider
𝜔𝐴𝐵 in Equation (7.2) to be the symmetrized product 𝜆(𝐴𝜔𝐵) of spinor fields that are solutions
of the ‘tangential projection to 𝒮’ of the valence-one twistor equation, the two-surface twistor
equation. (The equation obtained as the ‘tangential projection to 𝒮’ of the valence 2 twistor
equation (7.5) would be under-determined [387].) Thus, the quasi-local quantities are searched for
in the form of a charge integral of the curvature:

𝐴𝒮 [𝜆, 𝜔] :=
−1

8𝜋𝐺

∮︁
𝒮
𝜆𝐴𝜔𝐵𝑅𝐴𝐵𝑐𝑑 (7.14)

=
i

4𝜋𝐺

∮︁
𝒮

[︀
𝜆0𝜔0 (𝜑01 − 𝜓1) +

(︀
𝜆0𝜔1 + 𝜆1𝜔0

)︀
(𝜑11 + Λ− 𝜓2) + 𝜆1𝜔1 (𝜑21 − 𝜓3)

]︀
𝑑𝒮,

where the second expression is given in the GHP formalism with respect to some GHP spin frame
adapted to the two-surface 𝒮. Since the indices 𝑐 and 𝑑 on the right of the first expression are
tangential to 𝒮, this is just the charge integral of 𝐹𝐴𝐵𝑐𝑑 in the spinor identity (4.5) of Section 4.1.5.

The two-surface twistor equation that the spinor fields should satisfy is just the covariant
spinor equation 𝒯𝐸′𝐸𝐴

𝐵𝜆𝐵 = 0. By Equation (4.6) its GHP form is 𝒯 𝜆 := (𝒯 + ⊕ 𝒯 −)𝜆 = 0,
which is a first-order elliptic system, and its index is 4(1 − 𝑔), where 𝑔 is the genus of 𝒮 [51].
Thus, there are at least four (and in the generic case precisely four) linearly-independent solutions
to 𝒯 𝜆 = 0 on topological two-spheres. However, there are ‘exceptional’ two-spheres for which
there exist at least five linearly independent solutions [272]. For such ‘exceptional’ two-spheres
(and for higher-genus two-surfaces for which the twistor equation has only the trivial solution
in general) the subsequent construction does not work. (The concept of quasi-local charges in
Yang–Mills theory can also be introduced in an analogous way [468]). The space T𝛼

𝒮 of the
solutions to 𝒯𝐸′𝐸𝐴

𝐵𝜆𝐵 = 0 is called the two-surface twistor space. In fact, in the generic case this
space is four-complex-dimensional, and under conformal rescaling the pair 𝑍𝛼 = (𝜆𝐴, iΔ𝐴′𝐴𝜆

𝐴)
transforms like a valence one contravariant twistor. 𝑍𝛼 is called a two-surface twistor determined
by 𝜆𝐴. If 𝒮 ′ is another generic two-surface with the corresponding two-surface twistor space T𝛼

𝒮′ ,
then although T𝛼

𝒮 and T𝛼
𝒮′ are isomorphic as vector spaces, there is no canonical isomorphism

between them. The kinematical twistor 𝐴𝛼𝛽 is defined to be the symmetric twistor determined
by 𝐴𝛼𝛽𝑍

𝛼𝑊 𝛽 := 𝐴𝒮 [𝜆, 𝜔] for any 𝑍𝛼 = (𝜆𝐴, iΔ𝐴′𝐴𝜆
𝐴) and 𝑊𝛼 = (𝜔𝐴, iΔ𝐴′𝐴𝜔

𝐴) from T𝛼
𝒮 . Note

that 𝐴𝒮 [𝜆, 𝜔] is constructed only from the two-surface data on 𝒮.

7.2.2 The Hamiltonian interpretation of the kinematical twistor

For the solutions 𝜆𝐴 and 𝜔𝐴 of the two-surface twistor equation, the spinor identity (4.5) reduces
to Tod’s expression [386, 392, 475] for the kinematical twistor, making it possible to re-express
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𝐴𝒮 [𝜆, 𝜔] by the integral of the Nester–Witten two-form [451]. Indeed, if

𝐻𝒮 [𝜆, �̄�] :=
1

4𝜋𝐺

∮︁
𝒮
𝑢(𝜆, �̄�)𝑎𝑏 = − 1

4𝜋𝐺

∮︁
𝒮
𝛾𝐴′𝐵′ �̄�𝐴′Δ𝐵′𝐵𝜆

𝐵 𝑑𝒮, (7.15)

then, with the choice �̄�𝐴′ := iΔ𝐴′
𝐴𝜔𝐴, this gives Penrose’s charge integral by Equation (4.5):

𝐴𝒮 [𝜆, 𝜔] = 𝐻𝒮 [𝜆, �̄�]. Then, extending the spinor fields 𝜆𝐴 and 𝜔𝐴 from 𝒮 to a spacelike hyper-
surface Σ with boundary 𝒮 in an arbitrary way, by the Sparling equation it is straightforward to
rewrite 𝐴𝒮 [𝜆, 𝜔] in the form of the integral of the energy-momentum tensor of the matter fields
and the Sparling form on Σ. Since such an integral of the Sparling form can be interpreted as the
Hamiltonian of general relativity, this is a quick re-derivation of Mason’s [328, 329] Hamiltonian
interpretation of Penrose’s kinematical twistor; 𝐴𝒮 [𝜆, 𝜔] is just the boundary term in the total
Hamiltonian of the matter + gravity system, and the spinor fields 𝜆𝐴 and 𝜔𝐴 (together with their
‘projection parts’ iΔ𝐴′𝐴𝜆

𝐴 and iΔ𝐴′𝐴𝜔
𝐴) on 𝒮 are interpreted as the spinor constituents of the

special lapse and shift, called the ‘quasi-translations’ and ‘quasi-rotations’ of the two-surface, on
the two-surface itself.

7.2.3 The Hermitian scalar product and the infinity twistor

In general, the natural pointwise Hermitian scalar product, defined by ⟨𝑍, �̄� ⟩ := −i(𝜆𝐴Δ𝐴𝐴′ �̄�
𝐴′−

�̄�𝐴′Δ𝐴𝐴′𝜆
𝐴), is not constant on 𝒮, thus, it does not define a Hermitian scalar product on the two-

surface twistor space. As is shown in [271, 274, 473], ⟨𝑍, �̄� ⟩ is constant on 𝒮 for any two two-surface
twistors if and only if 𝒮 can be embedded, at least locally, into some conformal Minkowski spacetime
with its intrinsic metric and extrinsic curvatures. Such two-surfaces are called noncontorted, while
those that cannot be embedded are called contorted. One natural candidate for the Hermitian
metric could be the average of ⟨𝑍, �̄� ⟩ on 𝒮 [386]: 𝐻𝛼𝛽′𝑍

𝛼�̄� 𝛽′ := [Area(𝒮)]−
1
2
∮︀
𝒮⟨𝑍, �̄� ⟩ 𝑑𝒮,

which reduces to ⟨𝑍, �̄� ⟩ on noncontorted two-surfaces. Interestingly enough,
∮︀
𝒮⟨𝑍, �̄� ⟩ 𝑑𝒮 can

also be re-expressed by the integral (7.15) of the Nester–Witten two-form [451]. Unfortunately,
however, neither this metric nor the other suggestions appearing in the literature are conformally
invariant. Thus, for contorted two-surfaces, the definition of the quasi-local mass as the norm of
the kinematical twistor (cf. Equation (7.11)) is ambiguous unless a natural 𝐻𝛼𝛽′ is found.

If 𝒮 is noncontorted, then the scalar product ⟨𝑍, �̄� ⟩ defines the totally anti-symmetric twistor
𝜀𝛼𝛽𝛾𝛿, and for the four independent two-surface twistors 𝑍𝛼

1 , . . . ,𝑍𝛼
4 the contraction 𝜀𝛼𝛽𝛾𝛿𝑍

𝛼
1 𝑍

𝛽
2 𝑍

𝛾
3𝑍

𝛿
4 ,

and hence, by Equation (7.8), the determinant 𝜈, is constant on 𝒮. Nevertheless, 𝜈 can be constant
even for contorted two-surfaces for which ⟨𝑍, �̄� ⟩ is not. Thus, the totally anti-symmetric twistor
𝜀𝛼𝛽𝛾𝛿 can exist even for certain contorted two-surfaces. Therefore, an alternative definition of
the quasi-local mass might be based on Equation (7.12) [469]. However, although the two mass
definitions are equivalent in the linearized theory, they are different invariants of the kinematical
twistor even in de Sitter or anti-de Sitter spacetimes. Thus, if needed, the former notion of mass
will be called the norm-mass, the latter the determinant-mass (denoted by 𝑚D).

If we want to have not only the notion of the mass but its reality as well, then we should ensure
the Hermiticity of the kinematical twistor. But to formulate the Hermiticity condition (7.10),
one also needs the infinity twistor. However, −𝜀𝐴′𝐵′Δ𝐴′𝐴𝜆

𝐴Δ𝐵′𝐵𝜔
𝐵 is not constant on 𝒮 even

if it is noncontorted, thus, in general, it does not define any twistor on T𝛼
𝒮 . One might take its

average on 𝒮 (which can also be re-expressed by the integral of the Nester–Witten two-form [451]),
but the resulting twistor would not be simple. In fact, even on two-surfaces in de Sitter and
anti-de Sitter spacetimes with cosmological constant 𝜆 the natural definition for 𝐼𝛼𝛽 is 𝐼𝛼𝛽 :=
diag(𝜆𝜀𝐴𝐵 , 𝜀

𝐴′𝐵′) [392, 390, 469], while on round spheres in spherically-symmetric spacetimes it
is 𝐼𝛼𝛽𝑍

𝛼𝑊 𝛽 := 1
2𝑟2 (1 + 2𝑟2𝜌𝜌′)𝜀𝐴𝐵𝜆

𝐴𝜔𝐵 − 𝜀𝐴′𝐵′Δ𝐴′𝐴𝜆
𝐴Δ𝐵′𝐵𝜔

𝐵 [457]. Thus, no natural simple
infinity twistor has been found in curved spacetime. Indeed, Helfer claims that no such infinity
twistor can exist [241]; even if the spacetime is conformally flat (in which case the Hermitian metric

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://www.livingreviews.org/lrr-2009-4
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exists) the Hermiticity condition would be fifteen algebraic equations for the (at most) twelve real
components of the ‘would be’ infinity twistor. Then, since the possible kinematical twistors form
an open set in the space of symmetric twistors, the Hermiticity condition cannot be satisfied even
for nonsimple 𝐼𝛼𝛽s. However, in contrast to the linearized gravity case, the infinity twistor should
not be given once and for all on some ‘universal’ twistor space that may depend on the actual
gravitational field. In fact, the two-surface twistor space itself depends on the geometry of 𝒮, and
hence all its structures also.

Since in the Hermiticity condition (7.10) only the special combination 𝐻𝛼
𝛽′ := 𝐼𝛼𝛽𝐻𝛽𝛽′ of the

infinity and metric twistors (the ‘bar-hook’ combination) appears, it might still be hoped that an
appropriate 𝐻𝛼

𝛽′ could be found for a class of two-surfaces in a natural way [475]. However, as
far as the present author is aware, no real progress has been achieved in this way.

7.2.4 The various limits

Obviously, the kinematical twistor vanishes in flat spacetime and, since the basic idea comes from
linearized gravity, the construction gives the correct results in the weak field approximation. The
nonrelativistic weak field approximation, i.e., the Newtonian limit, was clarified by Jeffryes [273].
He considers a one-parameter family of spacetimes with perfect fluid source, such that in the 𝜆→ 0
limit of the parameter 𝜆, one gets a Newtonian spacetime, and, in the same limit, the two-surface
𝒮 lies in a 𝑡 = const. hypersurface of the Newtonian time 𝑡. In this limit the pointwise Hermitian
scalar product is constant, and the norm-mass can be calculated. As could be expected, for the
leading 𝜆2-order term in the expansion of 𝑚 as a series of 𝜆 he obtained the conserved Newtonian
mass. The Newtonian energy, including the kinetic and the Newtonian potential energy, appears
as a 𝜆4-order correction.

The Penrose definition for the energy-momentum and angular momentum can be applied to
the cuts 𝒮 of the future null infinity I + of an asymptotically flat spacetime [386, 392]. Then
every element of the construction is built from conformally-rescaled quantities of the nonphysical
spacetime. Since I + is shear-free, the two-surface twistor equations on 𝒮 decouple, and hence, the
solution space admits a natural infinity twistor 𝐼𝛼𝛽 . It singles out precisely those solutions whose
primary spinor parts span the asymptotic spin space of Bramson (see Section 4.2.4), and they
will be the generators of the energy-momentum. Although 𝒮 is contorted, and hence, there is no
natural Hermitian scalar product, there is a twistor 𝐻𝛼

𝛽′ with respect to which 𝐴𝛼𝛽 is Hermitian.
Furthermore, the determinant 𝜈 is constant on 𝒮, and hence it defines a volume four-form on the
two-surface twistor space [475]. The energy-momentum coming from 𝐴𝛼𝛽 is just that of Bondi and
Sachs. The angular momentum defined by 𝐴𝛼𝛽 is, however, new. It has a number of attractive
properties. First, in contrast to definitions based on the Komar expression, it does not have the
‘factor-of-two anomaly’ between the angular momentum and the energy-momentum. Since its
definition is based on the solutions of the two-surface twistor equations (which can be interpreted
as the spinor constituents of certain BMS vector fields generating boost-rotations) instead of the
BMS vector fields themselves, it is free of supertranslation ambiguities. In fact, the two-surface
twistor space on 𝒮 reduces the BMS Lie algebra to one of its Poincaré subalgebras. Thus the
concept of the ‘translation of the origin’ is moved from null infinity to the twistor space (appearing
in the form of a four-parameter family of ambiguities in the potential for the shear 𝜎), and the
angular momentum transforms just in the expected way under such a ‘translation of the origin’.
It is shown in [160] that Penrose’s angular momentum can be considered as a supertranslation of
previous definitions.

The other way of determining the null infinity limit of the energy-momentum and angular
momentum is to calculate them for large spheres from the physical data, instead of for the spheres at
null infinity from the conformally-rescaled data. These calculations were done by Shaw [420, 422].
At this point it should be noted that the 𝑟 → ∞ limit of 𝐴𝛼𝛽 vanishes, and it is

√︀
Area(𝒮𝑟)𝐴𝛼𝛽
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that yields the energy-momentum and angular momentum at infinity (see the remarks following
Equation (3.7)). The specific radiative solution for which the Penrose mass has been calculated
is that of Robinson and Trautman [469]. The two-surfaces for which the mass was calculated are
the 𝑟 = const. cuts of the geometrically-distinguished outgoing null hypersurfaces 𝑢 = const. Tod
found that, for given 𝑢, the mass 𝑚 is independent of 𝑟, as could be expected because of the lack
of incoming radiation.

In [242] Helfer suggested a bijective nonlinear map between the two-surface twistor spaces on
the different cuts of I +, by means of which he got something like a ‘universal twistor space’. Then
he extends the kinematical twistor to this space, and in this extension the shear potential (i.e., the
complex function 𝑆 for which the asymptotic shear can be written as 𝜎 = k2𝑆) appears explicitly.
Using Equation (7.13) as the definition of the intrinsic-spin angular momentum at scri, Helfer
derives an explicit formula for the spin. In addition to the expected Pauli–Lubanski type term,
there is an extra term, which is proportional to the imaginary part of the shear potential. Since
the twistor spaces on the different cuts of scri have been identified, the angular momentum flux
can be, and has in fact been, calculated. (For an earlier attempt to calculate this flux, see [240].)

The large sphere limit of the two-surface twistor space and the Penrose construction were
investigated by Shaw in the Sommers [436], Ashtekar–Hansen [30], and Beig–Schmidt [57] models
of spatial infinity in [416, 417, 419]. Since no gravitational radiation is present near the spatial
infinity, the large spheres are (asymptotically) noncontorted, and both the Hermitian scalar product
and the infinity twistor are well defined. Thus, the energy-momentum and angular momentum
(and, in particular, the mass) can be calculated. In vacuum he recovered the Ashtekar–Hansen
expression for the energy-momentum and angular momentum, and proved their conservation if the
Weyl curvature is asymptotically purely electric. In the presence of matter the conservation of the
angular momentum was investigated in [421].

The Penrose mass in asymptotically anti-de Sitter spacetimes was studied by Kelly [286]. He
calculated the kinematical twistor for spacelike cuts 𝒮 of the infinity I , which is now a timelike
three-manifold in the nonphysical spacetime. Since I admits global three-surface twistors (see
the next Section 7.2.5), 𝒮 is noncontorted. In addition to the Hermitian scalar product, there
is a natural infinity twistor, and the kinematical twistor satisfies the corresponding Hermiticity
condition. The energy-momentum four-vector coming from the Penrose definition is shown to
coincide with that of Ashtekar and Magnon [35]. Therefore, the energy-momentum four-vector
is future pointing and timelike if there is a spacelike hypersurface extending to I on which the
dominant energy condition is satisfied. Consequently, 𝑚2 ≥ 0. Kelly shows that 𝑚2

D is also
non-negative and in vacuum it coincides with 𝑚2. In fact [475], 𝑚 ≥ 𝑚D ≥ 0 holds.

7.2.5 The quasi-local mass of specific two-surfaces

The Penrose mass has been calculated in a large number of specific situations. Round spheres
are always noncontorted [473], thus, the norm-mass can be calculated. (In fact, axisymmet-
ric two-surfaces in spacetimes with twist-free rotational Killing vectors are noncontorted [274].)
The Penrose mass for round spheres reduces to the standard energy expression discussed in Sec-
tion 4.2.1 [469]. Thus every statement given in Section 4.2.1 for round spheres is valid for the
Penrose mass, and we do not repeat them. In particular, for round spheres in a 𝑡 = const. slice of
the Kantowski–Sachs spacetime, this mass is independent of the two-surfaces [466]. Interestingly
enough, although these spheres cannot be shrunk to a point (thus, the mass cannot be interpreted
as ‘the three-volume integral of some mass density’), the time derivative of the Penrose mass looks
like the mass conservation equation. It is, minus the pressure times the rate of change of the
three-volume of a sphere in flat space with the same area as 𝒮 [474]. In conformally-flat space-
times [469] the two-surface twistors are just the global twistors restricted to 𝒮, and the Hermitian
scalar product is constant on 𝒮. Thus, the norm-mass is well defined.
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The construction works nicely, even if global twistors exist only on a, e.g., spacelike hyper-
surface Σ containing 𝒮. These are the three-surface twistors [469, 471], which are solutions of
certain (overdetermined) elliptic partial-differential equations, called the three-surface twistor equa-
tions, on Σ. These equations are completely integrable (i.e., they admit the maximal number of
linearly-independent solutions, namely four) if and only if Σ, with its intrinsic metric and extrinsic
curvature, can be embedded, at least locally, into some conformally-flat spacetime [471]. Such
hypersurfaces are called noncontorted. It might be interesting to note that the noncontorted hy-
persurfaces can also be characterized as the critical points of the Chern–Simons functional, built
from the real Sen connection on the Lorentzian vector bundle or from the three-surface twistor
connection on the twistor bundle over Σ [58, 456]. Returning to the quasi-local mass calculations,
Tod showed that in vacuum the kinematical twistor for a two-surface 𝒮 in a noncontorted Σ de-
pends only on the homology class of 𝒮. In particular, if 𝒮 can be shrunk to a point, then the
corresponding kinematical twistor is vanishing. Since Σ is noncontorted, 𝒮 is also noncontorted,
and hence the norm-mass is well defined. This implies that the Penrose mass in the Schwarzschild
solution is the Schwarzschild mass for any noncontorted two-surface that can be deformed into a
round sphere, and it is zero for those that do not go round the black hole [473]. Thus, in particular,
the Penrose mass can be zero even in curved spacetimes.

A particularly interesting class of noncontorted hypersurfaces is that of the conformally-flat
time-symmetric initial data sets. Tod considered Wheeler’s solution of the time-symmetric vacuum
constraints describing 𝑛 ‘points at infinity’ (or, in other words, 𝑛− 1 black holes) and two-surfaces
in such a hypersurface [469]. He found that the mass is zero if 𝒮 does not go around any black
hole, it is the mass 𝑀𝑖 of the 𝑖-th black hole if 𝒮 links precisely the 𝑖-th black hole, it is 𝑀𝑖 +
𝑀𝑗 − 𝑀𝑖𝑀𝑗/𝑑𝑖𝑗 + 𝒪(1/𝑑2

𝑖𝑗) if 𝒮 links precisely the 𝑖-th and the 𝑗-th black holes, where 𝑑𝑖𝑗 is
some appropriate measure of the distance between the black holes, . . . , etc. Thus, the mass of the
𝑖-th and 𝑗-th holes as a single object is less than the sum of the individual masses, in complete
agreement with our physical intuition that the potential energy of the composite system should
contribute to the total energy with negative sign.

Beig studied the general conformally-flat time-symmetric initial data sets describing 𝑛 ‘points
at infinity’ [54]. He found a symmetric trace-free and divergence-free tensor field 𝑇 𝑎𝑏 and, for any
conformal Killing vector 𝜉𝑎 of the data set, defined the two-surface flux integral 𝑃 (𝜉) of 𝑇 𝑎𝑏𝜉𝑏 on 𝒮.
He showed that 𝑃 (𝜉) is conformally invariant, depends only on the homology class of 𝒮, and, apart
from numerical coefficients, for the ten (locally-existing) conformal Killing vectors, these are just
the components of the kinematical twistor derived by Tod in [469] (and discussed in the previous
paragraph). In particular, Penrose’s mass in Beig’s approach is proportional to the length of the
𝑃 ’s with respect to the Cartan–Killing metric of the conformal group of the hypersurface.

Tod calculated the quasi-local mass for a large class of axisymmetric two-surfaces (cylin-
ders) in various LRS Bianchi and Kantowski–Sachs cosmological models [474] and more general
cylindrically-symmetric spacetimes [476]. In all these cases the two-surfaces are noncontorted, and
the construction works. A technically interesting feature of these calculations is that the two-
surfaces have edges, i.e., they are not smooth submanifolds. The twistor equation is solved on the
three smooth pieces of the cylinder separately, and the resulting spinor fields are required to be
continuous at the edges. This matching reduces the number of linearly-independent solutions to
four. The projection parts of the resulting twistors, the iΔ𝐴′𝐴𝜆

𝐴s, are not continuous at the edges.
It turns out that the cylinders can be classified invariantly to be hyperbolic, parabolic, or elliptic.
Then the structure of the quasi-local mass expressions is not simply ‘density’× ‘volume’, but is
proportional to a ‘type factor’ 𝑓(𝐿) as well, where 𝐿 is the coordinate length of the cylinder. In the
hyperbolic, parabolic, and elliptic cases this factor is sinh𝜔𝐿/(𝜔𝐿), 1, and sin𝜔𝐿/(𝜔𝐿), respec-
tively, where 𝜔 is an invariant of the cylinder. The various types are interpreted as the presence of
a positive, zero, or negative potential energy. In the elliptic case the mass may be zero for finite
cylinders. On the other hand, for static perfect fluid spacetimes (hyperbolic case) the quasi-local
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mass is positive. A particularly interesting spacetime is that describing cylindrical gravitational
waves, whose presence is detected by the Penrose mass. In all these cases the determinant-mass
has also been calculated and found to coincide with the norm-mass. A numerical investigation of
the axisymmetric Brill waves on the Schwarzschild background is presented in [79]. It was found
that the quasi-local mass is positive, and it is very sensitive to the presence of the gravitational
waves.

Another interesting issue is the Penrose inequality for black holes (see Section 13.2.1). Tod
shows [472, 473] that for static black holes the Penrose inequality holds if the mass of the black
hole is defined to be the Penrose quasi-local mass of the spacelike cross section 𝒮 of the event
horizon. The trick here is that 𝒮 is totally geodesic and conformal to the unit sphere, and hence,
it is noncontorted and the Penrose mass is well defined. Then, the Penrose inequality will be a
Sobolev-type inequality for a non-negative function on the unit sphere. This inequality is tested
numerically in [79].

Apart from the cuts of I + in radiative spacetimes, all the two-surfaces discussed so far were
noncontorted. The spacelike cross section of the event horizon of the Kerr black hole provides a
contorted two-surface [475]. Thus, although the kinematical twistor can be calculated for this, the
construction in its original form cannot yield any mass expression. The original construction has
to be modified.

7.2.6 Small surfaces

The properties of the Penrose construction that we have discussed are very remarkable and promis-
ing. However, the small surface calculations clearly show some unwanted features of the original
construction [470, 287, 509], and force its modification.

First, although the small spheres are contorted in general, the leading term of the pointwise
Hermitian scalar product is constant: 𝜆𝐴Δ𝐴𝐴′ �̄�

𝐴′ − �̄�𝐴′Δ𝐴′𝐴𝜆
𝐴 = const. + 𝒪(𝑟) for any two-

surface twistors 𝑍𝛼 = (𝜆𝐴, iΔ𝐴′𝐴𝜆
𝐴) and 𝑊𝛼 = (𝜔𝐴, iΔ𝐴′𝐴𝜔

𝐴) [470, 287]. Since in nonvacuum
spacetimes the kinematical twistor has only the ‘four-momentum part’ in the leading 𝒪(𝑟3)-order
with 𝑃𝑎 = 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑏, the Penrose mass, calculated with the norm above, is just the expected mass
in the leading 𝒪(𝑟3) order. Thus, it is positive if the dominant energy condition is satisfied. On
the other hand, in vacuum the structure of the kinematical twistor is

𝐴𝛼𝛽 =

(︃
2i𝜆𝐴𝐵 𝑃𝐴

𝐵′

𝑃𝐴′
𝐵 0

)︃
+𝒪

(︀
𝑟6
)︀
, (7.16)

where 𝜆𝐴𝐵 = 𝒪(𝑟5) and 𝑃𝐴𝐴′ = 2
45𝐺𝑟

5𝜓𝐴𝐵𝐶𝐷 �̄�𝐴′𝐵′𝐶′𝐷′𝑡
𝐵𝐵′𝑡𝐶𝐶′𝑡𝐷𝐷′ with 𝜒𝐴𝐵𝐶𝐷 := 𝜓𝐴𝐵𝐶𝐷 −

4𝜓𝐴′𝐵′𝐶′𝐷′𝑡
𝐴′

𝐴𝑡
𝐵′

𝐵 𝑡𝐶
′
𝐶𝑡

𝐷′
𝐷. In particular, in terms of the familiar conformal electric and mag-

netic parts of the curvature the leading term in the time component of the four-momentum is
𝑃𝐴𝐴′𝑡

𝐴𝐴′ = 1
45𝐺𝐻𝑎𝑏(𝐻𝑎𝑏 − i𝐸𝑎𝑏). Then, the corresponding norm-mass, in the leading order, can

even be complex! For an 𝒮𝑟 in the 𝑡 = const. hypersurface of the Schwarzschild spacetime, this is
zero (as it must be in light of the results of Section 7.2.5, because this is a noncontorted spacelike
hypersurface), but for a general small two-sphere not lying in such a hypersurface, 𝑃𝐴𝐴′ is real and
spacelike, and hence, 𝑚2 < 0. In the Kerr spacetime, 𝑃𝐴𝐴′ itself is complex [470, 287].

7.3 The modified constructions

Independently of the results of the small-sphere calculations, Penrose claims that in the Schwarz-
schild spacetime the quasi-local mass expression should yield the same zero value on two-surfaces,
contorted or not, which do not surround the black hole. (For the motivations and the arguments,
see [388].) Thus, the original construction should be modified, and the negative results for the small
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spheres above strengthened this need. A much more detailed review of the various modifications
is given by Tod in [475].

7.3.1 The ‘improved’ construction with the determinant

A careful analysis of the roots of the difficulties lead Penrose [388, 392] (see also [470, 287, 475])
to suggest the modified definition for the kinematical twistor

𝐴′𝛼𝛽𝑍
𝛼𝑊 𝛽 :=

i
8𝜋𝐺

∮︁
𝒮
𝜂 𝜆𝐴𝜔𝐵𝑅𝐴𝐵𝑐𝑑, (7.17)

where 𝜂 is a constant multiple of the determinant 𝜈 in Equation (7.8). Since on noncontorted
two-surfaces the determinant 𝜈 is constant, for such surfaces 𝐴′𝛼𝛽 reduces to 𝐴𝛼𝛽 , and hence, all
the nice properties proven for the original construction on noncontorted two-surfaces are shared
by 𝐴′𝛼𝛽 . The quasi-local mass calculated from Equation (7.17) for small spheres (in fact, for
small ellipsoids [287]) in vacuum is vanishing in the fifth order. Thus, apparently, the difficulties
have been resolved. However, as Woodhouse pointed out, there is an essential ambiguity in the
(nonvanishing, sixth-order) quasi-local mass [509]. In fact, the structure of the modified kinematical
twistor has the form (7.16) with vanishing 𝑃𝐴′

𝐵 and 𝑃𝐴
𝐵′ but with nonvanishing 𝜆𝐴𝐵 in the fifth

order. Then, in the quasi-local mass (in the leading sixth order) there will be a term coming from
the (presumably nonvanishing) sixth-order part of 𝑃𝐴′

𝐵 and 𝑃𝐴
𝐵′ and the constant part of the

Hermitian scalar product, and the fifth-order 𝜆𝐴𝐵 and the still ambiguous 𝒪(𝑟)-order part of the
Hermitian metric.

7.3.2 Modification through Tod’s expression

These anomalies lead Penrose to modify 𝐴′𝛼𝛽 slightly [389]. This modified form is based on Tod’s
form of the kinematical twistor:

𝐴′′𝛼𝛽𝑍
𝛼𝑊 𝛽 :=

1
4𝜋𝐺

∮︁
𝒮
𝛾𝐴′𝐵′

[︀
iΔ𝐴′𝐴

(︀√
𝜂𝜆𝐴

)︀]︀ [︀
iΔ𝐵′𝐵

(︀√
𝜂𝜔𝐵

)︀]︀
𝑑𝒮. (7.18)

The quasi-local mass on small spheres coming from 𝐴′′𝛼𝛽 is positive [475].

7.3.3 Mason’s suggestions

A beautiful property of the original construction was its connection with the Hamiltonian formu-
lation of the theory [328]. Unfortunately, such a simple Hamiltonian interpretation is lacking for
the modified constructions. Although the form of Equation (7.18) is that of the integral of the
Nester–Witten two-form, and the spinor fields

√
𝜂𝜆𝐴 and iΔ𝐴′𝐴(

√
𝜂𝜆𝐴) could still be considered

as the spinor constituents of the ‘quasi-Killing vectors’ of the two-surface 𝒮, their structure is
not so simple, because the factor 𝜂 itself depends on all four of the independent solutions of the
two-surface twistor equation in a rather complicated way.

To have a simple Hamiltonian interpretation, Mason suggested further modifications [328, 329].
He considers the four solutions 𝜆𝐴

𝑖 , 𝑖 = 1, . . . , 4, of the two-surface twistor equations, and uses
these solutions in the integral (7.15) of the Nester–Witten two-form. Since 𝐻𝒮 is a Hermitian
bilinear form on the space of the spinor fields (see Section 8), he obtains 16 real quantities as the
components of the 4× 4 Hermitian matrix 𝐸𝑖𝑗 := 𝐻𝒮 [𝜆𝑖, �̄�𝑗 ]. However, it is not clear how the four
‘quasi-translations’ of 𝒮 should be found among the 16 vector fields 𝜆𝐴

𝑖 �̄�
𝐴′

𝑗 (called ‘quasi-conformal
Killing vectors’ of 𝒮) for which the corresponding quasi-local quantities could be considered as the
components of the quasi-local energy-momentum. Nevertheless, this suggestion leads us to the
next class of quasi-local quantities.
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8 Approaches Based on the Nester–Witten Two-Form

We saw in Section 3.2 that

∙ both the ADM and Bondi–Sachs energy-momenta can be re-expressed by the integral of the
Nester–Witten two-form 𝑢(𝜆, �̄�)𝑎𝑏,

∙ the proof of the positivity of the ADM and Bondi—Sachs masses is relatively simple in terms
of the two-component spinors.

Thus, from a pragmatic point of view, it seems natural to search for the quasi-local energy-
momentum in the form of the integral of the Nester–Witten two-form. Now we will show that

∙ the integral of Møller’s tetrad superpotential for the energy-momentum, coming from his
tetrad Lagrangian (3.1), is just the integral of 𝑢(𝜆𝐴 , �̄�𝐵 ′

)𝑎𝑏, where {𝜆𝐴
𝐴 } is a normalized

spinor dyad.

Hence, all the quasi-local energy-momenta based on the integral of the Nester–Witten two-form
have a natural Lagrangian interpretation in the sense that they are charge integrals of the canonical
Noether current derived from Møller’s first-order tetrad Lagrangian.

If 𝒮 is any closed, orientable spacelike two-surface and at minimum an open neighborhood of 𝒮
is time and space orientable, then an open neighborhood of 𝒮 is always a trivialization domain of
both the orthonormal and the spin frame bundles [461]. Therefore, the orthonormal frame {𝐸𝑎

𝑎 }
can be chosen to be globally defined on 𝒮, and the integral of the dual of Møller’s superpotential,
1
2𝐾

𝑒∨𝑒
𝑎𝑏 1

2𝜀𝑎𝑏𝑐𝑑, appearing on the right-hand side of the superpotential equation (3.3), is well
defined. If (𝑡𝑎, 𝑣𝑎) is a pair of globally-defined normals of 𝒮 in the spacetime, then in terms of the
geometric objects introduced in Section 4.1, this integral takes the form

𝑄 [K] : =
1

8𝜋𝐺

∮︁
𝒮

1
2
𝐾𝑒∨𝑒

𝑎𝑏 1
2
𝜀𝑎𝑏𝑐𝑑

=
1

8𝜋𝐺

∮︁
𝒮
𝐾𝑒
(︁
−⊥𝜀𝑒𝑎𝑄𝑏

𝑏𝑎 −𝐴𝑒 − ⊥𝜀𝑒𝑎(𝛿𝑏𝐸𝑏
𝑏 )𝜂𝑏 𝑎𝐸𝑎

𝑎 + 𝛿𝑒(𝑡𝑎𝐸𝑎
𝑎 )𝜂𝑎 𝑏𝐸𝑏

𝑏 𝑣𝑏

)︁
𝑑𝒮. (8.1)

The first term on the right is just the dual mean curvature vector of 𝒮, the second is the connection
one-form on the normal bundle, while the remaining terms are explicitly 𝑆𝑂(1, 3) gauge dependent.
On the other hand, this is boost gauge invariant (the boost gauge dependence of the second term
is compensated by the last one), and depends on the tetrad field and the vector field 𝐾𝑎 given
only on 𝒮, but is independent in the way in which they are extended off the surface. As we will
see, the general form of other quasi-local energy-momentum expressions show some resemblance
to Equation (8.1).

Then, suppose that the orthonormal basis is built from a normalized spinor dyad, i.e., 𝐸𝑎
𝑎 =

𝜎
𝐴 𝐵 ′

𝑎 ℰ𝐴
𝐴 ℰ̄𝐴′

𝐵 ′ , where 𝜎𝐴 𝐵 ′

𝑎 are the 𝑆𝐿(2,C) Pauli matrices (divided by
√

2) and {ℰ𝐴
𝐴 }, 𝐴 = 0, 1, is

a normalized spinor basis. A straightforward calculation yields the following remarkable expression
for the dual of Møller’s superpotential:

1
4
𝜎

𝑎
𝐴 𝐵 ′𝐸

𝑒
𝑎∨𝑒

𝑎𝑏 1
2
𝜀𝑎𝑏𝑐𝑑 = 𝑢

(︀
ℰ𝐴 , ℰ̄𝐵 ′

)︀
𝑐𝑑

+ 𝑢
(︀
ℰ𝐵 , ℰ̄𝐴 ′

)︀
𝑐𝑑
, (8.2)

where the overline denotes complex conjugation. Thus, the real part of the Nester–Witten two-
form, and hence, by Equation (3.5), apart from an exact two-form, the Nester–Witten two-form
itself, built from the spinors of a normalized spinor basis, is just the superpotential two-form
derived from Møller’s first-order tetrad Lagrangian [461].
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Next we will discuss some general properties of the integral of 𝑢(𝜆, �̄�)𝑎𝑏, where 𝜆𝐴 and 𝜇𝐴

are arbitrary spinor fields on 𝒮. Then, in the integral 𝐻𝒮 [𝜆, �̄�], defined by Equation (7.15), only
the tangential derivative of 𝜆𝐴 appears. (𝜇𝐴 is involved in 𝐻𝒮 [𝜆, �̄�] algebraically.) Thus, by
Equation (3.5), 𝐻𝒮 : 𝐶∞(𝒮,S𝐴)×𝐶∞(𝒮,S𝐴) → C is a Hermitian scalar product on the (infinite-
dimensional complex) vector space of smooth spinor fields on 𝒮. Thus, in particular, the spinor
fields in 𝐻𝒮 [𝜆, �̄�] need be defined only on 𝒮, and 𝐻𝒮 [𝜆, �̄�] = 𝐻𝒮 [𝜇, �̄�] holds. A remarkable prop-
erty of 𝐻𝒮 is that if 𝜆𝐴 is a constant spinor field on 𝒮 with respect to the covariant derivative
Δ𝑒, then 𝐻𝒮 [𝜆, �̄�] = 0 for any smooth spinor field 𝜇𝐴 on 𝒮. Furthermore, if 𝜆𝐴

𝐴 = (𝜆0
𝐴, 𝜆

1
𝐴)

is any pair of smooth spinor fields on 𝒮, then for any constant 𝑆𝐿(2,C) matrix Λ𝐴
𝐵 one has

𝐻𝒮 [𝜆𝐶 Λ𝐶
𝐴 , �̄�𝐷 ′

Λ̄𝐷 ′𝐵
′
] = 𝐻𝒮 [𝜆𝐶 , �̄�𝐷 ′

]Λ𝐶
𝐴 Λ̄𝐷 ′𝐵

′
, i.e., the integrals 𝐻𝒮 [𝜆𝐴 , �̄�𝐵 ′

] transform as
the spinor components of a real Lorentz vector over the two–complex-dimensional space spanned
by 𝜆0

𝐴 and 𝜆1
𝐴. Therefore, to have a well-defined quasi-local energy-momentum vector we have

to specify some two-dimensional subspace S𝐴 of the infinite-dimensional space 𝐶∞(𝒮,S𝐴) and
a symplectic metric 𝜀𝐴 𝐵 thereon. Thus, underlined capital Roman indices will be referring to
this space. The elements of this subspace would be interpreted as the spinor constituents of the
‘quasi-translations’ of the surface 𝒮. Note, however, that in general the symplectic metric 𝜀𝐴 𝐵

need not be related to the pointwise symplectic metric 𝜀𝐴𝐵 on the spinor spaces, i.e., the spinor
fields 𝜆0

𝐴 and 𝜆1
𝐴 that span S𝐴 are not expected to form a normalized spin frame on 𝒮. Since,

in Møller’s tetrad approach it is natural to choose the orthonormal vector basis to be a basis
in which the translations have constant components (just like the constant orthonormal bases in
Minkowski spacetime, which are bases in the space of translations), the spinor fields 𝜆𝐴

𝐴 could also
be interpreted as the spinor basis that should be used to construct the orthonormal vector basis
in Møller’s superpotential (3.2). In this sense the choice of the subspace S𝐴 and the metric 𝜀𝐴 𝐵

is just a gauge reduction, or a choice for the ‘reference configuration’ of Section 3.3.3.

Once the spin space (S𝐴 , 𝜀𝐴 𝐵 ) is chosen, the quasi-local energy-momentum is defined to be
𝑃

𝐴 𝐵 ′

𝒮 := 𝐻𝒮 [𝜆𝐴 , �̄�𝐵 ′
] and the corresponding quasi-local mass𝑚𝒮 is𝑚2

𝒮 := 𝜀𝐴 𝐵 𝜀𝐴 ′𝐵 ′𝑃
𝐴 𝐴 ′

𝒮 𝑃
𝐵 𝐵 ′

𝒮 .
In particular, if one of the spinor fields 𝜆𝐴

𝐴 , e.g., 𝜆0
𝐴, is constant on 𝒮 (which means that the geom-

etry of 𝒮 is considerably restricted), then 𝑃 00′

𝒮 = 𝑃 01′

𝒮 = 𝑃 10′

𝒮 = 0, and hence, the corresponding
mass 𝑚𝒮 is zero. If both 𝜆0

𝐴 and 𝜆1
𝐴 are constant (in particular, when they are the restrictions to

𝒮 of the two constant spinor fields in the Minkowski spacetime), then 𝑃
𝐴 𝐵 ′

𝒮 itself is vanishing.

Therefore, to summarize, the only thing that needs to be specified is the spin space (S𝐴 , 𝜀𝐴 𝐵 ),
and the various suggestions for the quasi-local energy-momentum based on the integral of the
Nester–Witten two-form correspond to the various choices for this spin space.

8.1 The Ludvigsen–Vickers construction

8.1.1 The definition

Suppose that spacetime is asymptotically flat at future null infinity, and the closed spacelike two-
surface 𝒮 can be joined to future null infinity by a smooth null hypersurface 𝒩 . Let 𝒮∞ := 𝒩∩I +,
the cut defined by the intersection of 𝒩 with future null infinity. Then, the null geodesic generators
of 𝒩 define a smooth bijection between 𝒮 and the cut 𝒮∞ (and hence, in particular, 𝒮 ≈ 𝑆2). We
saw in Section 4.2.4 that on the cut 𝒮∞ at the future null infinity we have the asymptotic spin space
(S𝐴
∞, 𝜀𝐴 𝐵 ). The suggestion of Ludvigsen and Vickers [318] for the spin space (S𝐴 , 𝜀𝐴 𝐵 ) on 𝒮 is

to import the two independent solutions of the asymptotic twistor equations, i.e., the asymptotic
spinors, from the future null infinity back to the two-surface along the null geodesic generators of
the null hypersurface 𝒩 . Their propagation equations, given both in terms of spinors and in the
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GHP formalism, are

𝑜𝐴𝑜𝐴′ (∇𝐴𝐴′𝜆𝐵) 𝑜𝐵 = þ𝜆0 = 0, (8.3)

𝜄𝐴𝑜𝐴′ (∇𝐴𝐴′𝜆𝐵) 𝑜𝐵 = k′𝜆0 + 𝜌𝜆1 = 0. (8.4)

Here 𝜀𝐴
A = {𝑜𝐴, 𝜄𝐴} is the GHP spin frame introduced in Section 4.2.4, and by Equation (4.6) the

second half of these equations is just Δ+𝜆 = 0. It should be noted that the choice of Equations (8.3)
and ( 8.4) for the propagation law of the spinors is ‘natural’ in the sense that in flat spacetime
they reduce to the condition of parallel propagation, and Equation (8.4) is just the appropriate
part of the asymptotic twistor equation of Bramson. We call the spinor fields obtained by using
Equations (8.3) and (8.4) the Ludvigsen–Vickers spinors on 𝒮. Thus, given an asymptotic spinor at
infinity, we propagate its zero-th components (with respect to the basis 𝜀𝐴

A) to 𝒮 by Equation (8.3).
This will be the zero-th component of the Ludvigsen–Vickers spinor. Then, its first component will
be determined by Equation (8.4), provided 𝜌 is not vanishing on any open subset of 𝒮. If 𝜆0

𝐴 and
𝜆1

𝐴 are Ludvigsen–Vickers spinors on 𝒮 obtained by Equations (8.3) and (8.4) from two asymptotic
spinors that formed a normalized spin frame, then, by considering 𝜆0

𝐴 and 𝜆1
𝐴 to be normalized

in S𝐴 , we define the symplectic metric 𝜀𝐴 𝐵 on S𝐴 to be that with respect to which 𝜆0
𝐴 and 𝜆1

𝐴

form a normalized spin frame. Note, however, that this symplectic metric is not connected with
the symplectic fiber metric 𝜀𝐴𝐵 of the spinor bundle S𝐴(𝒮) over 𝒮. Indeed, in general, 𝜆𝐴

𝐴 𝜆
𝐵
𝐵 𝜀

𝐴𝐵

is not constant on 𝒮, and hence, 𝜀𝐴𝐵 does not determine any symplectic metric on the space S𝐴

of the Ludvigsen–Vickers spinors. In Minkowski spacetime the two Ludvigsen–Vickers spinors are
just the restriction to 𝒮 of the two constant spinors.

8.1.2 Remarks on the validity of the construction

Before discussing the usual questions about the properties of the construction (positivity, mono-
tonicity, the various limits, etc.), we should make some general remarks. First, it is obvious that the
Ludvigsen–Vickers energy-momentum in its above form cannot be defined in a spacetime, which
is not asymptotically flat at null infinity. Thus, their construction is not genuinely quasi-local, be-
cause it depends not only on the (intrinsic and extrinsic) geometry of 𝒮, but on the global structure
of the spacetime as well. In addition, the requirement of the smoothness of the null hypersurface
𝒩 connecting the two-surface to the null infinity is a very strong restriction. In fact, for general
(even for convex) two-surfaces in a general asymptotically flat spacetime, conjugate points will
develop along the (outgoing) null geodesics orthogonal to the two-surface [383, 218]. Thus, either
the two-surface must be near enough to the future null infinity (in the conformal picture), or the
spacetime and the two-surface must be nearly spherically symmetric (or the former cannot be ‘very
much curved’ and the latter cannot be ‘very much bent’).

This limitation yields that, in general, the original construction above does not have a small
sphere limit. However, using the same propagation equations (8.3) and (8.4) one could define a
quasi-local energy-momentum for small spheres [318, 76]. The basic idea is that there is a spin
space at the vertex 𝑝 of the null cone in the spacetime whose spacelike cross section is the actual
two-surface, and the Ludvigsen–Vickers spinors on 𝒮 are defined by propagating these spinors from
the vertex 𝑝 to 𝒮 via Equations (8.3) and (8.4). This definition works in arbitrary spacetimes, but
the two-surface cannot be extended to a large sphere near the null infinity, and it is still not
genuinely quasi-local.

8.1.3 Monotonicity, mass-positivity and the various limits

Once the Ludvigsen–Vickers spinors are given on a spacelike two-surface 𝒮𝑟 of constant affine
parameter 𝑟 in the outgoing null hypersurface 𝒩 , then they are uniquely determined on any other
spacelike two-surface 𝒮𝑟′ in𝒩 , as well, i.e., the propagation law, Equations (8.3) and (8.4), defines a
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natural isomorphism between the space of the Ludvigsen–Vickers spinors on different two-surfaces
of constant affine parameter in the same 𝒩 . (𝑟 need not be a Bondi-type coordinate.) This makes
it possible to compare the components of the Ludvigsen–Vickers energy-momenta on different
surfaces. In fact [318], if the dominant energy condition is satisfied (at least on 𝒩 ), then for any
Ludvigsen–Vickers spinor 𝜆𝐴 and affine parameter values 𝑟1 ≤ 𝑟2, one has 𝐻𝒮𝑟1

[𝜆, �̄�] ≤ 𝐻𝒮𝑟2
[𝜆, �̄�],

and the difference 𝐻𝒮𝑟2
[𝜆, �̄�]−𝐻𝒮𝑟1

[𝜆, �̄�] ≥ 0 can be interpreted as the energy flux of the matter
and the gravitational radiation through 𝒩 between 𝒮𝑟1 and 𝒮𝑟2 . Thus, both 𝑃 00′

𝒮𝑟
and 𝑃 11′

𝒮𝑟
are

increasing with 𝑟 (‘mass-gain’). A similar monotonicity property (‘mass-loss’) can be proven on
ingoing null hypersurfaces, but then the propagation equations (8.3) and (8.4) should be replaced
by þ′𝜆1 = 0 and −Δ−𝜆 := k𝜆1 + 𝜌′𝜆0 = 0. Using these equations the positivity of the Ludvigsen–
Vickers mass was proven in various special cases in [318].

Concerning the positivity properties of the Ludvigsen–Vickers mass and energy, first it is obvi-
ous by the remarks on the nature of the propagation equations (8.3) and (8.4) that in Minkowski
spacetime the Ludvigsen–Vickers energy-momentum is vanishing. However, in the proof of the non-
negativity of the Dougan–Mason energy (discussed in Section 8.2) only the 𝜆𝐴 ∈ ker Δ+ part of
the propagation equations is used. Therefore, as realized by Bergqvist [71], the Ludvigsen–Vickers
energy-momenta (both based on the asymptotic and the point spinors) are also future directed and
nonspacelike, if 𝒮 is the boundary of some compact spacelike hypersurface Σ on which the domi-
nant energy condition is satisfied and 𝒮 is weakly future convex (or at least 𝜌 ≤ 0). Similarly, the
Ludvigsen–Vickers definitions share the rigidity properties proven for the Dougan–Mason energy-
momentum [449]. Under the same conditions the vanishing of the energy-momentum implies the
flatness of the domain of dependence 𝐷(Σ) of Σ.

In the weak field approximation [318] the difference 𝐻𝒮𝑟2
[𝜆, �̄�]−𝐻𝒮𝑟1

[𝜆, �̄�] is just the integral
of 4𝜋𝐺𝑇𝑎𝑏 𝑙

𝑎𝜆𝐵�̄�𝐵′ on the portion of 𝒩 between the two two-surfaces, where 𝑇𝑎𝑏 is the linearized
energy-momentum tensor. The increment of 𝐻𝒮𝑟 [𝜆, �̄�] on 𝒩 is due only to the flux of the matter
energy-momentum.

Since the Bondi–Sachs energy-momentum can be written as the integral of the Nester–Witten
two-form on the cut in question at the null infinity with the asymptotic spinors, it is natural to
expect that the first version of the Ludvigsen–Vickers energy-momentum tends to that of Bondi
and Sachs. It was shown in [318, 422] that this expectation is, in fact, correct. The Ludvigsen–
Vickers mass was calculated for large spheres both for radiative and stationary spacetimes with
𝑟−2 and 𝑟−3 accuracy, respectively, in [420, 422].

Finally, on a small sphere of radius 𝑟 in nonvacuum the second definition gives [76] the expected
result (4.9), while in vacuum [76, 455] it is

𝑃
𝐴 𝐵 ′

𝒮𝑟
=

1
10𝐺

𝑟5𝑇 𝑎
𝑏𝑐𝑑𝑡

𝑏𝑡𝑐𝑡𝑑ℰ𝐴
𝐴 ℰ̄

𝐵 ′

𝐴′ +
4

45𝐺
𝑟6𝑡𝑒(∇𝑒𝑇

𝑎
𝑏𝑐𝑑)𝑡𝑏𝑡𝑐𝑡𝑑ℰ𝐴

𝐴 ℰ̄
𝐵 ′

𝐴′ +𝒪(𝑟7). (8.5)

Thus, its leading term is the energy-momentum of the matter fields and the Bel–Robinson mo-
mentum, respectively, seen by the observer 𝑡𝑎 at the vertex 𝑝. Thus, assuming that the matter
fields satisfy the dominant energy condition, for small spheres this is an explicit proof that the
Ludvigsen–Vickers quasi-local energy-momentum is future pointing and nonspacelike.

8.2 The Dougan–Mason constructions

8.2.1 Holomorphic/antiholomorphic spinor fields

The original construction of Dougan and Mason [158] was introduced on the basis of sheaf-
theoretical arguments. Here we follow a slightly different, more ‘pedestrian’ approach, based
mostly on [449, 451].
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Following Dougan and Mason we define the spinor field 𝜆𝐴 to be antiholomorphic when
𝑚𝑒∇𝑒𝜆𝐴 = 𝑚𝑒Δ𝑒𝜆𝐴 = 0, or holomorphic if �̄�𝑒∇𝑒𝜆𝐴 = �̄�𝑒Δ𝑒𝜆𝐴 = 0. Thus, this notion of
holomorphicity/antiholomorphicity is referring to the connection Δ𝑒 on 𝒮. While the notion of the
holomorphicity/antiholomorphicity of a function on 𝒮 does not depend on whether the Δ𝑒 or 𝛿𝑒 op-
erator is used, for tensor or spinor fields it does. Although the vectors 𝑚𝑎 and �̄�𝑎 are not uniquely
determined (because their phase is not fixed), the notion of holomorphicity/antiholomorphicity
is well defined, because the defining equations are homogeneous in 𝑚𝑎 and �̄�𝑎. Next, suppose
that there are at least two independent solutions of �̄�𝑒Δ𝑒𝜆𝐴 = 0. If 𝜆𝐴 and 𝜇𝐴 are any two
such solutions, then �̄�𝑒Δ𝑒(𝜆𝐴𝜇𝐵𝜀

𝐴𝐵) = 0, and hence by Liouville’s theorem 𝜆𝐴𝜇𝐵𝜀
𝐴𝐵 is con-

stant on 𝒮. If this constant is not zero, then we call 𝒮 generic; if it is zero then 𝒮 will be called
exceptional. Obviously, holomorphic 𝜆𝐴 on a generic 𝒮 cannot have any zero, and any two holo-
morphic spinor fields, e.g., 𝜆0

𝐴 and 𝜆1
𝐴, span the spin space at each point of 𝒮 (and they can be

chosen to form a normalized spinor dyad with respect to 𝜀𝐴𝐵 on the whole of 𝒮). Expanding
any holomorphic spinor field in this frame, the expanding coefficients turn out to be holomor-
phic functions, and hence, constant. Therefore, on generic two-surfaces there are precisely two
independent holomorphic spinor fields. In the GHP formalism, the condition of the holomorphic-
ity of the spinor field 𝜆𝐴 is that its components (𝜆0, 𝜆1) be in the kernel of ℋ+ := Δ+ ⊕ 𝒯 +.
Thus, for generic two-surfaces kerℋ+ with the constant 𝜀𝐴 𝐵 would be a natural candidate for
the spin space (S𝐴 , 𝜀𝐴 𝐵 ) above. For exceptional two-surfaces, the kernel space kerℋ+ is either
two-dimensional but does not inherit a natural spin space structure, or it is higher than two di-
mensional. Similarly, the symplectic inner product of any two antiholomorphic spinor fields is also
constant, one can define generic and exceptional two-surfaces as well, and on generic surfaces there
are precisely two antiholomorphic spinor fields. The condition of the antiholomorphicity of 𝜆𝐴 is
𝜆 ∈ kerℋ− := ker(Δ− ⊕ 𝒯 −). Then S𝐴 = kerℋ− could also be a natural choice. Note that
the spinor fields, whose holomorphicity/antiholomorphicity is defined, are unprimed, and these
correspond to the antiholomorphicity/holomorphicity, respectively, of the primed spinor fields of
Dougan and Mason. Thus, the main question is whether there exist generic two-surfaces, and if
they do, whether they are ‘really generic’, i.e., whether most of the physically important surfaces
are generic or not.

8.2.2 The genericity of the generic two-surfaces

ℋ± are first-order elliptic differential operators on certain vector bundles over the compact two-
surface 𝒮, and their index can be calculated: index(ℋ±) = 2(1 − 𝑔), where 𝑔 is the genus of
𝒮. Therefore, for 𝒮 ≈ 𝑆2 there are at least two linearly-independent holomorphic and at least
two linearly-independent antiholomorphic spinor fields. The existence of the holomorphic/anti-
holomorphic spinor fields on higher-genus two-surfaces is not guaranteed by the index theorem.
Similarly, the index theorem does not guarantee that 𝒮 ≈ 𝑆2 is generic either. If the geometry of
𝒮 is very special, then the two holomorphic/antiholomorphic spinor fields (which are independent
as solutions of ℋ±𝜆 = 0) might be proportional to each other. For example, future marginally-
trapped surfaces (i.e., for which 𝜌 = 0) are exceptional from the point of view of holomorphic
spinors, and past marginally-trapped surfaces (𝜌′ = 0) from the point of view of antiholomorphic
spinors. Furthermore, there are surfaces with at least three linearly-independent holomorphic/anti-
holomorphic spinor fields. However, small generic perturbations of the geometry of an exceptional
two-surface 𝒮 with 𝑆2 topology make 𝒮 generic.

Finally, we note that several first-order differential operators can be constructed from the chiral
irreducible parts Δ± and 𝒯 ± of Δ𝑒, given explicitly by Equation (4.6). However, only four of them,
the Dirac–Witten operator Δ := Δ+⊕Δ−, the twistor operator 𝒯 := 𝒯 +⊕𝒯 −, and the holomorphy
and antiholomorphy operators ℋ±, are elliptic (which ellipticity, together with the compactness of
𝒮, would guarantee the finiteness of the dimension of their kernel), and it is only ℋ± that have a
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two-complex-dimensional kernel in the generic case. This purely mathematical result gives some
justification for the choices of Dougan and Mason. The spinor fields 𝜆𝐴

𝐴 that should be used in the
Nester–Witten two-form are either holomorphic or antiholomorphic. This construction does not
work for exceptional two-surfaces.

8.2.3 Positivity properties

One of the most important properties of the Dougan–Mason energy-momenta is that they are
future-pointing nonspacelike vectors, i.e., the corresponding masses and energies are non-negative.
Explicitly [158], if 𝒮 is the boundary of some compact spacelike hypersurface Σ on which the
dominant energy condition holds, furthermore if 𝒮 is weakly future convex (in fact, 𝜌 ≤ 0 is enough),
then the holomorphic Dougan–Mason energy-momentum is a future-pointing nonspacelike vector,
and, analogously, the antiholomorphic energy-momentum is future pointing and nonspacelike if
𝜌′ ≥ 0. (For the functional analytic techniques and tools to give a complete positivity proof, see,
e.g., [167].) As Bergqvist [71] stressed (and we noted in Section 8.1.3), Dougan and Mason used
only the Δ+𝜆 = 0 (and, in the antiholomorphic construction, the Δ−𝜆 = 0) half of the ‘propagation
law’ in their positivity proof. The other half is needed only to ensure the existence of two spinor
fields. Thus, that might be Equation (8.3) of the Ludvigsen–Vickers construction, or 𝒯 +𝜆 = 0
in the holomorphic Dougan–Mason construction, or even 𝒯 +𝜆 = 𝑘𝜎′𝜓′2𝜆0 for some constant 𝑘, a
‘deformation’ of the holomorphicity considered by Bergqvist [71]. In fact, the propagation law may
even be �̄�𝑎Δ𝑎𝜆𝐵 = 𝑓𝐵

𝐶𝜆𝐶 for any spinor field 𝑓𝐵
𝐶 satisfying 𝜋−𝐵

𝐴𝑓𝐵
𝐶 = 𝑓𝐴

𝐵𝜋+𝐶
𝐵 = 0. This

ensures the positivity of the energy under the same conditions and that 𝜀𝐴𝐵𝜆𝐴𝜇𝐵 is still constant
on 𝒮 for any two solutions 𝜆𝐴 and 𝜇𝐴, making it possible to define the norm of the resulting
energy-momentum, i.e., the mass.

In the asymptotically flat spacetimes the positive energy theorems have a rigidity part as well,
namely the vanishing of the energy-momentum (and, in fact, even the vanishing of the mass) implies
flatness. There are analogous theorems for the Dougan–Mason energy-momenta as well [449, 451].
Namely, under the conditions of the positivity proof

1. 𝑃𝐴 𝐵 ′

𝒮 is zero iff 𝐷(Σ) is flat, which is also equivalent to the vanishing of the quasi-local
energy, 𝐸𝒮 := 1√

2
(𝑃 00′

𝒮 + 𝑃 11′

𝒮 ) = 0, and

2. 𝑃𝐴 𝐵 ′

𝒮 is null (i.e., the quasi-local mass is zero) iff 𝐷(Σ) is a pp-wave geometry and the matter
is pure radiation.

In particular [459], for a coupled Einstein–Yang–Mills system (with compact, semisimple gauge
groups) the zero quasi-local mass configurations are precisely the pp-wave solutions found by
Güven [208]. Therefore, in contrast to the asymptotically flat cases, the vanishing of the mass does
not imply the flatness of 𝐷(Σ). Since, as we will see below, the Dougan–Mason masses tend to
the ADM mass at spatial infinity, there is a seeming contradiction between the rigidity part of the
positive mass theorems and Result 2 above. However, this is only an apparent contradiction. In
fact, according to one of the possible positive mass proofs [31], the vanishing of the ADM mass
implies the existence of a constant null vector field on 𝐷(Σ), and then the flatness follows from the
incompatibility of the conditions of the asymptotic flatness and the existence of a constant null
vector field: The only asymptotically flat spacetime admitting a constant null vector field is flat
spacetime.

These results show some sort of rigidity of the matter + gravity system (where the latter satisfies
the dominant energy condition), even at the quasi-local level, which is much more manifest from
the following equivalent form of Results 1 and 2. Under the same conditions 𝐷(Σ) is flat if and
only if there exist two linearly-independent spinor fields on 𝒮, which are constant with respect
to Δ𝑒, and 𝐷(Σ) is a pp-wave geometry; the matter is pure radiation if and only if there exists
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a Δ𝑒-constant spinor field on 𝒮 [451]. Thus, the full information that 𝐷(Σ) is flat/pp-wave is
completely encoded, not only in the usual initial data on Σ, but in the geometry of the boundary
of Σ, as well. In Section 13.5 we return to the discussion of this phenomenon, where we will see
that, assuming 𝒮 is future and past convex, the whole line element of 𝐷(Σ) (and not only the
information that it is some pp-wave geometry) is determined by the two-surface data on 𝒮.

Comparing Results 1 and 2 above with the properties of the quasi-local energy-momentum
(and angular momentum) listed in Section 2.2.3, the similarity is obvious: 𝑃𝐴 𝐵 ′

𝒮 = 0 characterizes
the ‘quasi-local vacuum state’ of general relativity, while 𝑚𝒮 = 0 is equivalent to ‘pure radiative
quasi-local states’. The equivalence of 𝐸𝒮 = 0 and the flatness of 𝐷(Σ) show that curvature always
yields positive energy, or, in other words, with this notion of energy no classical symmetry breaking
can occur in general relativity. The ‘quasi-local ground states’ (defined by 𝐸𝒮 = 0) are just the
‘quasi-local vacuum states’ (defined by the trivial value of the field variables on 𝐷(Σ)) [449], in
contrast, for example, to the well known 𝜑4 theories.

8.2.4 The various limits

Both definitions give the same standard expression for round spheres [157]. Although the limit of
the Dougan–Mason masses for round spheres in Reissner–Nordström spacetime gives the correct
irreducible mass of the Reissner–Nordström black hole on the horizon, the constructions do not
work on the surface of bifurcation itself, because that is an exceptional two-surface. Unfortunately,
without additional restrictions (e.g., the spherical symmetry of the two-surfaces in a spherically-
symmetric spacetime) the mass of the exceptional two-surfaces cannot be defined in a limiting
process, because, in general, the limit depends on the family of generic two-surfaces approaching
the exceptional one [451].

Both definitions give the same, expected results in the weak field approximation and, for large
spheres, at spatial infinity; both tend to the ADM energy-momentum [158]. (The Newtonian limit
in the covariant Newtonian spacetime was studied in [511].) In nonvacuum both definitions give
the same, expected expression (4.9) for small spheres, in vacuum they coincide in the 𝑟5 order
with that of Ludvigsen and Vickers, but in the 𝑟6 order they differ from each other. The holo-
morphic definition gives Equation (8.5), but in the analogous expression for the antiholomorphic
energy-momentum, the numerical coefficient 4/(45𝐺) is replaced by 1/(9𝐺) [157]. The Dougan–
Mason energy-momenta have also been calculated for large spheres of constant Bondi-type radial
coordinate value 𝑟 near future null infinity [157]. While the antiholomorphic construction tends to
the Bondi–Sachs energy-momentum, the holomorphic one diverges in general. In stationary space-
times they coincide and both give the Bondi–Sachs energy-momentum. At the past null infinity
it is the holomorphic construction, which reproduces the Bondi–Sachs energy-momentum, and the
antiholomorphic construction diverges.

We close this section with some caution and general comments on a potential gauge ambiguity
in the calculation of the various limits. By the definition of the holomorphic and antiholomorphic
spinor fields they are associated with the two-surface 𝒮 only. Thus, if 𝒮 ′ is another two-surface,
then there is no natural isomorphism between the space – for example of the antiholomorphic spinor
fields kerℋ−(𝒮) on 𝒮 – and kerℋ−(𝒮 ′) on 𝒮 ′, even if both surfaces are generic and hence, there are
isomorphisms between them12. This (apparently ‘only theoretical’) fact has serious pragmatic con-
sequences. In particular, in the small or large sphere calculations we compare the energy-momenta,
and hence, the holomorphic or antiholomorphic spinor fields as well, on different surfaces. For ex-
ample [455], in the small-sphere approximation every spin coefficient and spinor component in the
GHP dyad and metric component in some fixed coordinate system (𝜁, 𝜁) is expanded as a series
of 𝑟, as 𝜆A(𝑟, 𝜁, 𝜁) = 𝜆A

(0)(𝜁, 𝜁) + 𝑟𝜆A
(1)(𝜁, 𝜁) + · · · + 𝑟𝑘𝜆A

(𝑘)(𝜁, 𝜁) + 𝒪(𝑟𝑘+1). Substituting all

12Recall that, similarly, we did not have any natural isomorphism between the two-surface twistor spaces, discussed
in Section 7.2.1, on different two-surfaces.
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such expansions and the asymptotic solutions of the Bianchi identities for the spin coefficients and
metric functions into the differential equations defining the holomorphic/antiholomorphic spinors,
we obtain a hierarchical system of differential equations for the expansion coefficients 𝜆A

(0), 𝜆A
(1),

. . . , etc. It turns out that the solutions of this system of equations with accuracy 𝑟𝑘 form a 2𝑘,
rather than the expected two–complex-dimensional, space. 2(𝑘−1) of these 2𝑘 solutions are ‘gauge’
solutions, and they correspond in the approximation with given accuracy to the unspecified isomor-
phism between the space of the holomorphic/antiholomorphic spinor fields on surfaces of different
radii. Obviously, similar ‘gauge’ solutions appear in the large sphere expansions, too. Therefore,
without additional gauge fixing, in the expansion of a quasi-local quantity only the leading non-
trivial term will be gauge-independent. In particular, the 𝑟6-order correction in Equation (8.5)
for the Dougan–Mason energy-momenta is well defined only as a consequence of a natural gauge
choice13. Similarly, the higher-order corrections in the large sphere limit of the antiholomorphic
Dougan–Mason energy-momentum are also ambiguous unless a ‘natural’ gauge choice is made.
Such a choice is possible in stationary spacetimes.

8.3 A specific construction for the Kerr spacetime

Logically, this specific construction should be presented in Section 12, but the technique that it is
based on justifies its placement here.

By investigating the propagation law, Equations (8.3) and (8.4) of Ludvigsen and Vickers for the
Kerr spacetimes, Bergqvist and Ludvigsen constructed a natural flat, (but nonsymmetric) metric
connection [77]. Writing the new covariant derivative in the form ∇̃𝐴𝐴′𝜆𝐵 = ∇𝐴𝐴′𝜆𝐵 +Γ𝐴𝐴′𝐵

𝐶𝜆𝐶 ,
the ‘correction’ term Γ𝐴𝐴′𝐵

𝐶 could be given explicitly in terms of the GHP spinor dyad (adapted
to the two principal null directions), the spin coefficients 𝜌, 𝜏 and 𝜏 ′, and the curvature component
𝜓2. Γ𝐴𝐴′𝐵

𝐶 admits a potential [78]: Γ𝐴𝐴′𝐵𝐶 = −∇(𝐶
𝐵′𝐻𝐵)𝐴𝐴′𝐵′ , where 𝐻𝐴𝐵𝐴′𝐵′ := 1

2𝜌
−3(𝜌 +

𝜌)𝜓2𝑜𝐴𝑜𝐵𝑜𝐴′𝑜𝐵′ . However, this potential has the structure 𝐻𝑎𝑏 = 𝑓𝑙𝑎𝑙𝑏 appearing in the form of
the metric 𝑔𝑎𝑏 = 𝑔0

𝑎𝑏 + 𝑓𝑙𝑎𝑙𝑏 for the Kerr–Schild spacetimes, where 𝑔0
𝑎𝑏 is the flat metric. In fact,

the flat connection ∇̃𝑒 above could be introduced for general Kerr–Schild metrics [212], and the
corresponding ‘correction term’ Γ𝐴𝐴′𝐵𝐶 could be used to easily find the Lánczos potential for the
Weyl curvature [11].

Since the connection ∇̃𝐴𝐴′ is flat and annihilates the spinor metric 𝜀𝐴𝐵 , there are precisely
two linearly-independent spinor fields, say 𝜆0

𝐴 and 𝜆1
𝐴, that are constant with respect to ∇̃𝐴𝐴′ and

form a normalized spinor dyad. These spinor fields are asymptotically constant. Thus, it is natural
to choose the spin space (S𝐴 , 𝜀𝐴 𝐵 ) to be the space of the ∇̃𝑎-constant spinor fields, independent
of the two-surface 𝒮.

A remarkable property of these spinor fields is that the Nester–Witten two-form built from them
is closed : 𝑑𝑢(𝜆𝐴 , �̄�𝐵 ′

) = 0. This implies that the quasi-local energy-momentum depends only on
the homology class of 𝒮, i.e., if 𝒮1 and 𝒮2 are two-surfaces, such that they form the boundary of
some hypersurface in 𝑀 , then 𝑃𝐴 𝐵 ′

𝒮1
= 𝑃

𝐴 𝐵 ′

𝒮2
, and if 𝒮 is the boundary of some hypersurface, then

𝑃
𝐴 𝐵 ′

𝒮 = 0. In particular, for two-spheres that can be shrunk to a point, the energy-momentum is
zero, but for those that can be deformed to a cut of the future null infinity, the energy-momentum
is that of Bondi and Sachs.

13Clearly, for the Ludvigsen–Vickers energy-momentum no such ambiguity is present, because the part (8.3) of
their propagation law defines a natural isomorphism between the space of the Ludvigsen–Vickers spinors on the
different two-surfaces.
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9 Quasi-Local Spin Angular Momentum

In this section we review three specific quasi-local spin–angular-momentum constructions that
are (more or less) ‘quasi-localizations’ of Bramson’s expression at null infinity. Thus, the quasi-
local spin angular momentum for the closed, orientable spacelike two-surface 𝒮 will be sought in
the form (3.9). Before considering the specific constructions themselves, we summarize the most
important properties of the general expression of Equation (3.9). Since the most detailed discussion
of Equation (3.9) is probably given in [455, 457], the subsequent discussions will be based on them.

First, observe that the integral depends on the spinor dyad algebraically, thus it is enough to
specify the dyad only at the points of 𝒮. Obviously, 𝐽𝐴 𝐵

𝒮 transforms like a symmetric second-
rank spinor under constant 𝑆𝐿(2,C) transformations of the dyad {𝜆𝐴

𝐴 }. Second, suppose that
the spacetime is flat, and let {𝜆𝐴

𝐴 } be constant. Then the corresponding one-form basis {𝜗𝑎
𝑎 } is

the constant Cartesian one, which consists of exact one-forms. Then, since the Bramson super-
potential 𝑤(𝜆𝐴 , 𝜆𝐵 )𝑎𝑏 is the anti-self-dual part (in the name indices) of 𝜗𝑎

𝑎 𝜗
𝑏
𝑏 − 𝜗

𝑎
𝑏 𝜗

𝑏
𝑎 , which is

also exact, for such spinor bases, Equation (3.9) gives zero. Therefore, the integral of Bramson’s
superpotential (3.9) measures the nonintegrability of the one-form basis 𝜗𝐴 𝐴 ′

𝑎 = 𝜆
𝐴
𝐴 �̄�

𝐴 ′

𝐴′ , i.e., 𝐽𝐴 𝐵
𝒮

is a measure of how much the actual one-form basis is ‘distorted’ by the curvature relative to the
constant basis of Minkowski spacetime.

Thus, the only question is how to specify a spin frame on 𝒮 to be able to interpret 𝐽𝐴 𝐵
𝒮 as

angular momentum. It seems natural to choose those spinor fields that were used in the definition
of the quasi-local energy-momenta in Section 8. At first sight this may appear to be only an ad
hoc idea, but, recalling that in Section 8 we interpreted the elements of the spin spaces (S𝐴 , 𝜀𝐴 𝐵 )
as the ‘spinor constituents of the quasi-translations of 𝒮’, we can justify such a choice. Based
on our experience with the superpotentials for the various conserved quantities, the quasi-local
angular momentum can be expected to be the integral of something like ‘superpotential’× ‘quasi-
rotation generator’, and the ‘superpotential’ is some expression in the first derivative of the basic
variables, actually the tetrad or spinor basis. Since, however, Bramson’s superpotential is an
algebraic expression of the basic variables, and the number of the derivatives in the expression for
the angular momentum should be one, the angular momentum expressions based on Bramson’s
superpotential must contain the derivative of the ‘quasi-rotations’, i.e., (possibly a combination
of) the ‘quasi-translations’. Since, however, such an expression cannot be sensitive to the ‘change
of the origin’, they can be expected to yield only the spin part of the angular momentum.

The following two specific constructions differ from each other only in the choice for the spin
space (S𝐴 , 𝜀𝐴 𝐵 ), and correspond to the energy-momentum constructions of the previous Section 8.
The third construction (valid only in the Kerr spacetimes) is based on the sum of two terms, where
one is Bramson’s expression, and uses the spinor fields of Section 8.3. Thus, the present section is
not independent of Section 8, and, for the discussion of the choice of the spin spaces (S𝐴 , 𝜀𝐴 𝐵 ),
we refer to that.

Another suggestion for the quasi-local spatial angular momentum, proposed by Liu and Yau [311],
will be introduced in Section 10.4.1.

9.1 The Ludvigsen–Vickers angular momentum

Under the conditions that ensured the Ludvigsen–Vickers construction for the energy-momentum
would work in Section 8.1, the definition of their angular momentum is straightforward [318]. Since
in Minkowski spacetime the Ludvigsen–Vickers spinors are just the restriction to 𝒮 of the constant
spinor fields, by the general remark above the Ludvigsen–Vickers spin angular momentum is zero
in Minkowski spacetime.

Using the asymptotic solution of the Einstein–Maxwell equations in a Bondi-type coordinate
system it has been shown in [318] that the Ludvigsen–Vickers spin angular momentum tends to
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that of Bramson at future null infinity. For small spheres [455] in nonvacuum it reproduces precisely
the expected result (4.10), and in vacuum it is

𝐽
𝐴 𝐵
𝒮𝑟

=
4

45𝐺
𝑟5𝑇𝐴𝐴′𝐵𝐵′𝐶𝐶′𝐷𝐷′𝑡

𝐴𝐴′𝑡𝐵𝐵′𝑡𝐶𝐶′
(︁
𝑟𝑡𝐷

′𝐸𝜀𝐷𝐹ℰ𝐴
(𝐸ℰ

𝐵
𝐹 )

)︁
+𝒪

(︀
𝑟7
)︀
. (9.1)

We stress that in both the vacuum and nonvacuum cases, the factor 𝑟𝑡𝐷
′𝐸𝜀𝐷𝐹 ℰ𝐴

(𝐸ℰ
𝐵
𝐹 ), interpreted

in Section 4.2.2 as an average of the boost-rotation Killing fields that vanish at 𝑝, emerges naturally.
No (approximate) boost-rotation Killing field was put into the general formulae by hand.

9.2 Holomorphic/antiholomorphic spin angular momenta

Obviously, the spin–angular-momentum expressions based on the holomorphic and antiholomorphic
spinor fields [453] on generic two-surfaces are genuinely quasi-local. Since, in Minkowski spacetime
the restriction of the two constant spinor fields to any two-surface is constant, and hence holo-
morphic and antiholomorphic at the same time, both the holomorphic and antiholomorphic spin
angular momenta are vanishing. Similarly, for round spheres both definitions give zero [457], as
would be expected in a spherically-symmetric system. The antiholomorphic spin angular momen-
tum has already been calculated for axisymmetric two-surfaces 𝒮, for which the antiholomorphic
Dougan–Mason energy-momentum is null, i.e., for which the corresponding quasi-local mass is zero.
(As we saw in Section 8.2.3, this corresponds to a pp-wave geometry and pure radiative matter
fields on 𝐷(Σ) [449, 451].) This null energy-momentum vector turned out to be an eigenvector of
the anti-symmetric spin–angular-momentum tensor 𝐽𝑎 𝑏

𝒮 , which, together with the vanishing of the
quasi-local mass, is equivalent to the proportionality of the (null) energy-momentum vector and
the Pauli–Lubanski spin [453], where the latter is defined by

𝑆
𝑎
𝒮 := 1

2𝜀
𝑎

𝑏 𝑐 𝑑𝑃
𝑏
𝒮 𝐽

𝑐 𝑑
𝒮 . (9.2)

This is a known property of the zero-rest-mass fields in Poincaré invariant quantum field theo-
ries [209].

Both the holomorphic and antiholomorphic spin angular momenta were calculated for small
spheres [455]. In nonvacuum the holomorphic spin angular momentum reproduces the expected
result (4.10), and, apart from a minus sign, the antiholomorphic construction does also. In vacuum,
both definitions give exactly Equation (9.1).

In general the antiholomorphic and the holomorphic spin angular momenta are diverging near
the future null infinity of Einstein–Maxwell spacetimes as 𝑟 and 𝑟2, respectively. However, the
coefficient of the diverging term in the antiholomorphic expression is just the spatial part of the
Bondi–Sachs energy-momentum. Thus, the antiholomorphic spin angular momentum is finite in
the center-of-mass frame, and hence it seems to describe only the spin part of the gravitational
field. In fact, the Pauli–Lubanski spin (9.2) built from this spin angular momentum and the
antiholomorphic Dougan–Mason energy-momentum is always finite, free of the ‘gauge’ ambiguities
discussed in Section 8.2.4, and is built only from the gravitational data, even in the presence of
electromagnetic fields. In stationary spacetimes both constructions are finite and coincide with
the ‘standard’ expression (4.15). Thus, the antiholomorphic spin angular momentum defines an
intrinsic angular momentum at the future null infinity. Note that this angular momentum is free
of supertranslation ambiguities, because it is defined on the given cut in terms of the solutions
of elliptic differential equations. These solutions can be interpreted as the spinor constituents of
certain boost-rotation BMS vector fields, but the definition of this angular momentum is not based
on them [457].
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9.3 A specific construction for the Kerr spacetime

The angular momentum of Bergqvist and Ludvigsen [78] for the Kerr spacetime is based on their
special flat, nonsymmetric but metric, connection explained briefly in Section 8.3. But their idea is
not simply the use of the two ∇̃𝑒-constant spinor fields in Bramson’s superpotential. Rather, in the
background of their approach there are twistor-theoretical ideas. (The twistor-theoretic aspects of
the analogous flat connection for the general Kerr–Schild class are discussed in [212].)

The main idea is that, while the energy-momentum is a single four-vector in the dual of the
Hermitian subspace of S𝐴 ⊗ S̄𝐵 ′

, the angular momentum is not only an anti-symmetric tensor over
the same space, but should depend on the ‘origin’, a point in a four-dimensional affine space 𝑀0

as well, and should transform in a specific way under the translation of the ‘origin’. Bergqvist and
Ludvigsen defined the affine space 𝑀0 to be the space of the solutions 𝑋𝑎 of ∇̃𝑎𝑋𝑏 = 𝑔𝑎𝑏 −𝐻𝑎𝑏,
and showed that 𝑀0 is, in fact, a real, four-dimensional affine space. Then, for a given 𝑋𝐴𝐴′ , to
each ∇̃𝑎-constant spinor field 𝜆𝐴 they associate a primed spinor field by 𝜇𝐴′ := 𝑋𝐴′𝐴𝜆

𝐴. This 𝜇𝐴′

turns out to satisfy the modified valence-one twistor equation ∇̃𝐴(𝐴′𝜇𝐵′) = −𝐻𝐴𝐴′𝐵𝐵′𝜆
𝐵 . Finally,

they form the two-form

𝑊
(︀
𝑋,𝜆𝐴 , 𝜆𝐵

)︀
𝑎𝑏

:= i
[︁
𝜆

𝐴
𝐴∇𝐵𝐵′

(︁
𝑋𝐴′𝐶𝜀

𝐶𝐷𝜆
𝐵
𝐷

)︁
− 𝜆

𝐴
𝐵∇𝐴𝐴′

(︁
𝑋𝐵′𝐶𝜀

𝐶𝐷𝜆
𝐵
𝐷

)︁
+ 𝜀𝐴′𝐵′𝜆

𝐴
(𝐴𝜆

𝐵
𝐵)

]︁
,

(9.3)
and define the angular momentum 𝐽

𝐴 𝐵
𝒮 (𝑋) with respect to the origin 𝑋𝑎 as 1/(8𝜋𝐺) times the

integral of 𝑊 (𝑋,𝜆𝐴 , 𝜆𝐵 )𝑎𝑏 on some closed, orientable spacelike two-surface 𝒮. Since this 𝑊𝑎𝑏 is
closed, ∇[𝑎𝑊𝑏𝑐] = 0 (similar to the Nester–Witten two-form in Section 8.3), the integral 𝐽𝐴 𝐵

𝒮 (𝑋)
depends only on the homology class of 𝒮. Under the ‘translation’ 𝑋𝑒 ↦→ 𝑋𝑒 + 𝑎𝑒 of the ‘origin’
by a ∇̃𝑎-constant one-form 𝑎𝑒, it transforms as 𝐽𝐴 𝐵

𝒮 (�̃�) = 𝐽
𝐴 𝐵
𝒮 (𝑋) + 𝑎(𝐴

𝐵 ′𝑃
𝐵 )𝐵 ′

𝒮 , where the
components 𝑎𝐴 𝐵 ′ are taken with respect to the basis {𝜆𝐴

𝐴 } in the solution space. Unfortunately,
no explicit expression for the angular momentum in terms of the Kerr parameters 𝑚 and 𝑎 is given.
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10 The Hamilton–Jacobi Method

If one is concentrating only on the introduction and study of the properties of quasi-local quantities,
and is not interested in the detailed structure of the quasi-local (Hamiltonian) phase space, then
perhaps the most natural way to derive the general formulae is to follow the Hamilton–Jacobi
method. This was done by Brown and York in deriving their quasi-local energy expression [111,
112]. However, the Hamilton–Jacobi method in itself does not yield any specific construction.
Rather, the resulting general expression is similar to a superpotential in the Lagrangian approaches,
which should be completed by a choice for the reference configuration and for the generator vector
field of the physical quantity (see Section 3.3.3). In fact, the ‘Brown–York quasi-local energy’ is
not a single expression with a single well-defined prescription for the reference configuration. The
same general formula with several other, mathematically-inequivalent definitions for the reference
configurations are still called the ‘Brown–York energy’. A slightly different general expression was
used by Kijowski [289], Epp [164], and Liu and Yau [311]. Although the former follows a different
route to derive his expression and the latter two are not connected directly to the canonical analysis
(and, in particular, to the Hamilton–Jacobi method), the formalism and techniques that are used
justify their presentation in this section.

The present section is mainly based on the original papers [111, 112] by Brown and York. Since,
however, this is the most popular approach to finding quasi-local quantities and is the subject of
very active investigations, especially from the point of view of the applications in black hole physics,
this section is perhaps less complete than previous ones. The expressions of Kijowski, Epp, and
Liu and Yau will be treated in the formalism of Brown and York.

10.1 The Brown–York expression

10.1.1 The main idea

To motivate the main idea behind the Brown–York definition [111, 112], let us first consider a
classical mechanical system of 𝑛 degrees of freedom with configuration manifold 𝑄 and Lagrangian
𝐿 : 𝑇𝑄 × R → R (i.e., the Lagrangian is assumed to be first order and may depend on time
explicitly). For given initial and final configurations, (𝑞𝑎

1 , 𝑡1) and (𝑞𝑎
2 , 𝑡2), respectively, the corre-

sponding action functional is 𝐼1[𝑞(𝑡)] :=
∫︀ 𝑡2

𝑡1
𝐿(𝑞𝑎(𝑡), 𝑞𝑎(𝑡), 𝑡) 𝑑𝑡, where 𝑞𝑎(𝑡) is a smooth curve in

𝑄 from 𝑞𝑎(𝑡1) = 𝑞𝑎
1 to 𝑞𝑎(𝑡2) = 𝑞𝑎

2 with tangent 𝑞𝑎(𝑡) at 𝑡. (The pair (𝑞𝑎(𝑡), 𝑡) may be called a
history or world line in the ‘spacetime’ 𝑄× R.) Let (𝑞𝑎(𝑢, 𝑡(𝑢)), 𝑡(𝑢)) be a smooth one-parameter
deformation of this history, for which (𝑞𝑎(0, 𝑡(0)), 𝑡(0)) = (𝑞𝑎(𝑡), 𝑡), and 𝑢 ∈ (−𝜖, 𝜖) for some 𝜖 > 0.
Then, denoting the derivative with respect to the deformation parameter 𝑢 at 𝑢 = 0 by 𝛿, one has
the well known expression

𝛿𝐼1[𝑞(𝑡)] =
∫︁ 𝑡2

𝑡1

(︂
𝜕𝐿

𝜕𝑞𝑎
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞𝑎

)︂
(𝛿𝑞𝑎 − 𝑞𝑎𝛿𝑡) 𝑑𝑡+

𝜕𝐿

𝜕𝑞𝑎
𝛿𝑞𝑎|𝑡2𝑡1 −

(︂
𝜕𝐿

𝜕𝑞𝑎
𝑞𝑎 − 𝐿

)︂
𝛿𝑡|𝑡2𝑡1 . (10.1)

Therefore, introducing the Hamilton–Jacobi principal function 𝑆1(𝑞𝑎
1 , 𝑡1; 𝑞𝑎

2 , 𝑡2) as the value of the
action on the solution 𝑞𝑎(𝑡) of the equations of motion from (𝑞𝑎

1 , 𝑡1) to (𝑞𝑎
2 , 𝑡2), the derivative of 𝑆1

with respect to 𝑞𝑎
2 gives the canonical momenta 𝑝1

𝑎 := (𝜕𝐿/𝜕𝑞𝑎), while its derivative with respect
to 𝑡2 gives minus the energy, −𝐸1 = −(𝑝1

𝑎𝑞
𝑎 − 𝐿), at 𝑡2. Obviously, neither the action 𝐼1 nor

the principal function 𝑆1 are unique: 𝐼[𝑞(𝑡)] := 𝐼1[𝑞(𝑡)] − 𝐼0[𝑞(𝑡)] for any 𝐼0[𝑞(𝑡)] of the form∫︀ 𝑡2
𝑡1

(𝑑ℎ/𝑑𝑡) 𝑑𝑡 with arbitrary smooth function ℎ = ℎ(𝑞𝑎(𝑡), 𝑡) is an equally good action for the same
dynamics. Clearly, the subtraction term 𝐼0[𝑞(𝑡)] alters both the canonical momenta and the energy
according to 𝑝1

𝑎 ↦→ 𝑝𝑎 = 𝑝1
𝑎 − (𝜕ℎ/𝜕𝑞𝑎) and 𝐸1 ↦→ 𝐸 = 𝐸1 + (𝜕ℎ/𝜕𝑡), respectively.
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10.1.2 The variation of the action and the surface stress-energy tensor

The main idea of Brown and York [111, 112] is to calculate the analogous variation of an appropri-
ate first-order action of general relativity (or of the coupled matter + gravity system) and isolate
the boundary term that could be analogous to the energy 𝐸 above. To formulate this idea math-
ematically, Brown and York considered a compact spacetime domain 𝐷 with topology Σ× [𝑡1, 𝑡2]
such that Σ×{𝑡} correspond to compact spacelike hypersurfaces Σ𝑡; these form a smooth foliation
of 𝐷 and the two-surfaces 𝒮𝑡 := 𝜕Σ𝑡 (corresponding to 𝜕Σ × {𝑡}) form a foliation of the timelike
three-boundary 3𝐵 of 𝐷. Note that this 𝐷 is not a globally hyperbolic domain14. To ensure the
compatibility of the dynamics with this boundary, the shift vector is usually chosen to be tangent
to 𝒮𝑡 on 3𝐵. The orientation of 3𝐵 is chosen to be outward pointing, while the normals, both of
Σ1 := Σ𝑡1 and of Σ2 := Σ𝑡2 , are chosen to be future pointing. The metric and extrinsic curvature
on Σ𝑡 will be denoted, respectively, by ℎ𝑎𝑏 and 𝜒𝑎𝑏, and those on 3𝐵 by 𝛾𝑎𝑏 and Θ𝑎𝑏.

The primary requirement of Brown and York on the action is to provide a well-defined vari-
ational principle for the Einstein theory. This claim leads them to choose for 𝐼1 the ‘trace 𝐾
action’ (or, in the present notation, the ‘trace 𝜒 action’) for general relativity [518, 519, 490],
and the action for the matter fields may be included. (For minimal, nonderivative couplings, the
presence of the matter fields does not alter the subsequent expressions.) However, as Geoff Hay-
ward pointed out [221], to have a well-defined variational principle, the ‘trace 𝜒 action’ should in
fact be completed by two two-surface integrals, one on 𝒮1 and the other on 𝒮2. Otherwise, as a
consequence of the edges 𝒮1 and 𝒮2, called the ‘joints’ (i.e., the nonsmooth parts of the boundary
𝜕𝐷), the variation of the metric at the points of the edges 𝒮1 and 𝒮2 could not be arbitrary.
(See also [220, 289, 91, 110], where the ‘orthogonal boundaries assumption’ is also relaxed.) Let
𝜂1 and 𝜂2 be the scalar product of the outward-pointing normal of 3𝐵 and the future-pointing
normal of Σ1 and of Σ2, respectively. Then, varying the spacetime metric (for the variation of the
corresponding principal function 𝑆1) they obtained the following:

𝛿𝑆1 =
∫︁

Σ2

1
16𝜋𝐺

√︀
|ℎ|
(︀
𝜒𝑎𝑏 − 𝜒ℎ𝑎𝑏

)︀
𝛿ℎ𝑎𝑏 𝑑

3𝑥−

−
∫︁

Σ1

1
16𝜋𝐺

√︀
|ℎ|
(︀
𝜒𝑎𝑏 − 𝜒ℎ𝑎𝑏

)︀
𝛿ℎ𝑎𝑏 𝑑

3𝑥−

−
∫︁

3𝐵

1
16𝜋𝐺

√︀
|𝛾|
(︀
Θ𝑎𝑏 −Θ𝛾𝑎𝑏

)︀
𝛿𝛾𝑎𝑏 𝑑

3𝑥−

− 1
8𝜋𝐺

∮︁
𝒮2

tanh−1 𝜂2𝛿
√︀
|𝑞|𝑑2𝑥+

1
8𝜋𝐺

∮︁
𝒮1

tanh−1 𝜂1𝛿
√︀
|𝑞| 𝑑2𝑥. (10.2)

The first two terms together correspond to the term 𝑝1
𝑎𝛿𝑞

𝑎|𝑡2𝑡1 of Equation (10.1), and, in fact, the
familiar ADM expression for the canonical momentum 𝑝𝑎𝑏 is just 1

16𝜋𝐺

√︀
|ℎ|(𝜒𝑎𝑏 − 𝜒ℎ𝑎𝑏). The

last two terms give the effect of the presence of the nondifferentiable ‘joints’. Therefore, it is the
third term that should be analogous to the third term of Equation (10.1). In fact, roughly, this
is proportional to the proper time separation of the ‘instants’ Σ1 and Σ2, and it is reasonable to
identify its coefficient as some (quasi-local) analog of the energy. However, just as in the case of
the mechanical system, the action (and the corresponding principal function) is not unique, and
the principal function should be written as 𝑆 := 𝑆1 − 𝑆0, where 𝑆0 is assumed to be an arbitrary
function of the three-metric on the boundary 𝜕𝐷 = Σ2 ∪ 3𝐵 ∪ Σ1. Then

𝜏𝑎𝑏 := − 2√︀
|𝛾|

𝛿𝑆

𝛿𝛾𝑎𝑏
=

1
8𝜋𝐺

(︀
Θ𝑎𝑏 −Θ𝛾𝑎𝑏

)︀
+

2√︀
|𝛾|

𝛿𝑆0

𝛿𝛾𝑎𝑏
(10.3)

14In the original papers Brown and York assumed that the leaves Σ𝑡 of the foliation of 𝐷 were orthogonal to 3𝐵
(‘orthogonal boundaries assumption’).
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defines a symmetric tensor field on the timelike boundary 3𝐵, and is called the surface stress-
energy tensor. (Since our signature for 𝛾𝑎𝑏 on 3𝐵 is (+,−,−) rather than (−,+,+), we should
define 𝜏𝑎𝑏 with the extra minus sign, according to Equation (2.1).) Its divergence with respect to
the connection 3𝐷𝑒 on 3𝐵 determined by 𝛾𝑎𝑏 is proportional to the part 𝛾𝑎𝑏𝑇𝑏𝑐𝑣

𝑐 of the energy-
momentum tensor, and hence, in particular, 𝜏𝑎𝑏 is divergence-free in vacuum. Therefore, if (3𝐵, 𝛾𝑎𝑏)
admits a Killing vector, say 𝐾𝑎, then, in vacuum

𝑄𝒮 [K] :=
∮︁
𝒮
𝐾𝑎𝜏

𝑎𝑏𝑡𝑏 𝑑𝒮, (10.4)

the flux integral of 𝜏𝑎𝑏𝐾𝑏 on any spacelike cross section 𝒮 of 3𝐵, is independent of the cross section
itself, and hence, defines a conserved charge. If 𝐾𝑎 is timelike, then the corresponding charge is
called a conserved mass, while for spacelike 𝐾𝑎 with closed orbits in 𝒮 the charge is called angular
momentum. (Here 𝒮 is not necessarily an element of the foliation 𝒮𝑡 of 3𝐵, and 𝑡𝑎 is the unit
normal to 𝒮 tangent to 3𝐵.)

Clearly, the trace-𝜒 action cannot be recovered as the volume integral of some scalar La-
grangian, because it is the Hilbert action plus a boundary integral of the trace 𝜒, and the latter
depends on the location of the boundary itself. Such a Lagrangian was found by Pons [397]. This
depends on the coordinate system adapted to the boundary of the domain 𝐷 of integration. An
interesting feature of this Lagrangian is that it is second order in the derivatives of the metric, but
it depends only on the first time derivative. A detailed analysis of the variational principle, the
boundary conditions and the conserved charges is given. In particular, the asymptotic properties of
this Lagrangian is similar to that of the ΓΓ Lagrangian of Einstein, rather than to that of Hilbert.

10.1.3 The general form of the Brown–York quasi-local energy

The 3 + 1 decomposition of the spacetime metric yields a 2 + 1 decomposition of the metric 𝛾𝑎𝑏, as
well. Let 𝑁 and 𝑁𝑎 be the lapse and the shift of this decomposition on 3𝐵. Then the corresponding
decomposition of 𝜏𝑎𝑏 defines the energy, momentum, and spatial-stress surface densities according
to

𝜀 := 𝑡𝑎𝑡𝑏𝜏
𝑎𝑏 = − 1

8𝜋𝐺
𝑘 +

1√︀
|𝑞|
𝛿𝑆0

𝛿𝑁
, (10.5)

𝑗𝑎 := −𝑞𝑎𝑏𝑡𝑐𝜏
𝑏𝑐 =

1
8𝜋𝐺

𝐴𝑎 +
1√︀
|𝑞|

𝛿𝑆0

𝛿𝑁𝑎
, (10.6)

𝑠𝑎𝑏 := Π𝑎
𝑐Π𝑏

𝑑𝜏
𝑐𝑑 =

1
8𝜋𝐺

[︀
𝑘𝑎𝑏 − 𝑘𝑞𝑎𝑏 + 𝑞𝑎𝑏𝑡𝑒 (∇𝑒𝑡𝑓 ) 𝑣𝑓

]︀
+

2√︀
|𝑞|

𝛿𝑆0

𝛿𝑞𝑎𝑏
, (10.7)

where 𝑞𝑎𝑏 is the spacelike two-metric, 𝐴𝑒 is the 𝑆𝑂(1, 1) vector potential on 𝒮𝑡, Π𝑎
𝑏 is the projection

to 𝒮𝑡 introduced in Section 4.1.2, 𝑘𝑎𝑏 is the extrinsic curvature of 𝒮𝑡 corresponding to the normal
𝑣𝑎 orthogonal to 3𝐵, and 𝑘 is its trace. The timelike boundary 3𝐵 defines a boost-gauge on
the two-surfaces 𝒮𝑡 (which coincides with that determined by the foliation Σ𝑡 in the ‘orthogonal
boundaries’ case). The gauge potential 𝐴𝑒 is taken in this gauge. Thus, although 𝜀 and 𝑗𝑎 on 𝒮𝑡

are built from the two-surface data (in a particular boost-gauge), the spatial surface stress depends
on the part 𝑡𝑎(∇𝑎𝑡𝑏)𝑣𝑏 of the acceleration of the foliation Σ𝑡 as well. Let 𝜉𝑎 be any vector field
on 3𝐵 tangent to 3𝐵, and 𝜉𝑎 = 𝑛𝑡𝑎 + 𝑛𝑎 its 2 + 1 decomposition. Then we can form the charge
integral (10.4) for the leaves 𝒮𝑡 of the foliation of 3𝐵

𝐸𝑡 [𝜉𝑎, 𝑡𝑎] :=
∮︁
𝒮𝑡

𝜉𝑎𝜏
𝑎𝑏𝑡𝑏 𝑑𝒮𝑡 =

∮︁
𝒮𝑡

(𝑛𝜀− 𝑛𝑎𝑗𝑎) 𝑑𝒮𝑡. (10.8)
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Obviously, in general 𝐸𝑡[𝜉𝑎, 𝑡𝑎] is not conserved, and depends not only on the vector field 𝜉𝑎 and
the two-surface data on the particular 𝒮𝑡, but on the boost-gauge that 3𝐵 defines on 𝒮𝑡, i.e., the
timelike normal 𝑡𝑎 as well. Brown and York define the general form of their quasi-local energy on
𝒮 := 𝒮𝑡 by

𝐸BY (𝒮, 𝑡𝑎) := 𝐸𝑡 [𝑡𝑎, 𝑡𝑎] , (10.9)

i.e., they link the ‘quasi-time-translation’ (i.e., the ‘generator of the energy’) to the preferred unit
normal 𝑡𝑎 of 𝒮𝑡. Since the preferred unit normals 𝑡𝑎 are usually interpreted as a fleet of observers
who are at rest with respect to 𝒮𝑡, in their spirit the Brown–York-type quasi-local energy expres-
sions are similar to 𝐸Σ[𝑡𝑎] given by Equation (2.6) for the matter fields or Equation (3.10) for the
gravitational ‘field’ rather than to the charges 𝑄𝒮 [K]. For vector fields 𝜉𝑎 = 𝑛𝑎 with closed integral
curved in 𝒮𝑡 the quantity 𝐸𝑡[𝜉𝑎, 𝑡𝑎] might be interpreted as angular momentum corresponding to
𝜉𝑎.

The quasi-local energy is still not completely determined, because the ‘subtraction term’ 𝑆0

in the principal function has not been specified. This term is usually interpreted as our freedom
to shift the zero point of the energy. Thus the basic idea of fixing the subtraction term is to
choose a ‘reference configuration’, i.e., a spacetime in which we want to obtain zero quasi-local
quantities 𝐸𝑡[𝜉𝑎, 𝑡𝑎] (in particular zero quasi-local energy), and identify 𝑆0 with the 𝑆1 of the
reference spacetime. Thus by Equation (10.5) and (10.6) we obtain that

𝜀 = − 1
8𝜋𝐺

(︀
𝑘 − 𝑘0

)︀
, 𝑗𝑎 =

1
8𝜋𝐺

(︀
𝐴𝑎 −𝐴0

𝑎

)︀
, (10.10)

where 𝑘0 and 𝐴0
𝑎 are the reference values of the trace of the extrinsic curvature and 𝑆𝑂(1, 1)-

gauge potential, respectively. Note that to ensure that 𝑘0 and 𝐴0
𝑎 really be the trace of the

extrinsic curvature and 𝑆𝑂(1, 1)-gauge potential, respectively, in the reference spacetime, they
cannot depend on the lapse 𝑁 and the shift 𝑁𝑎. This can be ensured by requiring that 𝑆0 be a
linear functional of them. We return to the discussion of the reference term in the various specific
constructions below.

10.1.4 Further properties of the general expressions

As we noted, 𝜀, 𝑗𝑎, and 𝑠𝑎𝑏 depend on the boost-gauge that the timelike boundary defines on
𝒮𝑡. Lau clarified how these quantities change under a boost gauge transformation, where the new
boost-gauge is defined by the timelike boundary 3𝐵′ of another domain 𝐷′ such that the particular
two-surface 𝒮𝑡 is a leaf of the foliation of 3𝐵′ as well [305]. If {Σ̄𝑡} is another foliation of 𝐷 such
that 𝜕Σ̄𝑡 = 𝒮𝑡 and Σ̄𝑡 is orthogonal to 3𝐵, then the new 𝜀′, 𝑗′𝑎, and 𝑠′𝑎𝑏 are built from the old 𝜀,
𝑗𝑎, and 𝑠𝑎𝑏 and the 2 + 1 pieces on 𝒮𝑡 of the canonical momentum ¯̃𝑝𝑎𝑏, defined on Σ̄𝑡. Apart from
the contribution of 𝑆0, these latter quantities are

𝑗⊢ :=
2√︀
|ℎ|
𝑣𝑎𝑣𝑏

¯̃𝑝𝑎𝑏 =
1

8𝜋𝐺
𝑙, (10.11)

�̂�𝑎 :=
2√︀
|ℎ|
𝑞𝑎𝑏𝑣𝑐

¯̃𝑝𝑏𝑐 =
1

8𝜋𝐺
𝐴𝑎, (10.12)

𝑡𝑎𝑏 :=
2√︀
|ℎ|
𝑞𝑎𝑐𝑞𝑏𝑑

¯̃𝑝𝑐𝑑 =
1

8𝜋𝐺
[𝑙𝑎𝑏 − 𝑞𝑎𝑏 (𝑙 + 𝑣𝑒(∇𝑒𝑣𝑓 )𝑡𝑒)] , (10.13)

where 𝑙𝑎𝑏 is the extrinsic curvature of 𝒮𝑡 corresponding to its normal 𝑡𝑎 (we denote this by 𝜏𝑎𝑏

in Section 4.1.2), and 𝑙 is its trace. (By Equation (10.12) �̂�𝑎 is not an independent quantity,
that is just 𝑗𝑎. These quantities were originally introduced as the variational derivatives of the
principal function with respect to the lapse, the shift and the two-metric of the radial foliation of
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84 László B. Szabados

Σ𝑡 [305, 110], which are, in fact, essentially the components of the canonical momentum.) Thus,
the required transformation formulae for 𝜀, 𝑗𝑎, and 𝑠𝑎𝑏 follow from the definitions and those for
the extrinsic curvature and the 𝑆𝑂(1, 1) gauge potential of Section 4.1.2. The various boost-gauge
invariant quantities that can be built from 𝜀, 𝑗𝑎, 𝑠𝑎𝑏, 𝑗⊢, and 𝑡𝑎𝑏 are also discussed in [305, 110].

Lau repeated the general analysis above using the tetrad (in fact, triad) variables and the
Ashtekar connection on the timelike boundary, instead of the traditional ADM-type variables [303].
Here the energy and momentum surface densities are re-expressed by the superpotential ∨𝑏

𝑎𝑒,
given by Equation (3.2), in a frame adapted to the two-surface. (Lau called the corresponding
superpotential two-form the ‘Sparling two-form’.) However, in contrast to the usual Ashtekar
variables on a spacelike hypersurface [23], the time gauge cannot be imposed globally on the
boundary Ashtekar variables. In fact, while every orientable three-manifold Σ is parallelizable [376],
and hence, a globally-defined orthonormal triad can be given on Σ, the only parallelizable, closed,
orientable two-surface is the torus. Thus, on 3𝐵, we cannot impose the global time gauge condition
with respect to any spacelike two-surface 𝒮 in 3𝐵 unless 𝒮 is a torus. Similarly, the global radial
gauge condition in the spacelike hypersurfaces Σ𝑡 (even in a small open neighborhood of the whole
two-surfaces 𝒮𝑡 in Σ𝑡) can be imposed on a triad field only if the two-boundaries 𝒮𝑡 = 𝜕Σ𝑡 are all
tori. Obviously, these gauge conditions can be imposed on every local trivialization domain of the
tangent bundle 𝑇𝒮𝑡 of 𝒮𝑡. However, since in Lau’s local expressions only geometrical objects (like
the extrinsic curvature of the two-surface) appear, they are valid even globally (see also [304]).
On the other hand, further investigations are needed to clarify whether or not the quasi-local
Hamiltonian, using the Ashtekar variables in the radial–time gauge [305], is globally well defined.

In general, the Brown–York quasi-local energy does not have any positivity property even if the
matter fields satisfy the dominant energy conditions. However, as Hayward pointed out [222], for
the variations of the metric around the vacuum solutions that extremalize the Hamiltonian, called
the ‘ground states’, the quasi-local energy cannot decrease. On the other hand, the interpretation
of this result as a ‘quasi-local dominant energy condition’ depends on the choice of the time gauge
above, which does not exist globally on the whole two-surface 𝒮.

Booth and Mann [91] shifted the emphasis from the foliation of the domain 𝐷 to the foliation
of the boundary 3𝐵. (These investigations were extended to include charged black holes in [92],
where the gauge dependence of the quasi-local quantities is also examined.) In fact, from the
point of view of the quasi-local quantities defined with respect to the observers with world lines
in 3𝐵 and orthogonal to 𝒮, it is irrelevant how the spacetime domain 𝐷 is foliated. In particular,
the quasi-local quantities cannot depend on whether or not the leaves Σ𝑡 of the foliation of 𝐷
are orthogonal to 3𝐵. As a result, Booth and Mann recovered the quasi-local charge and energy
expressions of Brown and York derived in the ‘orthogonal boundary’ case. However, they suggested
a new prescription for the definition of the reference configuration (see Section 10.1.8). Also, they
calculated the quasi-local energy for round spheres in the spherically-symmetric spacetimes with
respect to several moving observers, i.e., in contrast to Equation (10.9), they did not link the
generator vector field 𝜉𝑎 to the normal 𝑡𝑎 of 𝒮𝑡. In particular, the world lines of the observers are
not integral curves of (𝜕/𝜕𝑡) in the coordinate basis given in Section 4.2.1 on the round spheres.

Using an explicit, nondynamic background metric 𝑔0
𝑎𝑏, one can construct a covariant first-order

Lagrangian 𝐿(𝑔𝑎𝑏, 𝑔
0
𝑎𝑏) for general relativity [281], and one can use the action 𝐼𝐷[𝑔𝑎𝑏, 𝑔

0
𝑎𝑏] based on

this Lagrangian instead of the trace 𝜒 action. Fatibene, Ferraris, Francaviglia, and Raiteri [168]
clarified the relationship between the two actions, 𝐼𝐷[𝑔𝑎𝑏] and 𝐼𝐷[𝑔𝑎𝑏, 𝑔

0
𝑎𝑏], and the corresponding

quasi-local quantities. Considering the reference term 𝑆0 in the Brown–York expression as the
action of the background metric 𝑔0

𝑎𝑏 (which is assumed to be a solution of the field equations), they
found that the two first-order actions coincide if the spacetime metrics 𝑔𝑎𝑏 and 𝑔0

𝑎𝑏 coincide on
the boundary 𝜕𝐷. Using 𝐿(𝑔𝑎𝑏, 𝑔

0
𝑎𝑏), they construct the conserved Noether current for any vector

field 𝜉𝑎 and, by taking its flux integral, define charge integrals 𝑄𝒮 [𝜉𝑎, 𝑔𝑎𝑏, 𝑔
0
𝑎𝑏] on two-surfaces 𝒮 15.

15The paper [168] gives a clear, readable summary of these earlier results.
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Again, the Brown–York quasi-local quantity 𝐸𝑡[𝜉𝑎, 𝑡𝑎] and 𝑄𝒮𝑡 [𝜉
𝑎, 𝑔𝑎𝑏, 𝑔

0
𝑎𝑏] coincide if the spacetime

metrics coincide on the boundary 𝜕𝐷 and if 𝜉𝑎 has some special form. Therefore, although the two
approaches are basically equivalent under the boundary condition above, this boundary condition
is too strong from both the point of view of the variational principle and that of the quasi-local
quantities. We will see in Section 10.1.8 that even the weaker boundary condition, that requires
only the induced three-metrics on 3𝐵 from 𝑔𝑎𝑏 and from 𝑔0

𝑎𝑏 to be the same, is still too strong.

10.1.5 The Hamiltonians

If we can write the action 𝐼[𝑞(𝑡)] of our mechanical system into the canonical form
∫︀ 𝑡2

𝑡1
[𝑝𝑎𝑞

𝑎 −
𝐻(𝑞𝑎, 𝑝𝑎, 𝑡)] 𝑑𝑡, then it is straightforward to read off the Hamiltonian of the system. Thus, having
accepted the trace 𝜒 action as the action for general relativity, it is natural to derive the cor-
responding Hamiltonian in the analogous way. Following this route Brown and York derived the
Hamiltonian, corresponding to the ‘basic’ (or nonreferenced) action 𝐼1 as well [112]. They obtained
the familiar integral of the sum of the Hamiltonian and the momentum constraints, weighted by
the lapse 𝑁 and the shift 𝑁𝑎, respectively, plus 𝐸𝑡[𝑁𝑡𝑎 + 𝑁𝑎, 𝑡𝑎], given by Equation (10.8), as a
boundary term. This result is in complete agreement with the expectations, as their general quasi-
local quantities can also be recovered as the value of the Hamiltonian on the constraint surface
(see also [91]). This Hamiltonian was investigated further in [110]. Here all the boundary terms
that appear in the variation of their Hamiltonian are determined and decomposed with respect
to the two-surface 𝜕Σ. It is shown that the change of the Hamiltonian under a boost of Σ yields
precisely the boosts of the energy and momentum surface density discussed above.

Hawking, Horowitz, and Hunter also derived the Hamiltonian from the trace 𝜒 action 𝐼1
𝐷[𝑔𝑎𝑏]

both with the orthogonal [219] and nonorthogonal boundary assumptions [220]. They allowed
matter fields Φ𝑁 , whose dynamics is governed by a first-order action 𝐼1

m𝐷[𝑔𝑎𝑏,Φ𝑁 ], to be present.
However, they treated the reference configuration in a different way. In the traditional canonical
analysis of the fields and the geometry based on a noncompact Σ (for example in the asymp-
totically flat case) one has to impose certain falloff conditions that ensure the finiteness of the
action, the Hamiltonian, etc. This finiteness requirement excludes several potentially interest-
ing field + gravity configurations from our investigations. In fact, in the asymptotically flat case
we compare the actual matter + gravity configurations with the flat spacetime + vanishing matter
fields configuration. Hawking and Horowitz generalized this picture by choosing a static, but oth-
erwise arbitrary, solution 𝑔0

𝑎𝑏, Φ0
𝑁 of the field equations, considered the timelike boundary 3𝐵 of

𝐷 to be a timelike cylinder ‘near the infinity’, and considered the action

𝐼𝐷 [𝑔𝑎𝑏,Φ𝑁 ] := 𝐼1
𝐷 [𝑔𝑎𝑏] + 𝐼1

m𝐷 [𝑔𝑎𝑏,Φ𝑁 ]− 𝐼1
𝐷

[︀
𝑔0

𝑎𝑏

]︀
− 𝐼1

m𝐷

[︀
𝑔0

𝑎𝑏,Φ
0
𝑁

]︀
and those matter + gravity configurations that induce the same value on 3𝐵 as Φ0

𝑁 and 𝑔0
𝑎𝑏. Its limit

as 3𝐵 is ‘pushed out to infinity’ can be finite, even if the limit of the original (i.e., nonreferenced)
action is infinite. Although in the nonorthogonal boundaries case the Hamiltonian derived from
the nonreferenced action contains terms coming from the ‘joints’, by the boundary conditions
at 3𝐵 they are canceled from the referenced Hamiltonian. This latter Hamiltonian coincides
with that obtained in the orthogonal boundaries case. Both the ADM and the Abbott–Deser
energy can be recovered from this Hamiltonian [219], and the quasi-local energy for spheres in
domains with nonorthogonal boundaries in the Schwarzschild solution is also calculated [220]. A
similar Hamiltonian, including the ‘joints’ or ‘corner’ terms, was obtained by Francaviglia and
Raiteri [175] for the vacuum Einstein theory (and for Einstein–Maxwell systems in [4]), using a
Noether charge approach. Their formalism, using the language of jet bundles, is, however, slightly
more sophisticated than that common in general relativity.

Booth and Fairhurst [84] reexamined the general form of the Brown–York energy and angular
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momentum from a Hamiltonian point of view16. Their starting point is the observation that
the domain 𝐷 is not isolated from its environment, thus, the quasi-local Hamiltonian cannot be
time independent. Therefore, instead of the standard Hamiltonian formalism for the autonomous
systems, a more general formalism, based on the extended phase space, must be used. This phase
space consists of the usual bulk configuration and momentum variables (ℎ𝑎𝑏, 𝑝

𝑎𝑏) on the typical
three-manifold Σ and the time coordinate 𝑡, the space coordinates 𝑥𝐴 on the two-boundary 𝒮 = 𝜕Σ,
and their conjugate momenta 𝜋 and 𝜋𝐴.

The second important observation of Booth and Fairhurst is that the Brown–York bound-
ary conditions are too restrictive. The two-metric, lapse, and shift need not be fixed, but their
variations corresponding to diffeomorphisms on the boundary must be allowed. Otherwise dif-
feomorphisms that are not isometries of the three-metric 𝛾𝑎𝑏 on 3𝐵 cannot be generated by any
Hamiltonian. Relaxing the boundary conditions appropriately, they show that there is a Hamil-
tonian on the extended phase space, which generates the correct equations of motions, and the
quasi-local energy and angular momentum expression of Brown and York are just (minus) the
momentum 𝜋 conjugate to the time coordinate 𝑡. The only difference between the present and the
original Brown–York expressions is the freedom in the functional form of the unspecified reference
term. Because of the more restrictive boundary conditions of Brown and York, their reference
term is less restricted. Choosing the same boundary conditions in both approaches, the resulting
expressions coincide completely.

10.1.6 The flat space and light cone references

The quasi-local quantities introduced above become well defined only if the subtraction term 𝑆0

in the principal function is specified. The usual interpretation of a choice for 𝑆0 is the calibration
of the quasi-local quantities, i.e., fixing where to take their zero value.

The only restriction on 𝑆0 that we had is that it must be a functional of the metric 𝛾𝑎𝑏 on
the timelike boundary 3𝐵. To specify 𝑆0, it seems natural to expect that the principal function
𝑆 be zero in Minkowski spacetime [196, 111]. Then 𝑆0 would be the integral of the trace Θ0 of
the extrinsic curvature of 3𝐵, if it were embedded in Minkowski spacetime with the given intrinsic
metric 𝛾𝑎𝑏. However, a general Lorentzian three-manifold (3𝐵, 𝛾𝑎𝑏) cannot be isometrically embed-
ded, even locally, into the Minkowski spacetime. (For a detailed discussion of this embedability,
see [111] and Section 10.1.8.)

Another assumption on 𝑆0 might be the requirement of the vanishing of the quasi-local quan-
tities, or of the energy and momentum surface densities, or only of the energy surface density 𝜀,
in some reference spacetime, e.g., in Minkowski or anti-de Sitter spacetime. Assuming that 𝑆0

depends on the lapse 𝑁 and shift 𝑁𝑎 linearly, the functional derivatives (𝛿𝑆0/𝛿𝑁) and (𝛿𝑆0/𝛿𝑁𝑎)
depend only on the two-metric 𝑞𝑎𝑏 and on the boost-gauge that 3𝐵 defined on 𝒮𝑡. Therefore,
𝜀 and 𝑗𝑎 take the form (10.10), and, by the requirement of the vanishing of 𝜀 in the reference
spacetime it follows that 𝑘0 should be the trace of the extrinsic curvature of 𝒮𝑡 in the reference
spacetime. Thus it would be natural to fix 𝑘0 as the trace of the extrinsic curvature of 𝒮𝑡, when
(𝒮𝑡, 𝑞𝑎𝑏) is embedded isometrically into the reference spacetime. However, this embedding is far
from unique (since, in particular, there are two independent normals of 𝒮𝑡 in the spacetime and it
would not be fixed which normal should be used to calculate 𝑘0), and hence the construction would
be ambiguous. On the other hand, one could require (𝒮𝑡, 𝑞𝑎𝑏) to be embedded into flat Euclidean
three-space, i.e., into a spacelike hyperplane of Minkowski spacetime. This is the choice of Brown
and York [111, 112]. In fact, as we already noted in Section 4.1.3, for two-surfaces with everywhere
positive scalar curvature, such an embedding exists and is unique. (The order of the differentia-

16Thus, in principle, we would have to report on their investigations in the next Section 11. Nevertheless, since
essentially they re-derive and justify the results of Brown and York following only a different route, we discuss their
results here.
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bility of the metric is reduced in [239] to 𝐶2.) A particularly interesting two-surface that cannot
be isometrically embedded into the flat three-space is the event horizon of the Kerr black hole, if
the angular momentum parameter 𝑎 exceeds the irreducible mass (but is still not greater than the
mass parameter 𝑚), i.e., if

√
3𝑚 < 2 |𝑎| < 2𝑚 [428]. (On the other hand, for its global isometric

embedding into R4, see [184].) Thus, the construction works for a large class of two-surfaces, but
certainly not for every potentially interesting two-surface. The convexity condition is essential.

It is known that the (local) isometric embedability of (𝒮, 𝑞𝑎𝑏) into flat three-space with extrinsic
curvature 𝑘0

𝑎𝑏 is equivalent to the Gauss–Codazzi–Mainardi equations 𝛿𝑎(𝑘0𝑎
𝑏 − 𝛿𝑎

𝑏 𝑘
0) = 0 and

𝒮𝑅 − (𝑘0)2 + 𝑘0
𝑎𝑏𝑘

0𝑎𝑏 = 0. Here 𝛿𝑎 is the intrinsic Levi-Civita covariant derivative and 𝒮𝑅 is the
corresponding curvature scalar on 𝒮 determined by 𝑞𝑎𝑏. Thus, for given 𝑞𝑎𝑏 and (actually the flat)
embedding geometry, these are three equations for the three components of 𝑘0

𝑎𝑏, and hence, if the
embedding exists, 𝑞𝑎𝑏 determines 𝑘0. Therefore, the subtraction term 𝑘0 can also be interpreted
as a solution of an under-determined elliptic system, which is constrained by a nonlinear algebraic
equation. In this form the definition of the reference term is technically analogous to the definition
of those in Sections 7, 8, and 9, but, by the nonlinearity of the equations, in practice it is much
more difficult to find the reference term 𝑘0 than the spinor fields in the constructions of Sections 7,
8, and 9.

Accepting this choice for the reference configuration, the reference 𝑆𝑂(1, 1) gauge potential
𝐴0

𝑎 will be zero in the boost-gauge in which the timelike normal of 𝒮𝑡 in the reference Minkowski
spacetime is orthogonal to the spacelike three-plane, because this normal is constant. Thus, to
summarize, for convex two-surfaces, the flat space reference of Brown and York is uniquely de-
termined, 𝑘0 is determined by this embedding, and 𝐴0

𝑎 = 0. Then 8𝜋𝐺𝑆0 = −
∫︀
𝒮𝑡
𝑁𝑘0 𝑑𝒮𝑡, from

which 𝑠𝑎𝑏 can be calculated (if needed). The procedure is similar if, instead of a spacelike hy-
perplane of Minkowski spacetime, a spacelike hypersurface of constant curvature (for example in
the de Sitter or anti-de Sitter spacetime) is used. The only difference is that extra (known) terms
appear in the Gauss–Codazzi–Mainardi equations.

Brown, Lau, and York considered another prescription for the reference configuration as well [109,
306, 307]. In this approach the two-surface (𝒮𝑡, 𝑞𝑎𝑏) is embedded into the light cone of a point of
the Minkowski or anti-de Sitter spacetime instead of into a spacelike hypersurface of constant cur-
vature. The essential difference between the new (‘light cone reference’) and the previous (‘flat
space reference’) prescriptions is that the embedding into the light cone is not unique, but the
reference term 𝑘0 may be given explicitly, in a closed form. The positivity of the Gauss curvature
of the intrinsic geometry of (𝒮, 𝑞𝑎𝑏) is not needed. In fact, by a result of Brinkmann [106], every
locally–conformally-flat Riemannian 𝑛-geometry is locally isometric to an appropriate cut of a light
cone of the 𝑛+ 2 dimensional Minkowski spacetime (see, also, [164]). To achieve uniqueness some
extra condition must be imposed. This may be the requirement of the vanishing of the ‘normal
momentum density’ 𝑗0⊢ in the reference spacetime [306, 307], yielding 𝑘0 =

√︀
2𝒮𝑅+ 4/𝜆2, where

𝒮𝑅 is the Ricci scalar of (𝒮, 𝑞𝑎𝑏) and 𝜆 is the cosmological constant of the reference spacetime.
The condition 𝑗0⊢ = 0 defines something like a ‘rest frame’ in the reference spacetime. Another,
considerably more complicated, choice for the light cone reference term is used in [109].

10.1.7 Further properties and the various limits

Although the general, nonreferenced expressions are additive, the prescription for the reference
term 𝑘0 destroys the additivity in general. In fact, if 𝒮 ′ and 𝒮 ′′ are two-surfaces such that 𝒮 ′ ∩𝒮 ′′
is connected and two-dimensional (more precisely, it has a nonempty open interior, for example,
in 𝒮 ′), then in general 𝒮 ′ ∪ 𝒮 ′′ − 𝒮 ′ ∩ 𝒮 ′′ (overline means topological closure) is not guaranteed to
be embeddable, the flat three-space, and even if it is embeddable then the resulting reference term
𝑘0 differs from the reference terms 𝑘′0 and 𝑘′′0 determined from the individual embeddings.

As noted in [91], the Brown–York energy with the flat space reference configuration is not zero
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in Minkowski spacetime in general. In fact, in the standard spherical polar coordinates let Σ1

be the spacelike hyperboloid 𝑡 = −
√︀
𝜌2 + 𝑟2, Σ0 the hyperplane 𝑡 = −𝑇 = const. < −𝜌 < 0

and 𝒮 := Σ0 ∩ Σ1, the sphere of radius
√︀
𝑇 2 − 𝜌2 in the 𝑡 = −𝑇 hyperplane. Then the trace

of the extrinsic curvature of 𝒮 in Σ0 and in Σ1 is 2/
√︀
𝑇 2 − 𝜌2 and 2𝑇/𝜌

√︀
𝑇 2 − 𝜌2, respectively.

Therefore, the Brown–York quasi-local energy (with the flat three-space reference) associated with
𝒮 and the normals of Σ1 on 𝒮 is −

√︀
(𝑇 + 𝜌)(𝑇 − 𝜌)3/(𝜌𝐺). Similarly, the Brown–York quasi-local

energy with the light cone references in [306] and in [109] is also negative for such surfaces with
the boosted observers.

Recently, Shi and Tam [423] have proven interesting theorems in Riemannian three-geometries,
which can be used to prove positivity of the Brown–York energy if the two-surface 𝒮 is a boundary
of some time-symmetric spacelike hypersurface on which the dominant energy condition holds. In
the time-symmetric case, this energy condition is just the condition that the scalar curvature be
non-negative. The key theorem of Shi and Tam is the following: let Σ be a compact, smooth
Riemannian three-manifold with non-negative scalar curvature and smooth two-boundary 𝒮 such
that each connected component 𝒮𝑖 of 𝒮 is homeomorphic to 𝑆2 and the scalar curvature of the
induced two-metric on 𝒮𝑖 is strictly positive. Then, for each component

∮︀
𝒮𝑖
𝑘 𝑑𝒮𝑖 ≤

∮︀
𝒮𝑖
𝑘0 𝑑𝒮𝑖 holds,

where 𝑘 is the trace of the extrinsic curvature of 𝒮 in Σ with respect to the outward-directed normal,
and 𝑘0 is the trace of the extrinsic curvature of 𝒮𝑖 in the flat Euclidean three-space when 𝒮𝑖 is
isometrically embedded. Furthermore, if in these inequalities the equality holds for at least one 𝒮𝑖,
then 𝒮 itself is connected and Σ is flat. This result is generalized in [424] by weakening the energy
condition, in which case lower estimates of the Brown–York energy can still be given. For some
rigidity theorems connected with this positivity result, see [426].

The energy expression for round spheres was calculated in [112, 91]. In the spherically-
symmetric metric discussed in Section 4.2.1, on round spheres the Brown–York energy with the
flat space reference and fleet of observers 𝜕/𝜕𝑡 on 𝒮 is 𝐺𝐸BY[𝒮𝑟, (𝜕/𝜕𝑡)𝑎] = 𝑟(1 − exp(−𝛼)). In
particular, it is 𝑟[1−

√︀
1− (2𝑚/𝑟)] for the Schwarzschild solution. This deviates from the standard

round sphere expression, and, for the horizon of the Schwarzschild black hole, it is 2𝑚 (instead
of the expected 𝑚). (The energy has also been calculated explicitly for boosted foliations of the
Schwarzschild solution and for round spheres in isotropic cosmological models [110].) Still in the
spherically-symmetric context the definition of the Brown–York energy is extended to spherical
two-surfaces beyond the event horizon in [319] (see also [408]). A remarkable result is that while
the total energy of the electrostatic field of a point charge in any finite three-volume surround-
ing the point charge in Minkowski spacetime is always infinite, the negative gravitational binding
energy compensates the electrostatic energy so that the quasi-local energy is negative within a
certain radius under the event horizon in the Reissner–Nordström spacetime and tends to −|𝑒| as
𝑟 → 0. The Brown–York energy is discussed from the point of view of observers in spherically-
symmetric spacetimes (e.g., the connection between this energy and the effective energy in the
geodesic equation for radial geodesics) in [81, 522].

The Newtonian limit can be derived from the round sphere expression by assuming that 𝑚
is the mass of a fluid ball of radius 𝑟 and 𝑚/𝑟 is small: It is 𝐺𝐸BY = 𝑚 + (𝑚2/2𝑟) + 𝒪(𝑟−2).
The first term is simply the mass defined at infinity, and the second term is minus the Newtonian
potential energy associated with building a spherical shell of mass 𝑚 and radius 𝑟 from individual
particles, bringing them together from infinity. (For the calculation of the Newtonian limit in the
covariant Newtonian spacetime, see [511].) However, taking into account that on the Schwarzschild
horizon 𝐺𝐸BY = 2𝑚, while at spatial infinity it is just 𝑚, the Brown–York energy is monotonically
decreasing with 𝑟. Also, the first law of black hole mechanics for spherically-symmetric black holes
can be recovered by identifying 𝐸BY with the internal energy [111, 112]. The thermodynamics of
the Schwarzschild–anti-de Sitter black holes was investigated in terms of the quasi-local quantities
in [107]. Still considering 𝐸BY to be the internal energy, the temperature, surface pressure, heat
capacity, etc. are calculated (see Section 13.3.1). The energy has also been calculated for the
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Einstein–Rosen cylindrical waves [110].
The energy is explicitly calculated for three different kinds of two-spheres in the 𝑡 = const. slices

(in the Boyer–Lindquist coordinates) of the slow rotation limit of the Kerr black hole spacetime
with the flat space reference [327]. These surfaces are the 𝑟 = const. surfaces (such as the outer
horizon), spheres whose intrinsic metric (in the given slow rotation approximation) is of a metric
sphere of radius 𝑅 with surface area 4𝜋𝑅2, and the ergosurface (i.e., the outer boundary of the
ergosphere). The slow rotation approximation is defined such that |𝑎| /𝑅 ≪ 1, where 𝑅 is the
typical spatial measure of the two-surface. In the first two cases the angular momentum parameter
𝑎 enters the energy expression only in the 𝑚2𝑎2/𝑅3 order. In particular, the energy for the outer
horizon 𝑟+ := 𝑚+

√
𝑚2 − 𝑎2 is 2𝑚[1− 𝑎2/(8𝑚2) +𝒪(𝑎4/𝑟4+)], which is twice the irreducible mass

of the black hole. An interesting feature of this calculation is that the energy cannot be calculated
for the horizon directly, because, as previously noted, the horizon itself cannot be isometrically
embedded into a flat three-space if the angular momentum parameter exceeds the irreducible
mass [428]. The energy for the ergosurface is positive, as for the other two kinds of surfaces.

The spacelike infinity limit of the charges interpreted as the energy, spatial momentum, and
spatial angular momentum are calculated in [110] (see also [219]). Here the flat-space reference
configuration and the asymptotic Killing vectors of the spacetime are used, and the limits coincide
with the standard ADM energy, momentum, and spatial angular momentum. The analogous
calculation for the center-of-mass is given in [50]. It is shown that the corresponding large sphere
limit is just the center-of-mass expression of Beig and Ó Murchadha [56]. Here the center-of-mass
integral is also given in terms of a charge integral of the curvature. The large sphere limit of the
energy for metrics with the weakest possible falloff conditions is calculated in [166, 427].

Although the prescription for the reference configuration by Hawking and Horowitz cannot
be imposed for a general timelike three-boundary 3𝐵 (see Section 10.1.8), asymptotically, when
3𝐵 is pushed out to infinity, this prescription can be used, and coincides with the prescription
of Brown and York. Choosing the background metric 𝑔0

𝑎𝑏 to be the anti-de Sitter one, Hawking
and Horowitz [219] calculated the limit of the quasi-local energy, and they found it to tend to
the Abbott–Deser energy. (For the spherically-symmetric Schwarzschild–anti-de Sitter case see
also [107].) In [108] the null infinity limit of the integral of 𝑁(𝑘0 − 𝑘)/(8𝜋𝐺) was calculated both
for the lapses 𝑁 , generating asymptotic time translations and supertranslations at the null infinity,
and the fleet of observers was chosen to tend to the BMS translation. In the former case the Bondi–
Sachs energy, in the latter case Geroch’s supermomenta are recovered. These calculations are based
directly on the Bondi form of the spacetime metric, and do not use the asymptotic solution of the
field equations. In a slightly different formulation Booth and Creighton calculated the energy flux
of outgoing gravitational radiation [90] (see also Section 13.1) and they recovered the Bondi–Sachs
mass-loss.

However, the calculation of the small sphere limit based on the flat-space reference config-
uration gave strange results [307]. While in nonvacuum the quasi-local energy is the expected
(4𝜋/3)𝑟3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏, in vacuum it is proportional to 4𝐸𝑎𝑏𝐸
𝑎𝑏 +𝐻𝑎𝑏𝐻

𝑎𝑏, instead of the Bel–Robinson
‘energy’ 𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑. (Here 𝐸𝑎𝑏 and 𝐻𝑎𝑏 are, respectively, the conformal electric and conformal
magnetic curvatures, and 𝑡𝑎 plays a double role. It defines the two-sphere of radius 𝑟 [as is usual in
the small sphere calculations], and defines the fleet of observers on the two-sphere.) On the other
hand, the special light cone reference used in [109, 307] reproduces the expected result in nonva-
cuum, and yields [1/(90𝐺)]𝑟5𝑇𝑎𝑏𝑐𝑑𝑡

𝑎𝑡𝑏𝑡𝑐𝑡𝑑 in vacuum. The small sphere limit was also calculated
in [166] for small geodesic spheres in a time symmetric spacelike hypersurface.

The light cone reference 𝑘0 =
√︀

2 𝒮𝑅+ 4/𝜆2 was shown to work in the large sphere limit near
the null and spatial infinities of asymptotically flat spacetimes and near the infinity of asymp-
totically anti-de Sitter spacetimes [306]. Namely, the Brown–York quasi-local energy expression
with this null-cone reference term tends to the Bondi–Sachs, the ADM, and Abbott–Deser ener-
gies. The supermomenta of Geroch at null infinity can also be recovered in this way. The proof
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is simply a demonstration of the fact that this light cone and the flat space prescriptions for the
subtraction term have the same asymptotic structure up to order 𝒪(𝑟−3). This choice seems to
work properly only in the asymptotics, because for small ellipsoids in the Minkowski spacetime this
definition yields nonzero energy and for small spheres in vacuum it does not yield the Bel–Robinson
‘energy’ [308].

10.1.8 Other prescriptions for the reference configuration

As previously noted, Hawking, Horowitz, and Hunter [219, 220] defined their reference configuration
by embedding the Lorentzian three-manifold (3𝐵, 𝛾𝑎𝑏) isometrically into some given Lorentzian
spacetime, e.g., into the Minkowski spacetime (see also [196]). However, for the given intrinsic
three-metric 𝛾𝑎𝑏 and the embedding four-geometry the corresponding Gauss and Codazzi–Mainardi
equations form a system of 6 + 8 = 14 equations for the six components of the extrinsic curvature
Θ𝑎𝑏 [111]. Thus, in general, this is a highly overdetermined system, and hence it may be expected
to have a solution only in exceptional cases. However, even if such an embedding existed, even
the small perturbations of the intrinsic metric ℎ𝑎𝑏 would break the conditions of embedability.
Therefore, in general, this prescription for the reference configuration can work only if the three-
surface 3𝐵 is ‘pushed out to infinity’, but does not work for finite three-surfaces [111].

To rule out the possibility that the Brown–York energy can be nonzero even in Minkowski
spacetime (on two-surfaces in the boosted flat data set), Booth and Mann [91] suggested that
one embed (𝒮, 𝑞𝑎𝑏) isometrically into a reference spacetime (𝑀0, 𝑔0

𝑎𝑏) (mostly into the Minkowski
spacetime) instead of a spacelike slice of it, and to map the evolution vector field 𝜉𝑎 = 𝑁𝑡𝑎 +𝑁𝑎

of the dynamics, tangent to 3𝐵, to a vector field 𝜉0𝑎 in 𝑀0 such that  L𝜉𝑞𝑎𝑏 = 𝜑*( L𝜉0𝑞0𝑎𝑏) and
𝜉𝑎𝜉𝑎 = 𝜑*(𝜉0𝑎𝜉0𝑎). Here 𝜑 is a diffeomorphism mapping an open neighborhood 𝑈 of 𝒮 in 𝑀 into
𝑀0 such that 𝜑|𝒮 , the restriction of 𝜑 to 𝒮, is an isometry, and  L𝜉𝑞𝑎𝑏 denotes the Lie derivative of 𝑞𝑎𝑏

along 𝜉𝑎. This condition might be interpreted as some local version of that of Hawking, Horowitz,
and Hunter. However, Booth and Mann did not investigate the existence or the uniqueness of this
choice.

10.2 Kijowski’s approach

10.2.1 The role of the boundary conditions

In the Brown–York approach the leading principle was the claim to have a well-defined variational
principle. This led them (i) to modify the Hilbert action to the trace-𝜒-action and (ii) to the
boundary condition that the induced three-metric on the boundary of the domain 𝐷 of the action
is fixed.

However, as stressed by Kijowski [289, 291], the boundary conditions have much deeper content.
For example in thermodynamics the different definitions of the energy (internal energy, enthalpy,
free energy, etc.) are connected with different boundary conditions. Fixing the pressure corre-
sponds to enthalpy, but fixing the temperature corresponds to free energy. Thus, the different
boundary conditions correspond to different physical situations, and, mathematically, to different
phase spaces17. Therefore, to relax the a priori boundary conditions, Kijowski abandoned the
variational principle and concentrated on the equations of motions. However, to treat all possible
boundary conditions on an equal footing he used the enlarged phase space of Tulczyjew (see, for
example, [291])18. The boundary condition of Brown and York is only one of the possible boundary

17According to this view the quasi-local energy is similar to 𝐸Σ of Equation (2.6), rather than to the charges,
which are connected somehow to some ‘absolute’ element of the spacetime structure.

18This phase space is essentially 𝑇 *𝑇𝑄, the cotangent bundle of the tangent bundle of the configuration man-
ifold 𝑄, endowed with the natural symplectic structure, and can be interpreted as the collection of quadruples
(𝑞𝑎, 𝑞𝑎, 𝑝𝑎, �̇�𝑎). The usual Lagrangian (or velocity) phase space 𝑇𝑄 and the Hamiltonian (or momentum) phase
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conditions.

10.2.2 The analysis of the Hilbert action and the quasi-local internal and free energies

Starting with the variation of Hilbert’s Lagrangian (in fact, the corresponding Hamilton–Jacobi
principal function on a domain 𝐷 above), and defining the Hamiltonian by the standard Legendre
transformation on the typical compact spacelike three-manifold Σ and its boundary 𝒮 = 𝜕Σ as
well, Kijowski arrived at a variation formula involving the value on 𝒮 of the variation of the
canonical momentum, �̃�𝑎𝑏 := − 1

16𝜋𝐺

√︀
|𝛾|(Θ𝑎𝑏−Θ𝛾𝑎𝑏), conjugate to 𝛾𝑎𝑏. (Apart from a numerical

coefficient and the subtraction term, this is essentially the surface stress-energy tensor 𝜏𝑎𝑏 given
by Equation (10.3).) Since, however, it is not clear whether or not the initial + boundary value
problem for the Einstein equations with fixed canonical momenta (i.e., extrinsic curvature) is well
posed, he did not consider the resulting Hamiltonian as the appropriate one, and made further
Legendre transformations on the boundary 𝒮.

The first Legendre transformation that he considered gave a Hamiltonian whose variation in-
volves the variation of the induced two-metric 𝑞𝑎𝑏 on 𝒮 and the parts �̃�𝑎𝑏𝑡𝑎𝑡𝑏 and �̃�𝑎𝑏𝑡𝑎Π𝑐

𝑏 of
the canonical momentum above. Explicitly, with the notation of Section 10.1, the latter two are
𝜋𝑎𝑏𝑡𝑎𝑡𝑏 = 𝑘/(16𝜋𝐺) and 𝜋𝑎𝑏𝑡𝑎𝑞𝑏𝑐 = 𝐴𝑐/(16𝜋𝐺), respectively. (𝜋𝑎𝑏 is the de-densitized �̃�𝑎𝑏.) Then,
however, the lapse and the shift on the boundary 𝒮 will not be independent. As Kijowski shows,
they are determined by the boundary conditions of the two-metric and the freely specifiable parts 𝑘
and 𝐴𝑐 of the canonical momentum 𝜋𝑎𝑏. Then, to define the ‘quasi-symmetries’ of the two-surface,
Kijowski suggests that one embed first the two-surface isometrically into an 𝑥0 = const. hyperplane
of the Minkowski spacetime, and then define a world tube by dragging this two-surface along the
integral curves of the Killing vectors of the Minkowski spacetime. For example, to define ‘quasi
time translation’ of the two-surface in the physical spacetime we must consider the time transla-
tion in the Minkowski spacetime of the two-surface embedded in the 𝑥0 = const. hyperplane. This
world tube gives an extrinsic curvature 𝑘0

𝑎𝑏 and vector potential 𝐴0
𝑐 . Finally, Kijowski’s choices for

𝑘 and 𝐴𝑐 are just 𝑘0 and 𝐴0
𝑐 , respectively. In particular, to define ‘quasi time translation’ he takes

𝜋𝑎𝑏𝑡𝑎𝑡𝑏 = 𝑘0/(16𝜋𝐺) and 𝜋𝑎𝑏𝑡𝑎Π𝑐
𝑏 = 0, because this choice yields zero shift and constant lapse

with value one. The corresponding quasi-local quantity, the Kijowski energy, is

𝐸K (𝒮) :=
1

16𝜋𝐺

∮︁
𝒮

(𝑘0)2 − (𝑘2 − 𝑙2)
𝑘0

𝑑𝒮. (10.14)

Here, as above, 𝑘 and 𝑙 are the trace of the extrinsic curvatures of 𝒮 in the physical spacetime
corresponding to the outward-pointing spacelike and the future pointing timelike unit normals to
𝒮, which are orthogonal to each other. Obviously, 𝐸K(𝒮) is invariant with respect to the boost
gauge transformations of the normals, because the ‘generator vector field’ of the energy is not
linked to one of the normals of 𝒮. A remarkable property of this procedure is that, for round
spheres in the Schwarzschild solution, the choice 𝜋𝑎𝑏𝑡𝑎𝑡𝑏 = 𝑘0/(16𝜋𝐺), 𝜋𝑎𝑏𝑡𝑎𝑞𝑏𝑐 = 0 (i.e., the flat
spacetime values) reproduces the lapse of the correct Schwarzschild time [289]. For round spheres
(see Section 4.2.1) Equation (10.14) gives 𝑟

2𝐺 [1− exp(−2𝛼)], which is precisely the standard round
sphere expression (4.8). In particular [289], for the event horizon of the Schwarzschild solution
it gives the expected value 𝑚/𝐺. However, there exist spacelike topological two-spheres 𝒮 in the
Minkowski spacetime for which 𝐸K(𝒮) is positive [368].

Kijowski considered another Legendre transformation on the two-surface as well, and in the
variation of the resulting Hamiltonian only the value on 𝒮 of the variation of the metric 𝛾𝑎𝑏 appears.
Thus in this phase space the components of 𝛾𝑎𝑏 can be specified freely on 𝒮, and Kijowski calls

space 𝑇 *𝑄 are special submanifolds of 𝑇 *𝑇𝑄.
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the value of the resulting Hamiltonian the ‘free energy’. Its form is

𝐹K (𝒮) :=
1

8𝜋𝐺

∮︁
𝒮

(︁
𝑘0 −

√︀
𝑘2 − 𝑙2

)︁
𝑑𝒮. (10.15)

In the special boost-gauge when 𝑙 = 0 the ‘free energy’ 𝐹K(𝒮) reduces to the Brown–York expression
𝐸BY(𝒮) given by Equation (10.9). 𝐹K(𝒮) appears to have been rediscovered recently by Liu
and Yau [311], and we discuss the properties of 𝐹K(𝒮) further in Section 10.4. A more detailed
discussion of the possible quasi-local Hamiltonians and the strategies to define the appropriate
‘quasi-symmetries’ of 𝒮 are given in [290].

10.3 Epp’s expression

10.3.1 The general form of Epp’s expression

The Brown–York energy expression, based on the original flat space reference, has the highly
undesirable property that it gives nonzero energy even in the Minkowski spacetime if the fleet of
observers on the spherical 𝒮 is chosen to be radially accelerating (see the second paragraph of
Section 10.1.7). Thus it would be a legitimate aim to reduce this extreme dependence of the quasi-
local energy on the choice of the observers. One way of doing this is to formulate the quasi-local
quantities in terms of boost-gauge invariant objects. Such a boost-gauge invariant geometric object
is the length of the mean extrinsic curvature vector 𝑄𝑎 of Section 4.1.2, which, in the notation of
this section, is

√
𝑘2 − 𝑙2. If 𝑄𝑎 is spacelike or null, then this square root is real, and (apart from

the reference term 𝑘0 in Equation (10.9)) in the special case 𝑙 = 0 it reduces to −8𝜋𝐺 times the
surface energy density of Brown and York. This observation lead Epp to suggest

𝐸E (𝒮) :=
1

8𝜋𝐺

∮︁
𝒮

(︁√︀
(𝑘0)2 − (𝑙0)2 −

√︀
𝑘2 − 𝑙2

)︁
𝑑𝒮 (10.16)

as the general definition of the ‘invariant quasi-local energy’ [164]. Here, as in the Brown–York
definition, 𝑘0 and 𝑙0 give the ‘reference term’ that should be fixed in a separate procedure. Note
that it is 𝐸E(𝒮) that is referenced and not the mean curvatures 𝑘 and 𝑙, i.e., 𝐸E(𝒮) is not the
integral of

√︀
𝜀2 − 𝑗2⊢. Apart from the fact that 𝑀Σ of Equation (2.7) is associated with a three-

surface, Epp’s invariant quasi-local energy expression appears to be analogous to 𝑀Σ rather than
to 𝐸Σ[𝜉𝑎] of Equation (2.6) or to 𝑄𝒮 [K] of Equation (2.5). However, although at first sight 𝐸E(𝒮)
appears to be a quasi-local mass, it turns out in special situations that it behaves as an energy
expression. In the ‘quasi-local rest frame’, i.e., in which 𝑙 = 0, it reduces to the Brown–York
expression, provided 𝑘 is positive. Note that 𝑄𝑎 must be spacelike to have a quasi-local rest frame.
This condition can be interpreted as a very weak convexity condition on 𝒮. In particular, 𝑘 is not
needed to be positive, only 𝑘2 > 𝑙2 is required. While 𝐸BY is sensitive to the sign of 𝑘, 𝐸E is not.
Hence, 𝐸E(𝒮) is not simply the value of the Brown–York expression in the quasi-local rest frame.

10.3.2 The definition of the reference configuration

The subtraction term in Equation (10.16) is defined through an isometric embedding of (𝒮, 𝑞𝑎𝑏) into
some reference spacetime instead of a three-space. This spacetime is usually Minkowski or anti-de
Sitter spacetime. Since the two-surface data consist of the metric, the two extrinsic curvatures and
the 𝑆𝑂(1, 1)-gauge potential, for given (𝒮, 𝑞𝑎𝑏) and ambient spacetime (𝑀0, 𝑔0

𝑎𝑏) the conditions of
the isometric embedding form a system of six equations for eight quantities, namely for the two
extrinsic curvatures and the gauge potential 𝐴𝑒 (see Section 4.1.2, and especially Equations (4.1)
and (4.2)). Therefore, even a näıve function counting argument suggests that the embedding exists,
but is not unique. To have uniqueness, additional conditions must be imposed. However, since 𝐴𝑒

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://www.livingreviews.org/lrr-2009-4


Quasi-Local Energy-Momentum and Angular Momentum in General Relativity 93

is a gauge field, one condition might be a gauge fixing in the normal bundle, and Epp’s suggestion
is to require that the curvature of the connection one-form 𝐴𝑒 in the reference spacetime and in
the physical spacetime be the same [164]. Or, in other words, not only the intrinsic metric 𝑞𝑎𝑏 of 𝒮
is required to be preserved in the embedding, but the whole curvature 𝑓𝑎

𝑏𝑐𝑑 of the connection 𝛿𝑒 as
well. In fact, in the connection 𝛿𝑒 on the spinor bundle S𝐴(𝒮) both the Levi-Civita and the 𝑆𝑂(1, 1)
connection coefficients appear on an equal footing. (Recall that we interpreted the connection 𝛿𝑒
to be a part of the universal structure of 𝒮.) With this choice of reference configuration 𝐸E(𝒮)
depends not only on the intrinsic two-metric 𝑞𝑎𝑏 of 𝒮, but on the connection 𝛿𝑒 on the normal
bundle as well.

Suppose that 𝒮 is a two-surface in 𝑀 such that 𝑘2 > 𝑙2 with 𝑘 > 0, and, in addition, (𝒮, 𝑞𝑎𝑏) can
be embedded into the flat three-space with 𝑘0 ≥ 0. Then there is a boost gauge (the ‘quasi-local
rest frame’) in which 𝐸E(𝒮) coincides with the Brown–York energy 𝐸BY(𝒮, 𝑡𝑎) in the particular
boost-gauge 𝑡𝑎 for which 𝑡𝑎𝑄𝑎 = 0. Consequently, every statement stated for the latter is valid
for 𝐸E(𝒮), and every example calculated for 𝐸BY(𝒮, 𝑡𝑎) is an example for 𝐸E(𝒮) as well [164]. A
clear and careful discussion of the potential alternative choices for the reference term, especially
their potential connection with the angular momentum, is also given there.

10.3.3 The various limits

First, it should be noted that Epp’s quasi-local energy is vanishing in Minkowski spacetime for
any two-surface, independent of any fleet of observers. In fact, if 𝒮 is a two-surface in Minkowski
spacetime, then the same physical Minkowski spacetime defines the reference spacetime as well, and
hence, 𝐸E(𝒮) = 0. For round spheres in the Schwarzschild spacetime it yields the result that 𝐸BY

gave. In particular, for the horizon, it is 2𝑚/𝐺 (instead of 𝑚/𝐺), and at infinity it is 𝑚/𝐺 [164].
Thus, in particular, 𝐸E is also monotonically decreasing with 𝑟 in Schwarzschild spacetime.

Epp calculated the various limits of his expression as well [164]. In the large sphere limit, near
spatial infinity, he recovered the Ashtekar–Hansen form of the ADM energy, and at future null
infinity, the Bondi–Sachs energy. The technique that is used in the latter calculation is similar to
that of [108]. In nonvacuum, in the small sphere limit, 𝐸E(𝒮) reproduces the standard 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏

result, but the calculations for the vacuum case are not completed. The leading term is still prob-
ably of order 𝑟5, but its coefficient has not been calculated. Although in these calculations 𝑡𝑎

plays only the role of fixing the two-surfaces, as a result we get the energy seen by the observer 𝑡𝑎

instead of mass. This is why 𝐸E(𝒮) is considered to be energy rather than mass. In the asymp-
totically anti-de Sitter spacetime (with the anti-de Sitter spacetime as the reference spacetime)
𝐸E gives zero. This motivated Epp to modify his expression to recover the mass parameter of
the Schwarzschild–anti-de Sitter spacetime at infinity. The modified expression is, however, not
boost-gauge invariant. Here the potential connection with the AdS/CFT correspondence is also
discussed (see also [41]).

10.4 The expression of Liu and Yau

10.4.1 The Liu–Yau definition

Let (𝒮, 𝑞𝑎𝑏) be a spacelike topological two-sphere in spacetime such that the metric has positive
scalar curvature. Then, by the embedding theorem, there is a unique isometric embedding of
(𝒮, 𝑞𝑎𝑏) into the flat three-space, and this embedding is unique. Let 𝑘0 be the trace of the extrinsic
curvature of 𝒮 in this embedding, which is completely determined by 𝑞𝑎𝑏 and is necessarily positive.
Let 𝑘 and 𝑙 be the trace of the extrinsic curvatures of 𝒮 in the physical spacetime corresponding to
the outward-pointing unit spacelike and future-pointing timelike normals, respectively. Then Liu
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and Yau define their quasi-local energy in [311] by

𝐸LY (𝒮) :=
1

8𝜋𝐺

∮︁
𝒮

(︁
𝑘0 −

√︀
𝑘2 − 𝑙2

)︁
𝑑𝒮. (10.17)

However, this is precisely Kijowski’s ‘free energy’ given by Equation (10.15), 𝐸LY(𝒮) = 𝐹K(𝒮), and
hence, we denote this by 𝐸KLY(𝒮). Obviously, this is well defined only if, in addition to the usual
convexity condition 𝑅 > 0 for the intrinsic metric, 𝑘2 ≥ 𝑙2 also holds, i.e., the mean curvature
vector 𝑄𝑎 is spacelike or null. If 𝑘 ≥ 0 then 𝐸KLY(𝒮) ≥ 𝐸BY(𝒮, 𝑡𝑎), where the equality holds
for 𝑡𝑎 corresponding to the quasi-local rest frame (in the sense that it is orthogonal to the mean
curvature vector of the two-surface: 𝑡𝑎𝑄𝑎 = 0). The mean curvature mass of [6, 7] is precisely
𝐸LY(𝒮) (see also Section 11.3.3).

Isolating the gauge invariant part of the 𝑆𝑂(1, 1) connection one-form, Liu and Yau defined
a quasi-local angular momentum as follows [311]. Let 𝛼 be the solution of the Poisson equation
2𝑞𝑎𝑏𝛿𝑎𝛿𝑏𝛼 = Im(𝑓) on 𝒮, whose source is just the field strength of 𝐴𝑎 (see Equation (4.3)). This 𝛼 is
globally well defined on 𝒮 and is unique up to addition of a constant. Then, define 𝛾𝑎 := 𝐴𝑎−𝜀𝑎

𝑏𝛿𝑏𝛼
on the domain of the connection one-form 𝐴𝑎, which is easily seen to be closed. Assuming the
space and time orientability of the spacetime, 𝐴𝑎 is globally defined on 𝒮 ≈ 𝑆2, and hence, by
𝐻1(𝑆2) = 0 the one-form 𝛾𝑎 is exact; 𝛾𝑎 = 𝛿𝑎𝛾 for some globally defined real function 𝛾 on 𝒮. This
function is unique up to an additive constant. Therefore, 𝐴𝑎 = 𝜀𝑎

𝑏𝛿𝑏𝛼+ 𝛿𝑎𝛾, where the first term
is gauge invariant, while the second represents the gauge content of 𝐴𝑎. Then for any rotation
Killing vector 𝐾0𝑖 of the flat three-space Liu and Yau define the quasi-local angular momentum by

𝐽LY

(︀
𝒮,𝐾0𝑖

)︀
:=

1
8𝜋𝐺

∮︁
𝒮
𝜙−1
*
(︀
𝐾0𝑖Π0𝑎

𝑖

)︀
𝜀𝑎

𝑏 (𝛿𝑏𝛼) 𝑑𝒮. (10.18)

Here 𝜙 : 𝒮 → R3 is the embedding and Π0𝑎
𝑖 is the projection to the tangent planes of 𝜙(𝒮) in R3.

Thus, in contrast to the Brown–York definition for the angular momentum (see Equations (10.4),
(10.5), (10.6), (10.7), and (10.8)), in 𝐽LY(𝒮,𝐾0𝑖) only the gauge invariant part 𝜀𝑎

𝑏𝛿𝑏𝛼 of the gauge
potential 𝐴𝑎 is used, and its generator vector field is the pullback to 𝒮 of the rotation Killing
vector of the flat three-space.

10.4.2 The main properties of 𝐸KLY(𝒮)

The most important property of the quasi-local energy (10.17) is its positivity. Namely [311], let
Σ be a compact spacelike hypersurface with smooth boundary 𝜕Σ, consisting of finitely many con-
nected components 𝒮1, . . . , 𝒮𝑘 such that each of them has positive intrinsic curvature. Suppose that
the matter fields satisfy the dominant energy condition on Σ. Then 𝐸KLY(𝜕Σ) :=

∑︀𝑘
𝑖=1𝐸KLY(𝒮𝑖)

is strictly positive unless the spacetime is flat along Σ. In this case 𝜕Σ is necessarily connected.
The proof is based on the use of Jang’s equation [266], by means of which the general case can be
reduced to the results of Shi and Tam in the time-symmetric case [423], stated in Section 10.1.7
(see also [512]). This positivity result is generalized in [312]; 𝐸KLY(𝒮𝑖) is shown to be non-negative
for all 𝑖 = 1, . . . , 𝑘, and if 𝐸KLY(𝒮𝑖) = 0 for some 𝑖, then the spacetime is flat along Σ and 𝜕Σ is
connected. (In fact, since 𝐸KLY(𝜕Σ) depends only on 𝜕Σ but is independent of the actual Σ, if the
energy condition is satisfied on the domain of dependence 𝐷(Σ), then 𝐸KLY(𝜕Σ) = 0 implies the
flatness of the spacetime along every Cauchy surface for 𝐷(Σ), i.e., the flatness of the whole domain
of dependence as well.) A potential spinorial proof of the positivity of 𝐸KLY(𝒮𝑖) is suggested in [7].
This is based on the use of the Nester–Witten form and a Witten type argumentation. However,
the spinor field solving the Witten equation on the spacelike hypersurface Σ would have to satisfy
a nonlinear boundary condition.

If 𝒮 is an apparent horizon, i.e., 𝑙 = ±𝑘, then 𝐸KLY(𝒮) is just the integral of 𝑘0/(8𝜋𝐺). Then,
by the Minkowski inequality for the convex surfaces in the flat three-space (see, for example, [478])
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one has

𝐸KLY (𝒮) =
1

8𝜋𝐺

∮︁
𝒮
𝑘0 𝑑𝒮 ≥ 1

8𝜋𝐺

√︀
16𝜋Area(𝒮) = 2

√︂
Area(𝒮)
16𝜋𝐺2

,

i.e., it is not less than twice the irreducible mass of the horizon. For round spheres 𝐸KLY(𝒮)
coincides with 𝐸E(𝒮), and hence, it does not reduce to the standard round sphere expression (4.8).
In particular, for the event horizon of the Schwarzschild black hole it is 2𝑚/𝐺. (For a more detailed
discussion, and, in particular, the interpretation of 𝐸KLY(𝒮) in the spherically-symmetric context,
see [367].) 𝐸KLY(𝒮) was calculated for small spheres both in nonvacuum and vacuum, and for
large spheres near the future null infinity in [521]. In the leading order in nonvacuum we get
the expected result 4𝜋

3 𝑟
3𝑇𝑎𝑏𝑡

𝑎𝑡𝑏 (see Equation (4.9)), but in vacuum, in addition to the expected
Bel–Robinson ‘energy’, there are extra terms in the leading 𝑟5 order. As could be expected, at null
infinity 𝐸KLY(𝒮) reproduces the Bondi energy.

However, 𝐸KLY(𝒮) can be positive even if 𝒮 is in the Minkowski spacetime. In fact, for a
given intrinsic metric 𝑞𝑎𝑏 on 𝒮 (with positive scalar curvature) 𝒮 can be embedded into the flat
R3; this embedding is unique, and the trace of the extrinsic curvature 𝑘0 is determined by 𝑞𝑎𝑏.
On the other hand, the isometric embedding of 𝒮 in the Minkowski spacetime is not unique. The
equations of the embedding (i.e., the Gauss, Codazzi–Mainardi, and Ricci equations) form a system
of six equations for the six components of the two extrinsic curvatures 𝑘𝑎𝑏 and 𝑙𝑎𝑏 and the two
components of the 𝑆𝑂(1, 1) gauge potential 𝐴𝑒. Thus, even if we impose a gauge condition for
the connection one-form 𝐴𝑒, we have only six equations for the seven unknown quantities, leaving
enough freedom to deform 𝒮 (with given, fixed intrinsic metric) in the Minkowski spacetime to get
positive Kijowski–Liu–Yau energy. Indeed, specific two-surfaces in the Minkowski spacetime are
given in [368], for which 𝐸KLY(𝒮) > 0.

10.4.3 Generalizations of the original construction

In the definition of 𝐸KLY(𝒮) one of the assumptions is the positivity of the scalar curvature of
the intrinsic metric on the two-surface 𝒮. Thus, it is natural to ask if this condition can be
relaxed and whether or not the quasi-local mass can be associated with a wider class of surfaces.
Moreover, though in certain circumstances 𝐸KLY(𝒮) behaves as energy (see [367, 521]), it is the
(renormalized) integral of the length of the mean curvature vector, i.e., it is analogous to mass
(compare with Equation (2.7)). Hence, it is natural to ask if a energy-momentum four-vector can
be introduced in this way. In addition, in the calculation of the large sphere limit of 𝐸KLY(𝒮)
in asymptotically anti-de Sitter spacetimes it seems natural to choose the reference configuration
by embedding 𝒮 into a hyperbolic rather than Euclidean three-space. These issues motivate the
following generalization [496] of the Kijowski–Liu–Yau expression.

One of the key ideas is that two-surfaces with spherical topology and scalar curvature that are
bounded from below by a negative constant, i.e., 𝑅 > −2𝜅2, can be isometrically embedded in
a unique way into the hyperbolic space H3

−𝜅2 with constant sectional curvature −𝜅2, and hence,
this embedding can be (and in fact is) used to define the reference configuration. Let 𝑘0 denote
the mean curvature of 𝒮 in this embedding, where the hyperbolic space H3

−𝜅2 is thought of as a
spacelike hypersurface with constant negative curvature in the Minkowski spacetime R1,3. Then
the main result is that, assuming that the mean curvature vector 𝑄𝑎

𝑎𝑏 of 𝒮 in the spacetime is
spacelike, there exists a function 𝑊 𝑎 : 𝒮 → R1,3, depending only on the length |𝑄𝑎

𝑎𝑏| =
√
𝑘2 − 𝑙2

of the mean curvature vector and the embedding of 𝒮 into R1,3, such that the four integrals∫︁
𝒮

(︁
𝑘0 −

√︀
𝑘2 − 𝑙2

)︁
𝑊 𝑎 𝑑𝒮 (10.19)

form a future-pointing nonspacelike vector in R1,3. The functions 𝑊 𝑎 , 𝑎 = 0, . . . , 3, are solutions
of a parabolic equation and are related to the norm of the Killing spinors on H3

−𝜅2 . If 𝜅 → 0
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then 𝑊 𝑎 tend to the components of a constant vector field. expression (10.19) can be interpreted
as a comparison theorem for the total mean curvature of 𝒮 in the physical spacetime and in the
hyperboloid H3

−𝜅2 ⊂ R1,3. A similar result is proven in the Riemannian case, i.e., when 𝒮 is
considered to be the boundary of a compact Riemannian three-manifold (Σ, ℎ𝑎𝑏), and in expres-
sion (10.19) the length of the mean curvature vector is replaced by the mean curvature 𝑘 of 𝒮 in Σ.
Comparing expression (10.19) with the expression of the Bondi–Sachs energy-momentum (4.14)
or with Equation (6.2), the integrals can also be interpreted as the components of a quasi-local
energy-momentum four-vector.

The proof of the nonspacelike nature of expression (10.19) is based on a Witten type argumen-
tation, in which ‘the mass with respect to a Dirac spinor 𝜑0 on 𝒮’ takes the form of an integral of
(𝑘0−

√
𝑘2 − 𝑙2) weighted by the norm of 𝜑0. Thus, the norm of 𝜑0 appears to be a nontrivial lapse

function. The suggestion of [526] for a quasi-local mass-like quantity is based on an analogous
expression. Let 𝒮 be the boundary of some spacelike hypersurface Σ on which the intrinsic scalar
curvature is positive, let us isometrically embed 𝒮 into the Euclidean three-space, and let 𝜑0 be the
pull back to 𝒮 of a constant spinor field. Suppose that the dominant energy condition is satisfied
on Σ, and consider the solution 𝜑 of the Witten equation on Σ with one of the chiral boundary
conditions Π±(𝜑 − 𝜑0) = 0, where Π± are the projections to the space of the right/left handed
Dirac spinors, built from the projections 𝜋±𝐴

𝐵 of Section 4.1.7. Then, by the Sen–Witten identity,
a positive definite boundary expression is introduced, and interpreted as the ‘quasi-local mass’
associated with 𝒮. In contrast to Brown–York type expressions, this mass, associated with the
two-spheres of radius 𝑟 in the 𝑡 = 𝑐𝑜𝑛𝑠𝑡. hypersurfaces in Schwarzschild spacetime, is an increasing
function of the radial coordinate, and tends to the ADM mass. In general, however, this limit is
𝐸ADM − |𝑃ADM|. This construction is generalized in [527] by embedding 𝒮 into some H3

−𝜅2 rather
than R3.

Suggestion (11.12), due to Anco [6], can also be considered as a generalization of the Kijowski–
Liu–Yau mass.

10.5 The expression of Wang and Yau

The new quasi-local energy (in fact, energy-momentum) expression of Wang and Yau [498] is based
on the ‘renormalized’ form of the ‘natural’ Hamiltonian

𝐻 [K] =
1

8𝜋𝐺

∫︁
Σ

𝐾𝑎𝐺𝑎𝑏
1
3!
𝜀𝑏

𝑐𝑑𝑒 −
1

8𝜋𝐺

∮︁
𝜕Σ

𝐾𝑎
(︀⊥𝜀𝑎𝑏𝑄𝑐

𝑐𝑏 +𝐴𝑎

)︀
𝑑𝒮. (10.20)

(See also Equation (11.11), and compare with Equation (8.1); apart from the 𝑆𝑂(1, 3) gauge-
dependent terms, this boundary expression is just the two-surface integral of the Nester–Witten
two-form.) Thus, while the expressions based on Equation (10.17) are analogous to Equation (2.7),
i.e., the two-surface integrals of locally-defined mass density, the expressions based on Equa-
tion (10.20) are analogous to Equation (2.5) (or rather Equation (2.8)), i.e., the charge integrals
‘indexed’ by a vector field 𝐾𝑎.

Since 𝐴𝑒 is boost-gauge dependent and Equation (10.20) in itself does not yield, e.g., the correct
ADM energy in asymptotically flat spacetime, a boost gauge and a restriction on the vector field
𝐾𝑎 and/or a ‘renormalization’ of Equation (10.20) (in the form of an appropriate reference term)
must be given. Wang and Yau suggest that one determine these by embedding the spacelike
two-surface 𝒮 isometrically into the Minkowski spacetime in an appropriate way.

Thus, suppose that there is an isometric embedding 𝑖 : 𝒮 → R1,3, and let us fix a constant
future-pointing unit timelike vector field 𝑇 𝑎 in R1,3. This 𝑇 𝑎 defines a global orthonormal frame
field {0𝑡𝑎 , 0𝑣𝑎 } in the normal bundle of 𝑖(𝒮) ⊂ R1,3 by requiring 0𝑣

𝑎 𝑇𝑎 = 0, and let us denote
the mean extrinsic curvature vector of this embedding by 0𝑄

𝑎
𝑎 𝑏 . Then, supposing that the mean
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extrinsic curvature vector 𝑄𝑎
𝑎𝑏 of 𝒮 in the physical spacetime is spacelike, there is a uniquely-

determined global orthonormal frame field {𝑡𝑎, 𝑣𝑎} in the normal bundle of 𝒮 ⊂ 𝑀 such that
𝑄𝑎

𝑎𝑏𝑡
𝑏 = 0𝑄

𝑎
𝑎 𝑏 0𝑡

𝑎 . This fixes the boost gauge in 𝑁𝒮, and, in addition, makes it possible to
identify the normal bundle of 𝒮 in 𝑀 and the normal bundle of 𝑖(𝒮) in R1,3 via the identification
0𝑡

𝑎 ↦→ 𝑡𝑎, 0𝑣
𝑎 ↦→ 𝑣𝑎. This, together with the natural identification of the tangent bundle 𝑇𝒮 of

𝒮 and the tangent bundle 𝑇𝑖(𝒮) of 𝑖(𝒮) yields a natural identification of the Lorentzian vector
bundles over 𝒮 in 𝑀 and over 𝑖(𝒮) in R1,3. Therefore, any vector (and tensor) field on 𝑖(𝒮) yields a
vector (tensor) field on 𝒮. In particular, if 𝑇 𝑎 = 0𝑁0𝑡

𝑎 + 0𝑁
𝑎 , then 0𝑁

𝑎 is a tangent of 𝑖(𝒮), and
hence, there is a uniquely determined tangent 0𝑁

𝑎 of 𝒮 such that 0𝑁
𝑎 = 𝑖*(0𝑁𝑎). Consequently

𝑇 𝑎 can be identified with the vector field 0𝑁𝑡
𝑎 + 0𝑁

𝑎 on 𝒮. Similarly, the connection one-form
0𝐴𝑎 on the normal bundle (in the boost gauge {0𝑡𝑎 , 0𝑣𝑎 }) can be pulled back along 𝑖 to a one-form
0𝐴𝑎 on 𝒮. Then, denoting by 0𝑘 and 𝑘 the mean curvature of 𝑖(𝒮) and 𝒮 in the direction 0𝑣

𝑎 and
𝑣𝑎, respectively, Wang and Yau [498] define the quasi-local energy with respect to the pair (𝑖, 𝑇 𝑎 )
by

𝐸WY

(︀
𝒮; 𝑖, 𝑇 𝑎

)︀
:=

1
8𝜋𝐺

∮︁
𝒮

(︁(︀
0𝑘 − 𝑘

)︀
0𝑁 −

(︀
0𝐴𝑒 −𝐴𝑒

)︀
0𝑁

𝑒
)︁
𝑑𝒮. (10.21)

Here 𝒮 is assumed only to be isometrically embeddable into R1,3 and that 𝒮 has spacelike mean
curvature vector in 𝑀 ; note that this energy still depends on the pair (𝑖, 𝑇 𝑎 ).

To prove, e.g., the positivity of this energy, or to ensure that in flat spacetime the energy be
zero, further conditions must be satisfied. Wang and Yau formulate these conditions in the notion
of admissible pairs (𝑖, 𝑇 𝑎 ): 𝑖(𝒮) should have a convex shadow in the direction 𝑇 𝑎 , 𝑖(𝒮) must be the
boundary of some spacelike hypersurface in R1,3 on which the Dirichlet boundary value problem
for the Jang equation can be solved with the time function 𝜏 discussed in Section 4.1.3, and the
connection one-form and the mean curvature in a certain gauge must satisfy an inequality. (For
the precise definition of the admissible pairs see [498]; for the geometrical background see [497]
and Section 4.1.3.) Then it is shown that if the dominant energy condition holds and 𝒮 has a
spacelike mean curvature vector, then for the admissible pairs the quasi-local energy (10.21) is
non-negative. Therefore, if the set of the admissible pairs is not empty (e.g., when the scalar
curvature of (𝒮, 𝑞𝑎𝑏) is positive), then the infimum 𝑚WY(𝒮) of 𝐸WY(𝒮; 𝑖, 𝑇 𝑎 ) among all admissible
pairs is non-negative, and is called the quasi-local mass. If this infimum is achieved by the pair
(𝑖, 𝑇 𝑎 ), i.e., by an embedding 𝑖 and a timelike 𝑇 𝑎 , then 𝑃 𝑎 := 𝑚WY(𝒮)𝑇 𝑎 is called the quasi-local
energy-momentum, which is then future pointing and timelike. It is still an open question that if
the quasi-local mass 𝑚WY(𝒮) is vanishing, then the domain of dependence 𝐷(Σ) of the spacelike
hypersurface Σ with boundary 𝒮 can be curved (e.g., a pp-wave geometry with pure radiation) or
not. If not, then the quasi-local energy-momentum would be expected to be null.

The quasi-local energy-momentum associated with any two-surface in Minkowski spacetime
with a convex shadow in some direction is clearly zero. The mass has been calculated for round
spheres in the Schwarzschild spacetime. It is 𝑟(1 −

√︀
1− (2𝑚/𝑟))/𝐺, and hence, for the event

horizon it gives 2𝑚/𝐺. 𝑚WY has the expected limits at the spatial and null infinities, and for
small spheres both in nonvacuum and vacuum [498].
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11 Towards a Full Hamiltonian Approach

The Hamilton–Jacobi method is only one possible strategy for defining the quasi-local quantities
in a large class of approaches, called the Hamiltonian or canonical approaches. Thus, there is a
considerable overlap between the various canonical methods, and hence, the cutting of the material
into two parts (Section 10 and Section 11) is, in some sense, artificial. In Section 10 we reviewed
those approaches that are based on the analysis of the action, while in this section we discuss
those that are based primarily on the analysis of the Hamiltonian in the spirit of Regge and
Teitelboim [399]19.

By a full Hamiltonian analysis we mean a detailed study of the structure of the quasi-local phase
space, including the constraints, the smearing fields, the symplectic structure and the Hamiltonian
itself, according to the standard, or some generalized, Hamiltonian scenarios, in the traditional 3 + 1
or in the fully Lorentz-covariant form, or even in the 2 + 2 form, using the metric or triad/tetrad
variables (or even the Weyl or Dirac spinors). In the literature of canonical general relativity
(at least in the asymptotically flat context) there are examples for all these possibilities, and we
report on the quasi-local investigations on the basis of the decomposition they use. Since the 2 + 2
decomposition of the spacetime is less known, we also summarize its basic idea.

11.1 The 3 +1 approaches

There is a lot of literature on the canonical formulation of general relativity both in the traditional
ADM and the Møller tetrad (or, recently, the closely related complex Ashtekar) variables. Thus,
it is quite surprising how little effort has been spent systematically quasi-localizing them. One
motivation for the quasi-localization of the ADM–Regge–Teitelboim analysis came from the need
for a deeper understanding of the dynamics of subsystems of the universe (and, in particular,
the basic results of Friedrich and Nagy [183] from a different perspective). Moreover, in this
approach we might hope to be able to associate nontrivial observables (and, in particular, conserved
quantities) with localized systems in a natural way. Another motivation is to try to provide a solid
classical basis for the microscopic understanding of black hole entropy [40, 39, 114]. What are
the microscopic degrees of freedom behind the phenomenological notion of black hole entropy?
Since the aim of the present paper is to review the construction of the quasi-local quantities in
classical general relativity, we discuss only the classical two-surface observables by means of which
the ‘quantum edge states’ on the black-hole event horizons were intended to be constructed.

11.1.1 The quasi-local constraint algebra and the basis Hamiltonian

If Σ, the three-manifold on which the ADM canonical variables ℎ𝑎𝑏, 𝑝𝑎𝑏 are defined, has a boundary
𝒮 := 𝜕Σ, then the usual vacuum constraints

𝐶 [𝑁,𝑁𝑎] := −
∫︁

Σ

{︃
𝑁

[︃
1

16𝜋𝐺
3𝑅
√︀
|ℎ|+ 16𝜋𝐺√︀

|ℎ|

(︂
1
2
(︀
𝑝𝑎𝑏ℎ𝑎𝑏

)︀2 − 𝑝𝑎𝑏𝑝𝑎𝑏

)︂]︃
+ 2𝑁𝑎𝐷𝑏𝑝

𝑎𝑏

}︃
𝑑3𝑥

(11.1)
are differentiable with respect to the canonical variables if the fields 𝑁 and 𝑁𝑎 are vanishing on
𝒮 and the area two-form on 𝒮, induced from the configuration variable ℎ𝑎𝑏, is fixed 20. Under
these conditions the constraint functions close to a Poisson algebra 𝒞 (the ‘quasi-local constraint
algebra’); moreover, the evolution equations preserve these boundary conditions [460]. However,

19In fact, Kijowski’s results could have been presented here, but the technique that he uses justifies their inclusion
in the Section 10.

20Here we concentrate only on the genuine, finite boundary of Σ. The analysis is straightforward even in the
presence of ‘boundaries at infinity’ at the asymptotic ‘ends’ of asymptotically flat Σ.
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the evolution in the spacetime corresponding to lapses and shifts that are vanishing on the two-
boundary 𝒮 yields new Cauchy surfaces in the same Cauchy development 𝐷(Σ) of Σ, and during
such an evolution the boundary 𝒮 remains pointwise fixed.

A similar analysis [460] shows that the basic Hamiltonian

𝐻0 [𝑁,𝑁𝑎] := 𝐶 [𝑁,𝑁𝑎] +
∮︁
𝒮

2𝐷𝑎

(︀
𝑝𝑎𝑏ℎ𝑏𝑐𝑁

𝑐
)︀
𝑑𝑥3, (11.2)

coming from the Lagrangian 1
16𝜋𝐺 (𝑅+𝜒𝑎𝑏𝜒𝑎𝑏−𝜒2), is differentiable with respect to the canonical

variables if 𝑁 is vanishing on 𝒮, 𝑁𝑎 is tangent to 𝒮 on 𝒮, and the area two-form on 𝒮 is fixed.
If, in addition, the shift is required to be divergence-free with respect to the connection 𝛿𝑒 on
𝒮, i.e., 𝛿𝑒𝑁𝑒 = 0, then the evolution equations preserve these boundary conditions, the basic
Hamiltonians form a closed Poisson algebra ℋ0 in which 𝒞 is an ideal, and the evaluation of the
basic Hamiltonians on the constraint surface,

𝑂 [𝑁𝑎] = − 1
8𝜋𝐺

∮︁
𝒮
𝑁𝑎𝐴𝑎 𝑑𝒮 (11.3)

defines a Lie algebra homomorphism from the Lie algebra of the 𝛿𝑒-divergence-free vector fields on
𝒮 to the quotient Lie algebra ℋ0/𝒞. The evolution with such lapses and shifts in the spacetime is a
mapping of the domain of dependence 𝐷(Σ) onto itself, keeping the boundary 𝒮 as a submanifold
fixed, but not pointwise.

For the earlier investigations see [40, 39, 114], where stronger boundary conditions, namely
fixing the whole three-metric ℎ𝑎𝑏 on 𝒮 (but without the requirement 𝛿𝑒𝑁𝑒 = 0), were used to
ensure the functional differentiability.

11.1.2 The two-surface observables

To understand the meaning of these observables, recall that any vector field 𝑁𝑎 on Σ generates a
diffeomorphism, which is an exact (gauge) symmetry of general relativity, and the role of the mo-
mentum constraint 𝐶[0, 𝑁𝑎] is just to generate this gauge symmetry in the phase space. However,
the boundary 𝒮 breaks the diffeomorphism invariance of the system, and hence, on the boundary
the diffeomorphism gauge motions yield the observables 𝑂[𝑁𝑎] and the gauge degrees of freedom
give rise to physical degrees of freedom, making it possible to introduce edge states [40, 39, 114].

Analogous investigations were done by Husain and Major in [258]. Using Ashtekar’s complex
variables [23] they determine all the local boundary conditions for the canonical variables 𝐴i

𝑎,
�̃�𝑎

i and for the lapse 𝑁 , the shift 𝑁𝑎, and the internal gauge generator 𝑁 i on 𝒮 that ensure
the functional differentiability of the Gauss, the diffeomorphism, and the Hamiltonian constraints.
Although there are several possibilities, Husain and Major discuss the two most significant cases.
In the first case the generators 𝑁 , 𝑁𝑎, and 𝑁 i are vanishing on 𝒮, and thus there are infinitely
many two-surface observables, both from the diffeomorphism and the Gauss constraints, but no
observables from the Hamiltonian constraint. The structure of these observables is similar to that
of those coming from the ADM diffeomorphism constraint above. The other case considered is
when the canonical momentum �̃�𝑎

i (and hence, in particular, the three-metric) is fixed on the
two-boundary. Then the quasi-local energy could be an observable, as in the ADM analysis above.

All of the papers [40, 39, 114, 258] discuss the analogous phenomenon of how the gauge free-
doms become true physical degrees of freedom in the presence of two-surfaces on the two-surfaces
themselves in the Chern–Simons and BF theories. Weakening the boundary conditions further
(allowing certain boundary terms in the variation of the constraints), a more general algebra of
‘observables’ can be obtained [116, 375]. They form the Virasoro algebra with a central charge. (In
fact, Carlip’s analysis in [116] is based on the covariant Noether-charge formalism below.) Since
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this algebra is well known in conformal field theories, this approach might be a basis for under-
standing the microscopic origin of the black hole entropy [115, 116, 117, 375, 118]. However, this
quantum issue is beyond the scope of the present review.

Returning to the discussion of 𝑂[𝑁𝑎] above, note first that, though 𝐴𝑒 is a gauge potential,
by 𝛿𝑒𝑁

𝑒 = 0 it is boost gauge invariant. Without this condition, Equation (11.3) would give
potentially reasonable physical quantity only if the boost gauge on 𝒮 were geometrically given, e.g.,
when 𝒮 were a leaf of a physically-distinguished foliation of a physically-distinguished spacelike
or timelike hypersurface [32]. In particular, the angular momentum of Brown and York [112] also
takes the form (11.3), and is well defined (because 𝑁𝑎 is assumed to be a Killing vector of the
intrinsic geometry of 𝒮); and in the angular momentum of Liu and Yau [311] only the gauge
invariant part of 𝐴𝑒 is present in Equation (11.3) instead of 𝐴𝑒 itself. Similarly, the expressions
in [40, 517] can be rewritten into the form (11.3), but they should be completed by the condition
𝛿𝑒𝑁

𝑒 = 0.

In general Equation (11.3) is used as a definition of the 𝑁𝑎–component of the angular mo-
mentum of quasi-locally defined black holes [33, 86, 206]. This interpretation is supported by the
following observations [460]. In axisymmetric spacetimes for axisymmetric surfaces 𝑂[𝑁𝑎] can be
rewritten into the Komar expression, the usual definition of angular momentum in axisymmetric
spacetimes. Moreover, if Σ extends to spatial infinity, then 𝛿𝑒𝑁

𝑒 = 0 together with the require-
ment of the finiteness of the 𝑟 →∞ limit of the observable 𝑂[𝑁𝑎] already fix the asymptotic form
of 𝑁𝑎, which is precisely the combination of the asymptotic spatial rotation Killing vectors, and
𝑂[𝑁𝑎] reproduces the standard spatial ADM angular momentum. Similarly, at null infinity 𝑁𝑎

must be a rotation BMS vector field. However, the null infinity limit of 𝑂[𝑁𝑎] is sensitive to the
first two terms (rather than only the leading term) in the asymptotic expansion of 𝑁𝑎, and hence
in general radiative spacetime 𝑂[𝑁𝑎] in itself does not yield an unambiguous definition for angular
momentum. (But in stationary spacetimes the ambiguities disappear and 𝑂[𝑁𝑎] reproduces the
standard formula (4.15).) Thus, additional ideas are needed to restrict the BMS vector field 𝑁𝑎.

Such an idea could be based on the observation that the eigenspinors of the 𝛿𝑒-Dirac operators
define 𝛿𝑒-divergence-free vector fields on 𝒮, and on metric spheres these vector fields built from
the eigenspinors with the lowest eigenvalue are just the linear combinations of the three rotation
Killing fields [462]. Solving the eigenvalue problem for the 𝛿𝑒-Dirac operators on large spheres near
scri in the first two leading orders, a well-defined (ambiguity-free) angular-momentum expression
is suggested. The angular momenta associated with different cuts of ℐ+ can be compared, and the
angular momentum flux can also be calculated.

It is tempting to interpret 𝑂[𝑁𝑎] as the 𝑁𝑎-component of the quasi-local angular momentum
of the gravity + matter system associated with 𝒮. However, without additional conditions on 𝑁𝑎

the integral 𝑂[𝑁𝑎] could be nonzero even in Minkowski spacetime [462]. Hence, 𝑁𝑎 must satisfy
additional conditions. Cook and Whiting [141] suggest that one derive 𝑁𝑎 from a variational
principle on topological two-spheres. Here the action functional is the norm of the Killing operator.
(For a viable, general notion of approximate Killing fields see [330].) Another realization of the
approximate Killing fields is given by Beetle in [52], where the vector field 𝑁𝑎 is searched for in the
form of the solution of an eigenvalue problem for an equation, derived from the Killing equations.
Both prescriptions have versions in which they give 𝛿𝑒-divergence-free 𝑁𝑎. The definition of 𝑁𝑎

suggested in [297] is based on the fact that six of the infinitely many conformal Killing fields on 𝒮
with spherical topology are globally defined, and after an appropriate globally-defined conformal
rescaling of the intrinsic metric they become the generators of the standard 𝑆𝑂(1, 3) action on
𝒮. Then these three are used to define the angular momentum that will be the Killing fields in
the rescaled geometry. In general these vector fields are not 𝛿𝑒-divergence-free. Thus, as in the
Liu–Yau definition, to keep boost gauge invariance the gauge invariant piece of the connection
one-form 𝐴𝑒 can be used instead of the 𝐴𝑒 itself.
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11.2 Approaches based on the double-null foliations

11.2.1 The 2 + 2 decomposition

The decomposition of the spacetime in a 2 + 2 way with respect to two families of null hypersurfaces
is as old as the study of gravitational radiation and the concept of the characteristic initial value
problem (see, for example, [406, 385]). The basic idea is that we foliate an open subset 𝑈 of the
spacetime by a two-parameter family of (e.g., closed) spacelike two-surfaces. If 𝒮 is the typical
two-surface, then this foliation is defined by a smooth embedding 𝜑 : 𝒮 × (−𝜖, 𝜖) × (−𝜖, 𝜖) →
𝑈 : (𝑝, 𝜈+, 𝜈−) ↦→ 𝜑(𝑝, 𝜈+, 𝜈−). Then, keeping 𝜈+ fixed and varying 𝜈−, or keeping 𝜈− fixed and
varying 𝜈+, 𝒮𝜈+,𝜈− := 𝜑(𝒮, 𝜈+, 𝜈−) defines two one-parameter families of hypersurfaces Σ𝜈+ and
Σ𝜈− respectively. Requiring one (or both) of the hypersurfaces Σ𝜈± to be null, we get a null (or
double-null, respectively) foliation of 𝑈 . (In Section 4.1.8 we require the hypersurfaces Σ𝜈± to
be null only for the special value 𝜈± = 0 of the parameters.) As is well known, because of the
conjugate points, in the null or double null cases the foliation can be well defined only locally. For
fixed 𝜈+ and 𝑝 ∈ 𝒮 the prescription 𝜈− ↦→ 𝜑(𝑝, 𝜈+, 𝜈−) defines a curve through 𝜑(𝑝, 𝜈+, 0) ∈ 𝒮𝜈+,0

in Σ𝜈+ , and hence a vector field 𝜉𝑎
+ := (𝜕/𝜕𝜈−)𝑎 tangent everywhere to Σ+ on 𝑈 . The Lie bracket

of 𝜉𝑎
+ and the analogously-defined 𝜉𝑎

− are zero. There are several inequivalent ways of introducing
coordinates or rigid frame fields on 𝑈 , which are fit naturally to the null or double null foliation
{𝒮𝜈+,𝜈−}, in which the (vacuum) Einstein equations and Bianchi identities take a relatively simple
form [406, 190, 147, 441, 480, 223, 204, 96, 232].

Defining the ‘time derivative’ to be the Lie derivative, for example, along the vector field 𝜉𝑎
+,

the Hilbert action can be rewritten according to the 2 + 2 decomposition. Then the 2 + 2 form
of the Einstein equations can be derived from the corresponding action as the Euler–Lagrange
equations, provided the fact that the foliation is null is imposed only after the variation has been
made. (Otherwise, the variation of the action with respect to the less-than-ten nontrivial compo-
nents of the metric would not yield all ten Einstein equations.) One can form the corresponding
Hamiltonian, in which the null character of the foliation should appear as a constraint. Then the
formal Hamilton equations are just the Einstein equations in their 2 + 2 form [147, 480, 223, 232].
However, neither the boundary terms in this Hamiltonian nor the boundary conditions that could
ensure its functional differentiability were considered. Therefore, this Hamiltonian can be ‘correct’
only up to boundary terms. Such a Hamiltonian was used by Hayward [223, 226] as the basis of his
quasi-local energy expression discussed already in Section 6.3. (A similar energy expression was
derived by Ikumi and Shiromizi [259], starting with the idea of the ‘freely falling two-surfaces’.)

11.2.2 The 2 + 2 quasi-localization of the Bondi–Sachs mass-loss

As we mentioned in Section 6.1.3, this double-null foliation was used by Hayward [225] to quasi-
localize the Bondi–Sachs mass-loss (and mass-gain) by using the Hawking energy. Thus, we do not
repeat the review of his results here.

Yoon investigated the vacuum field equations in a coordinate system based on a null 2 + 2
foliation. Thus, one family of hypersurfaces was (outgoing) null, e.g., 𝒩𝑢, but the other was
timelike, e.g., 𝐵𝑣. The former defined a foliation of the latter in terms of the spacelike two-surfaces
𝒮𝑢,𝑣 := 𝒩𝑢 ∩𝐵𝑣. Yoon found [513, 514] a certain two-surface integral on 𝒮𝑢,𝑣, denoted by �̃�(𝑢, 𝑣),
for which the difference �̃�(𝑢2, 𝑣)− �̃�(𝑢1, 𝑣), 𝑢1 < 𝑢2, could be expressed as a flux integral on the
portion of the timelike hypersurface 𝐵𝑣 between 𝒮𝑢1,𝑣 and 𝒮𝑢2,𝑣. In general this flux does not have
a definite sign, but Yoon showed that asymptotically, when 𝐵𝑣 is ‘pushed out to null infinity’ (i.e.,
in the 𝑣 → ∞ limit in an asymptotically flat spacetime), it becomes negative definite. In fact,
‘renormalizing’ �̃�(𝑢, 𝑣) by a subtraction term, 𝐸(𝑢, 𝑣) := �̃�(𝑢, 𝑣) −

√︀
Area(𝒮0,𝑣)/(16𝜋𝐺2) tends

to the Bondi energy, and the flux integral tends to the Bondi mass-loss between the cuts 𝑢 = 𝑢1

and 𝑢 = 𝑢2 [513, 514]. These investigations were extended for other integrals in [515, 516, 517],
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which are analogous to spatial momentum and angular momentum. However, all these integrals,
including �̃�(𝑢, 𝑣) above, depend not only on the geometry of the spacelike two-surface 𝒮𝑢,𝑣 but on
the 2 + 2 foliation on an open neighborhood of 𝒮𝑢,𝑣 as well.

11.3 The covariant approach

11.3.1 The covariant phase space methods

The traditional ADM approach to conserved quantities and the Hamiltonian analysis of general
relativity is based on the 3 + 1 decomposition of fields and geometry. Although the results and the
content of a theory may be covariant even if their form is not, the manifest spacetime covariance
of a formalism may help to find the (spacetime covariant) observables and conserved quantities,
boundary conditions, etc. more easily. No a posteriori spacetime interpretation of the results is
needed. Such a spacetime-covariant Hamiltonian formalism was initiated by Nester [345, 348].

His idea is to use (tensor or Dirac spinor valued) differential forms as the field variables on the
spacetime manifold 𝑀 . Thus, his phase space is the collection of fields on the four-manifold 𝑀 ,
endowed with the (generalized) symplectic structure of Kijowski and Tulczyjew [291]. He derives
the field equations from the Lagrangian four-form, and for a fixed spacetime vector field 𝐾𝑎 finds
a Hamiltonian three-form 𝐻(K)𝑎𝑏𝑐 whose integral on a spacelike hypersurface takes the form

𝐻 [K] =
1

8𝜋𝐺

∫︁
Σ

𝐾𝑎𝐺𝑎𝑏
1
3!
𝜀𝑏

𝑐𝑑𝑒 +
∮︁

𝜕Σ

𝐵 (𝐾𝑎)𝑐𝑑 , (11.4)

the sum of the familiar ADM constraints and a boundary term. The Hamiltonian is determined
from the requirement of the functional differentiability of 𝐻[K], i.e., that the variation 𝛿𝐻[K] with
respect to the canonical variables should not contain any boundary term on an asymptotically
flat Σ (see Sections 2.2.2, 3.2.1, and 3.2.2). For asymptotic translations the boundary term in the
Hamiltonian gives the ADM energy-momentum four-vector. In tetrad variables 𝐻(K)𝑎𝑏𝑐 is essen-
tially Sparling’s three-form [437], and the two-component spinor version of 𝐵(𝐾𝑎)𝑐𝑑 is essentially
the Nester–Witten two-form contracted in the name index with the components of 𝐾𝑎 (see also
Section 3.2.1 and the introductory paragraphs in Section 8).

The spirit of the first systematic investigations of the covariant phase space of the classical
field theories [146, 26, 180, 309] is similar to that of Nester’s. These ideas were recast into the
systematic formalism by Wald and Iyer [492, 264, 265], the covariant Noether charge formalism
(see also [491, 309]). This formalism generalizes many of the previous approaches. The Lagrangian
four-form may be any diffeomorphism-invariant local expression of any finite-order derivatives of
the field variables. It gives a systematic prescription for the Noether currents, the symplectic
structure, the Hamiltonian etc. In particular, the entropy of the stationary black holes turns out
to be just a Noether charge derived from Hilbert’s Lagrangian.

11.3.2 The general expressions of Chen, Nester and Tung: Covariant quasi-local
Hamiltonians with explicit reference configurations

The quasi-local Hamiltonian for a large class of geometric theories, allowing torsion and nonmetric-
ity of the connection, was investigated by Chen, Nester, and Tung [128, 125, 350] in the covariant
approach of Nester, above [345, 348]. Starting with a Lagrangian four-form for a first-order for-
mulation of the theory and an arbitrary vector field 𝐾𝑎, they determine the general form of the
Hamiltonian three-form 𝐻(K)𝑎𝑏𝑐, including the boundary two-form 𝐵(𝐾𝑎)𝑐𝑑. However, in the
variation of the corresponding Hamiltonian there will be boundary terms in general. To cancel
them, the boundary two-form has to be modified. Introducing an explicit reference field 𝜑0𝐴 and
canonical momentum 𝜋0

𝐴 (which are solutions of the field equations), Chen, Nester, and Tung
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suggest (in differential form notation) either of the two four-covariant boundary two-forms

𝐵𝜑(𝐾𝑎) := 𝜄K𝜑
𝐴 ∧

(︀
𝜋𝐴 − 𝜋0

𝐴

)︀
− (−)𝑘

(︀
𝜑𝐴 − 𝜑0𝐴

)︀
∧ 𝜄K𝜋0

𝐴, (11.5)

𝐵𝜋(𝐾𝑎) := 𝜄K𝜑
0𝐴 ∧

(︀
𝜋𝐴 − 𝜋0

𝐴

)︀
− (−)𝑘

(︀
𝜑𝐴 − 𝜑0𝐴

)︀
∧ 𝜄K𝜋𝐴, (11.6)

where the configuration variable 𝜑𝐴 is some (tensor-valued) 𝑘-form and 𝜄K𝜑
𝐴 is the interior

product of the 𝑘-form 𝜑𝐴
𝑎1...𝑎𝑘

and the vector field 𝐾𝑎, i.e., in the abstract index formalism
(𝜄K𝜑𝐴)𝑎2...𝑎𝑘

= 𝑘𝐾𝑎𝜑𝐴
𝑎𝑎2...𝑎𝑘

. Thus, the boundary terms of Chen, Nester and Tung contain not
only a general reference term, but the reference values of the canonical variables. Or, in other
words, the ‘calibration’ of their quasi-local quantities is made at the level of the basic variables,
rather than at the level of the boundary term.

The boundary term in the variation 𝛿𝐻[K] of the Hamiltonian with the boundary term (11.5)
and (11.6) is the two-surface integral on 𝜕Σ of 𝜄K(𝛿𝜑𝐴 ∧ (𝜋𝐴 − 𝜋0

𝐴)) and 𝜄K(−(𝜑𝐴 − 𝜑0𝐴) ∧
𝛿𝜋𝐴), respectively. Therefore, the Hamiltonian is functionally differentiable with the boundary
two-form 𝐵𝜑(𝐾𝑎) if the configuration variable 𝜑𝐴 is fixed on 𝜕Σ, but 𝐵𝜋(𝐾𝑎) should be used if 𝜋𝐴

is fixed on 𝜕Σ. Thus, the first boundary two-form corresponds to a four-covariant Dirichlet-type,
while the second corresponds to a four-covariant Neumann-type boundary condition. Obviously,
the Hamiltonian evaluated in the reference configuration (𝜑0𝐴, 𝜋0

𝐴) gives zero. Chen and Nester
show [125] that 𝐵𝜑(𝐾𝑎) and 𝐵𝜋(𝐾𝑎) are the only boundary two-forms for which the resulting
boundary two-form 𝐶(𝐾𝑎)𝑏𝑐 in the variation 𝛿𝐻(𝐾𝑎)𝑏𝑐𝑑 of the Hamiltonian three-form vanishes
on 𝜕Σ, which reflects the type of boundary conditions (i.e., which fields are fixed on the boundary),
and is built from the configuration and momentum variables four-covariantly (‘uniqueness’). A
further remarkable property of 𝐵𝜑(𝐾𝑎) and 𝐵𝜋(𝐾𝑎) is that the corresponding Hamiltonian three-
form can be derived directly from appropriate Lagrangians. One possible choice for the vector
field 𝐾𝑎 is a Killing vector of the reference geometry. This reference geometry is, however, not yet
specified, in general.

These general ideas were applied to general relativity in the tetrad formalism (and also in the
Dirac spinor formulation of the theory [128, 122], yielding a Hamiltonian, which is slightly different
from Equation (11.4)) as well as in the usual metric formalism [122, 126]. In the latter it is the
appropriate projections to 𝜕Σ of 𝜑𝛼𝛽 := 1

8𝜋𝐺

√︀
|𝑔|𝑔𝛼𝛽 or 𝜋𝛼

𝜇𝛽 := Γ𝛼
𝜇𝛽 in some coordinate system

{𝑥𝛼} that is chosen to be fixed on 𝜕Σ. Then the dual of the corresponding Dirichlet and Neumann
boundary two-forms will be, respectively,

𝐵𝑎𝑏
𝜑 (𝐾𝑒) := 𝛿𝑎𝑏𝑐

𝑑𝑒𝑓

(︀
Γ𝑑

𝑔𝑐 − Γ0𝑑
𝑔𝑐

)︀
𝜑𝑔𝑒𝐾𝑓 + 𝛿𝑎𝑏

𝑒𝑓∇0
𝑐𝐾

𝑒
(︀
𝜑𝑐𝑓 − 𝜑0𝑐𝑓

)︀
, (11.7)

𝐵𝑎𝑏
𝜋 (𝐾𝑒) := 𝛿𝑎𝑏𝑐

𝑑𝑒𝑓

(︀
Γ𝑑

𝑔𝑐 − Γ0𝑑
𝑔𝑐

)︀
𝜑0𝑔𝑒𝐾𝑓 + 𝛿𝑎𝑏

𝑒𝑓∇𝑐𝐾
𝑒
(︀
𝜑𝑐𝑓 − 𝜑0𝑐𝑓

)︀
. (11.8)

The first terms are analogous to Freud’s superpotential, while the second ones are analogous to
Komar’s superpotential. (Since the boundary two-form contains Γ𝛼

𝜇𝛽 only in the form Γ𝛼
𝜇𝛽 − Γ0𝛼

𝜇𝛽 ,
this is always tensorial. If Γ0𝛼

𝜇𝛽 is chosen to be vanishing, then the first term reduces to Freud’s
superpotential.) Because of the Komar-like term, the quasi-local quantities depend not only on
the two-surface data (both in the physical spacetime and the reference configuration), but on the
normal directional derivative of 𝐾𝑎 as well. The connection between the present expressions and
the similar previous results (pseudotensorial, tensorial, and quasi-local) is also discussed in [125,
122]. In particular, the expression based on the Dirichlet-type boundary two-form (11.7) gives
precisely the Katz–Bicak–Lynden-Bell superpotential [281]. In the spinor formulation of these
ideas the vector field 𝐾𝑎 would be built from a Dirac spinor (or a pair of Weyl spinors). The main
difficulty is, however, to find spinor fields representing both translational and boost-rotational
displacements [129]. In the absence of a prescription for the reference configuration (even though
that should be defined only on an open neighborhood of the two-surface) the construction is still
not complete, even if the vector field 𝐾𝑎 is chosen to be a Killing vector of the reference spacetime.
A recent manifestly covariant way of introduction to these ideas is given in [351].
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A nice application of the covariant expression is a derivation of the first law of black hole
thermodynamics [125]. The quasi-local energy expressions have been evaluated for several specific
two-surfaces. For round spheres in the Schwarzschild spacetime, both the four-covariant Dirichlet
and Neumann boundary terms (with the Minkowski reference spacetime and 𝐾𝑎 as the timelike
Killing vector (𝜕/𝜕𝑡)𝑎) give 𝑚/𝐺 at infinity, but at the horizon the former gives 2𝑚/𝐺 and the
latter is infinite [125]. The Dirichlet boundary term gives, at spatial infinity in the Kerr–anti-de
Sitter solution, the standard 𝑚/𝐺 and 𝑚𝑎/𝐺 values for the energy and angular momentum, respec-
tively [235]. The center-of-mass is also calculated, both in the metric and the tetrad formulation
of general relativity, for the eccentric Schwarzschild solution at spatial infinity [356, 357], and it
was found that the ‘Komar-like term’ is needed to recover the correct, expected value. At future
null infinity of asymptotically flat spacetimes it gives the Bondi–Sachs energy-momentum and the
expression of Katz [280, 285] for the angular momentum [236]. The general formulae are evaluated
for the Kerr–Vaidya solution as well.

The quasi-local energy-momentum is calculated on two-surfaces lying in intrinsically-flat space-
like hypersurfaces in static spherically-symmetric spacetimes [127], and, in particular, for two-
surfaces in the 𝜏 = const. slicing of the Schwarzschild solution in the Painlevé–Gullstrand coordi-
nates. Though these hypersurfaces are flat, and hence, the total (ADM type) energy is expected to
be vanishing, the quasi-local energy expression based on Equation (11.7) and a ‘naturally chosen’
frame field gives 2𝑚/𝐺. (N.B., the Cauchy data on the 𝜏 = const hypersurfaces do not satisfy
the falloff conditions of Section 3.2.1. Though the intrinsic metric is flat, the extrinsic curvature
tends to zero only as 𝑟−

3
2 , while in the expression of the ADM linear momentum a slightly faster

than 𝑟−
3
2 falloff is needed. Thus, the vanishing of the näıvly introduced ADM-type energy does

not contradict the rigidity part of the positive energy theorem.)
The null infinity limit of the quasi-local energy and the corresponding outgoing energy flux,

based on Equation (11.5), are calculated in [510]. It is shown that, with Minkowski spacetime
as a reference configuration, and even with three different embeddings of the two-surface 𝒮 into
the reference spacetime, the null infinity limit of these two quantities are just the standard Bondi
energy and Bondi mass-loss, respectively. A more detailed discussion of the general formulae for
the quasi-local energy flux, coming from Equations (11.5)-(11.6) and the two additional boundary
expressions of [126],

𝐵dyn(𝐾𝑎) := 𝜄K𝜑
0𝐴 ∧

(︀
𝜋𝐴 − 𝜋0

𝐴

)︀
− (−)𝑘

(︀
𝜑𝐴 − 𝜑0𝐴

)︀
∧ 𝜄K𝜋0

𝐴, (11.9)

𝐵constr(𝐾𝑎) := 𝜄K𝜑
𝐴 ∧

(︀
𝜋𝐴 − 𝜋0

𝐴

)︀
− (−)𝑘

(︀
𝜑𝐴 − 𝜑0𝐴

)︀
∧ 𝜄K𝜋𝐴, (11.10)

is given in [130]. A less technical presentation and further discussions of the energy flux calculations
are given in [355].

The quasi-local energy flux of spacetime perturbations on a stationary background is calculated
by Tung and Yu [487] using the covariant Noether charge formalism and the boundary terms
above. As an example they considered the Vaidya spacetime as a time-dependent perturbation of
a stationary one with the orthonormal frame field being adapted to the spherical symmetry. At
null infinity they recovered the Bondi mass-loss, while for the dynamical horizons they recovered
the flux expression of Ashtekar and Krishnan (see Section 13.3.2).

The quasi-local energy-momentum, based on Equation (11.7) in the tetrad approach to general
relativity, is calculated for arbitrary two-surfaces 𝒮 lying in the hypersurfaces of the homogeneity
in all the Bianchi cosmological models in [358] (see also [313]). In these calculations the tetrad field
was chosen to be the geometrically distinguished triad, being invariant with respect to the global
action of the isometry group, and the future-pointing unit timelike normal of the hypersurfaces;
while the vector field 𝐾𝑎 was chosen to have constant components in this frame. For class A
models (i.e., for I, II, VI0, VII0, VIII and IX Bianchi types) this is zero, and for class B models
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(III, IV, V, VIℎ and VIIℎ Bianchi models) the quasi-local energy is negative, and the energy
is proportional to the volume of the domain that is bounded by 𝒮. (Here a sign error in the
previous calculations, reported in [124, 354, 353], is corrected.) The apparent contradiction of
the nonpositivity of the energy in the present context and the non-negativity of the energy in
general small-sphere calculations indicates that the geometrically distinguished tetrad field in the
Bianchi models does not reduce to the ‘natural’ approximate translational Killing fields near a
point. Another interpretation of the vanishing and negativity of the quasi-local energy, different
from this and those in Section 4.3, is also given.

Instead of the specific boundary terms, So considered a two-parameter family of boundary
terms [429], which generalized the special expressions (11.5)–(11.6) and (11.9)–(11.10). The main
idea behind this generalization is that one cannot, in general, expect to be able to control only, for
example, either the configuration or the momentum variables, rather only a combination of them.
Hence, the boundary condition is not purely of a Dirichlet or Neumann type, but rather a more
general mixed one. It is shown that, with an appropriate value for these parameters, the resulting
energy expression for small spheres is positive definite, even in the holonomic description.

11.3.3 Covariant quasi-local Hamiltonians with general reference terms

Anco and Tung investigated the possible boundary conditions and boundary terms in the quasi-
local Hamiltonian using the covariant Noether charge formalism both of general relativity (with the
Hilbert Lagrangian and tetrad variables) and of Yang–Mills–Higgs systems [8, 9]. (Some formulae
of the journal versions were recently corrected in the latest arXiv versions.) They considered the
world tube of a compact spacelike hypersurface Σ with boundary 𝒮 := 𝜕Σ. Thus, the spacetime
domain they considered is the same as in the Brown–York approach: 𝐷 ≈ Σ × [𝑡1, 𝑡2]. Their
evolution vector field 𝐾𝑎 is assumed to be tangent to the timelike boundary 3𝐵 ≈ 𝜕Σ× [𝑡1, 𝑡2] of
the domain 𝐷. They derived a criterion for the existence of a well-defined quasi-local Hamiltonian.
Dirichlet and Neumann-type boundary conditions are imposed. In general relativity, the variations
of the tetrad fields are restricted on 3𝐵 by requiring in the first case that the induced metric 𝛾𝑎𝑏

is fixed and the adaptation of the tetrad field to the boundary is preserved, while in the second
case that the tetrad components Θ𝑎𝑏𝐸

𝑏
𝑎 of the extrinsic curvature of 3𝐵 is fixed. Then the general

allowed boundary condition was shown to be just a mixed Dirichlet–Neumann boundary condition.
The corresponding boundary terms of the Hamiltonian, written in the form

∮︀
𝒮 𝐾

𝑎𝑃𝑎 𝑑𝒮, were also
determined [8]. The properties of the co-vectors 𝑃D

𝑎 and 𝑃N
𝑎 (called the Dirichlet and Neumann

symplectic vectors, respectively) were investigated further in [9]. Their part tangential to 𝒮 is not
boost gauge invariant, and to evaluate them, the boost gauge determined by the mean extrinsic
curvature vector 𝑄𝑎 is used (see Section 4.1.2). Both 𝑃D

𝑎 and 𝑃N
𝑎 are calculated for various

spheres in several special spacetimes. In particular, for the round spheres of radius 𝑟 in the
𝑡 = const. hypersurface in the Reissner–Nordström solution 𝑃D

𝑎 = 2
𝑟 (1 − 2𝑚/𝑟 + 𝑒2/𝑟2)𝛿0𝑎 and

𝑃N
𝑎 = −(𝑚/𝑟2 − 𝑒2/𝑟3)𝛿0𝑎, and hence, the Dirichlet and Neumann ‘energies’ with respect to the

static observer 𝐾𝑎 = (𝜕/𝜕𝑡)𝑎 are
∮︀
𝒮𝑟
𝐾𝑎𝑃D

𝑎 𝑑𝒮𝑟 = 8𝜋𝑟 − 16𝜋[𝑚 − 𝑒2/(2𝑟)] and
∮︀
𝒮𝑟
𝐾𝑎𝑃N

𝑎 𝑑𝒮𝑟 =
−4𝜋(𝑚− 𝑒2/𝑟), respectively. Thus, 𝑃N

𝑎 does not reproduce the standard round-sphere expression,
while 𝑃D

𝑎 gives the standard round sphere and correct ADM energies only if it is ‘renormalized’ by
its own value in Minkowski spacetime [9].

Anco continued the investigation of the Dirichlet Hamiltonian in [6], which takes the form (see
also Equations (8.1) and (10.20))

𝐻 [K] =
1

8𝜋𝐺

∫︁
Σ

𝐾𝑎𝐺𝑎𝑏
1
3!
𝜀𝑏

𝑐𝑑𝑒 −
1

8𝜋𝐺

∮︁
𝜕Σ

𝐾𝑎
(︀⊥𝜀𝑎𝑏𝑄𝑐

𝑐𝑏 +𝐴𝑎 +𝐵𝑎

)︀
𝑑𝒮. (11.11)

Here the two-surface 𝜕Σ is assumed to be mean convex, in which case the boost gauge freedom in the
𝑆𝑂(1, 1) gauge potential 𝐴𝑎 can be, and, indeed, is, fixed by using the globally-defined orthonormal
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vector basis {𝑒𝑎
0 , 𝑒

𝑎
1} in the normal bundle obtained by normalizing the mean curvature basis

{�̃�𝑎, 𝑄𝑎}. The vector field 𝐾𝑎 is still arbitrary, and 𝐵𝑎 is assumed to have the structure 𝐵𝑎 = 𝑒𝑎
0𝐵

for 𝐵 as an arbitrary function of 𝑞𝑎𝑏. This Hamiltonian gives the correct Einstein equations and,
for solutions, its value, e.g., with 𝐾𝑎 = 𝑒𝑎

0 , is the general expression of the quasi-local energy of
Brown and York. (Compare Equation (11.11) with Equation (11.3), or with Equations (10.8),
(10.9) and (10.10).)

However, to rule out the dependence of this notion of quasi-local energy on the completely
freely specifiable vector field 𝐾𝑎 (i.e., on three arbitrary functions on 𝒮), Anco makes 𝐾𝑎 dynamic

by linking it to the vector field �̃�𝑎. Namely, let 𝐾𝑎 := 𝑐0[Area(𝒮)]
𝑛
2

⃒⃒⃒
�̃�𝑒�̃�

𝑒
⃒⃒⃒𝑛−1

2
�̃�𝑎, where 𝑐0 and

𝑛 are constant, Area(𝒮) is the area of 𝒮, and extend this 𝐾𝑎 from 𝒮 to Σ in a smooth way. Then
Anco proves that, keeping the two-metric 𝑞𝑎𝑏 and 𝐾𝑎 fixed on 𝒮,

𝐻 [K] =
1

8𝜋𝐺

∫︁
Σ

𝐾𝑎𝐺𝑎𝑏
1
3!
𝜀𝑏

𝑐𝑑𝑒 +
𝑐0

8𝜋𝐺(𝑛+ 1)
[Area(𝒮)]

𝑛
2

∮︁
𝜕Σ

(︂
𝐵 −

⃒⃒⃒
�̃�𝑒�̃�

𝑒
⃒⃒⃒𝑛+1

2
)︂
𝑑𝒮 (11.12)

is a correct Hamiltonian for the Einstein equations, where 𝐵 is still an arbitrary function of 𝑞𝑎𝑏. For
𝑛 = 1 with the choice 𝐵 = 2𝒮𝑅 the boundary term reduces to the Hawking energy, and for 𝑛 = 0
it is the Epp and Kijowski–Liu–Yau energies depending on the choice of 𝐵 (i.e., the definition of
the reference term). For general 𝑛, choosing the reference term 𝐵 appropriately, Anco gives a one-
parameter generalization of Hawking and Epp–Kijowski–Liu–Yau-type quasi-local energies (called
the ‘mean curvature masses’). In addition, he defines a family of quasi-local angular momenta.
Using the positivity of the Kijowski–Liu–Yau energy (𝑛 = 0) he shows that the higher power
(𝑛 > 0) mean curvature masses are bounded from below. Although these masses seem to have the
correct large sphere limit at spatial infinity, for general convex two-surfaces in Minkowski spacetime
they do not vanish.

The boundary condition on closed untrapped spacelike two-surfaces that make the covariant
Hamiltonian functionally differentiable were investigated by Tung [483, 484]. He showed that such
a boundary condition might be the following: the area two-form and the mean curvature vector of
𝒮 are fixed, and the evolution vector field 𝐾𝑎 is proportional to the dual mean curvature vector,
where the factor of proportionality is a function of the area two-form. Then, requiring that the
value of the Hamiltonian reproduce the ADM energy, he recovers the Hawking energy. If, however,
𝐾𝑎 is allowed to have a part tangential to 𝒮, and 𝐾𝑎𝐴𝑎 is required to be fixed (up to total 𝛿𝑒-
divergences), then, though the value of the Hamiltonian is still proportional to the Hawking energy,
the factor of proportionality depends on the angular momentum, given by (11.3), as well. With
this choice the vector field 𝐾𝑎 becomes a generalization of the Kodama vector field [295] (see also
Section 4.2.1). The results of [484] are extensions of those in [483].

11.3.4 Pseudotensors and quasi-local quantities

As we discussed briefly in Section 3.3.1, many, apparently different, pseudotensors and 𝑆𝑂(1, 3)-
gauge–dependent energy-momentum density expressions can be recovered from a single differential
form defined on the bundle 𝐿(𝑀) of linear frames over the spacetime manifold. The corresponding
superpotentials are the pullbacks to 𝑀 of the various forms of the Nester–Witten two-from 𝑢

𝑘
𝑎𝑏

from 𝐿(𝑀) along the various local sections of the bundle [176, 329, 447, 448]. Thus, the different
pseudotensors are simply the gauge-dependent manifestations of the same geometric object on the
bundle 𝐿(𝑀) in the different gauges. Since, however, 𝑢𝑘

𝑎𝑏 is the unique extension of the Nester–
Witten two-form 𝑢(𝜀𝐾 , 𝜀𝐾 ′

)𝑎𝑏 on the principal bundle of normalized spin frames {𝜀𝐾
𝐴 } (given in

Equation (3.4)), and the latter has been proven to be connected naturally to the gravitational
energy-momentum, the pseudotensors appear to describe the same physics as the spinorial expres-
sions, though in a slightly old fashioned form. That this is indeed the case was demonstrated
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clearly by Chang, Nester, and Chen [121, 126, 350] by showing an intimate connection between
the covariant quasi-local Hamiltonian expressions and the pseudotensors. Writing the Hamiltonian
𝐻[K] in the form of the sum of the constraints and a boundary term, in a given coordinate system
the integrand of this boundary term may be the superpotential of any of the pseudotensors. Then
the requirement of the functional differentiability of 𝐻[K] gives the boundary conditions for the
basic variables at 𝜕Σ. For example, for the Freud superpotential (for Einstein’s pseudotensor)
what is fixed on the boundary 𝜕Σ is a certain piece of

√︀
|𝑔|𝑔𝛼𝛽 .
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12 Constructions for Special Spacetimes

12.1 The Komar integral for spacetimes with Killing vectors

Although the Komar integral (and, in general, the linkage (3.8) for some 𝛼) does not satisfy our
general requirements discussed in Section 4.3.1, and does not always give the standard values in
specific situations (see, for example, the ‘factor-of-two anomaly’ or the examples below), in the
presence of a Killing vector, the Komar integral, built from the Killing field, could be a very useful
tool in practice. (For Killing fields the linkage 𝐿𝒮 [K] reduces to the Komar integral for any 𝛼.)
One of its most important properties is that in vacuum 𝐿𝒮 [K] depends only on the homology
class of the two-surface (see, for example, [490]). If 𝒮 and 𝒮 ′ are any two two-surfaces such that
𝒮 −𝒮 ′ = 𝜕Σ for some compact three-dimensional hypersurface Σ on which the energy-momentum
tensor of the matter fields is vanishing, then 𝐿𝒮 [K] = 𝐿𝒮′ [K]. In particular, the Komar integral
for the static Killing field in the Schwarzschild spacetime is the mass parameter 𝑚 of the solution
for any two-surface 𝒮 surrounding the black hole, but it is zero if 𝒮 does not surround it.

On the other hand [469], the analogous integral in the Reissner–Nordström spacetime on a
metric two-sphere of radius 𝑟 is 𝑚−𝑒2/𝑟, which deviates from the generally accepted round-sphere
value 𝑚 − 𝑒2/(2𝑟). Similarly, in Einstein’s static universe for spheres of radius 𝑟 on a 𝑡 = const.
hypersurface, 𝐿𝒮 [K] is zero instead of the round sphere result 4𝜋

3 𝑟
3[𝜇 + 𝜆/8𝜋𝐺], where 𝜇 is the

energy density of the matter and 𝜆 is the cosmological constant.
Accurate numerical calculations show that in stationary, axisymmetric asymptotically flat

spacetimes describing a black hole or a rigidly-rotating dust disc surrounded by a perfect fluid
ring the Komar energy of the black hole or the dust disc could be negative, even though the con-
ditions of the positive energy theorem hold [14]. Moreover, the central black hole’s event horizon
can be distorted by the ring so that the black hole’s Komar angular momentum is greater than
the square of its Komar energy [13].

12.2 The effective mass of Kulkarni, Chellathurai, and Dadhich for the
Kerr spacetime

The Kulkarni–Chellathurai–Dadhich [302] effective mass for the Kerr spacetime is obtained from
the Komar integral (i.e., the linkage with 𝛼 = 0) using a hypersurface orthogonal vector field 𝑋𝑎

instead of the Killing vector 𝑇 𝑎 of stationarity. The vector field 𝑋𝑎 is defined to be 𝑇 𝑎 + 𝜔Φ𝑎,
where Φ𝑎 is the Killing vector of axisymmetry and the function 𝜔 is −𝑔(𝑇,Φ)/𝑔(Φ,Φ). This is
timelike outside the horizon, it is the asymptotic time translation at infinity, and coincides with the
null tangent on the event horizon. On the event horizon 𝑟 = 𝑟+ it yields 𝑀KCD =

√
𝑚2 − 𝑎2, while

in the limit 𝑟 →∞ it is the mass parameter 𝑚 of the solution. The effective mass is computed for
the Kerr–Newman spacetime in [123].

12.3 The Katz–Lynden-Bell–Israel energy for static spacetimes

Let 𝐾𝑎 be a hypersurface-orthogonal timelike Killing vector field, Σ a spacelike hypersurface to
which 𝐾𝑎 is orthogonal, and 𝐾2 := 𝐾𝑎𝐾

𝑎. Let 𝒮K be the set of those points of Σ where the
length of the Killing field is the value 𝐾, i.e., 𝒮K are the equipotential surfaces in Σ, and let
𝐷K ⊂ Σ be the set of those points where the magnitude of 𝐾𝑎 is not greater than 𝐾. Suppose
that 𝐷K is compact and connected. Katz, Lynden-Bell, and Israel [284] associate a quasi-local
energy to the two-surfaces 𝒮K as follows. Suppose that the matter fields can be removed from
int𝐷K and concentrated into a thin shell on 𝒮K in such a way that the space inside is flat but
the geometry outside remains the same. Then, denoting the (necessarily distributional) energy-
momentum tensor of the shell by 𝑇 𝑎𝑏

𝑠 and assuming that it satisfies the weak energy condition, the
total energy of the shell,

∫︀
𝐷K

𝐾𝑎𝑇
𝑎𝑏
𝑠 𝑡𝑏 𝑑Σ, is positive. Here 𝑡𝑎 is the future-directed unit normal
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to Σ. Then, using the Einstein equations, the energy of the shell can be rewritten in terms of
geometric objects on the two-surface as

𝐸KLI (𝒮K) :=
1

8𝜋𝐺
𝐾

∮︁
𝒮K

[𝑘] 𝑑𝒮K, (12.1)

where [𝑘] is the jump across the two-surface of the trace of the extrinsic curvatures of the two-
surface itself in Σ. Remarkably enough, the Katz–Lynden-Bell–Israel quasi-local energy 𝐸KLI in
the form (12.1), associated with the equipotential surface 𝒮K, is independent of any distributional
matter field, and can also be interpreted as follows. Let ℎ𝑎𝑏 be the metric on Σ, 𝑘𝑎𝑏 the extrinsic
curvature of 𝒮K in (Σ, ℎ𝑎𝑏) and 𝑘 := ℎ𝑎𝑏𝑘𝑎𝑏. Then, suppose that there is a flat metric ℎ0

𝑎𝑏 on Σ such
that the induced metric from ℎ0

𝑎𝑏 on 𝒮K coincides with that induced from ℎ𝑎𝑏, and ℎ0
𝑎𝑏 matches

continuously to ℎ𝑎𝑏 on 𝒮K. (Thus, in particular, the induced area element 𝑑𝒮K determined on 𝒮K

by ℎ𝑎𝑏, and ℎ0
𝑎𝑏 coincide.) Let the extrinsic curvature of 𝒮K in ℎ0

𝑎𝑏 be 0𝑘𝑎𝑏, and 𝑘0 := ℎ𝑎𝑏𝑘0
𝑎𝑏. Then

𝐸KLI(𝒮K) is the integral on 𝒮K of 𝐾 times the difference 𝑘− 𝑘0. Apart from the overall factor 𝐾,
this is essentially the Brown–York energy.

In asymptotically flat spacetimes 𝐸KLI(𝒮K) tends to the ADM energy [284]. However, it does
not reduce to the round-sphere energy in spherically-symmetric spacetimes [342], and, in particular,
gives zero for the event horizon of a Schwarzschild black hole.
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13 Applications in General Relativity

In this section we give a very short review of some of the potential applications of the paradigm
of quasi-locality in general relativity. This part of the review is far from complete, and our aim
here is not to discuss the problems considered in detail, but rather to give a collection of problems
that are (effectively or potentially) related to quasi-local ideas, tools, notions, etc. In some of these
problems the various quasi-local expressions and techniques have been used successfully, but others
may provide new and promising areas for their application. For a recent review of the applications
of these ideas, especially in black hole physics, with an extended bibliography, see [269].

13.1 Calculation of tidal heating

According to astronomical observations, there is intense volcanic activity on the moon Io of Jupiter.
One possible explanation of this phenomenon is that Jupiter is heating Io via gravitational tidal
forces (like the Moon, whose gravitational tidal forces raise the ocean’s tides on the Earth). To
check if this is really the case, one must be able to calculate how much energy is pumped into
Io. However, gravitational energy (both in Newtonian theory and in general relativity) is only
ambiguously defined (and hence, cannot be localized), while the phenomena mentioned above
cannot depend on the mathematics that we use to describe them. The first investigations intended
to calculate the tidal work (or heating) of a compact massive body were based on the use of various
gravitational pseudotensors [398, 169]. It has been shown that, although in the given (slow motion
and isolated body) approximation the interaction energy between the body and its companion is
ambiguous, the tidal work that the companion does on the body via the tidal forces is not. This
is independent of both the gauge conditions [398] and the actual pseudotensor (Einstein, Møller,
Bergmann, or Landau–Lifshitz) [169].

Recently, these calculations were repeated using quasi-local concepts by Booth and Creighton [90].
They calculated the time derivative of the Brown–York energy, given by Equations (10.8) and (10.9).
Assuming the form of the metric used in the pseudotensorial calculations, for the tidal work they
recovered the gauge invariant expressions obtained in [398, 169]. In these approximate calculations
the precise form of the boundary conditions (or reference configurations) is not essential, because
the results obtained by using different boundary conditions deviate from each other only in higher
order.

13.2 Geometric inequalities for black holes

13.2.1 On the Penrose inequality

To rule out a certain class of potential counterexamples to the (weak) cosmic censorship hypothe-
sis [382], Penrose derived an inequality that any asymptotically flat initial data set with (outermost)
apparent horizon 𝒮 must satisfy [384]: The ADM mass 𝑚ADM of the data set cannot be less than
the irreducible mass of the horizon, 𝑀 :=

√︀
Area(𝒮)/(16𝜋𝐺2) (see, also, [194, 105, 326]). However,

as stressed by Ben-Dov [67], the more careful formulation of the inequality, due to Horowitz [250],
is needed: Assuming that the dominant energy condition is satisfied, the ADM mass of the data
set cannot be less than the irreducible mass of the two-surface 𝒮min, where 𝒮min has the minimum
area among the two-surfaces enclosing the apparent horizon 𝒮. In [67] a spherically-symmetric
asymptotically flat data set with future apparent horizon is given, which violates the first, but not
the second version of the Penrose inequality.

The inequality has been proven for the outermost future apparent horizons outside the out-
ermost past apparent horizon in maximal data sets in spherically-symmetric spacetimes [324]
(see, also, [524, 228, 229]), for static black holes (using the Penrose mass, as mentioned in Sec-
tion 7.2.5) [472, 473] and for the perturbed Reissner–Nordström spacetimes [276] (see, also, [277]).
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Although the original specific potential counterexample has been shown not to violate the Penrose
inequality [195], the inequality has not been proven for a general data set. (For the limitations of
the proof of the Penrose inequality for the area of a trapped surface and the Bondi mass at past
null infinity [317], see [74].) If the inequality were true, then this would be a strengthened version
of the positive mass theorem, providing a positive lower bound for the ADM mass.

On the other hand, for time-symmetric data sets the Penrose inequality has been proven, even in
the presence of more than one black hole. The proof is based on the use of some quasi-local energy
expression, mostly of Geroch or of Hawking. First it is shown that these expressions are monotonic
along the normal vector field of a special foliation of the time-symmetric initial hypersurface (see
Sections 6.1.3 and 6.2, and also [177]), and then the global existence of such a foliation between the
apparent horizon and the two-sphere at infinity is proven. The first complete proof of the latter
was given by Huisken and Ilmanen [255, 256]. (An alternative proof, using a conformal technique,
was given by Bray [102, 103, 104].) A simple (but complete) proof of the Riemannian Penrose
inequality is given in the special case of axisymmetric time-symmetric data sets by using Brill’s
energy positivity proof [198].

A more general form of the conjecture, containing the electric charge parameter 𝑒 of the black
hole, was formulated by Gibbons [194]: The ADM mass is claimed not to be exceeded by 𝑀 +
𝑒2/(4𝐺2𝑀). Although the weaker form of the inequality, the Bogomolny inequality 𝑚ADM ≥ |𝑒| /𝐺,
has been proven (under assumptions on the matter content, see, for example, [199, 467, 316,
197, 339, 194]), Gibbons’ inequality for the electric charge has been proven for special cases (for
spherically-symmetric spacetimes see, for example, [229]), and for time-symmetric initial data sets
using Geroch’s inverse mean curvature flow [267]. As a consequence of the results of [255, 256]
the latter has become a complete proof. However, this inequality does not seem to work in the
presence of more than one black hole: For a time-symmetric data set describing 𝑘 > 1 nearly-
extremal Reissner–Nodström black holes, 𝑀 + 𝑒2/(4𝐺2𝑀) can be greater than the ADM mass,
where 16𝜋𝐺𝑀2 is either the area of the outermost marginally-trapped surface [499], or the sum
of the areas of the individual black hole horizons [148]. On the other hand, the weaker inequality
(13.1) below, derived from the cosmic censorship assumption, does not seem to be violated, even
in the presence of more than one black hole.21

Repeating Penrose’s argumentation (weak cosmic censorship hypothesis, the conjecture that the
final state of black holes is described by some Kerr–Newman solution, Bondi’s mass-loss and the
assumption that the Bondi mass is not greater than the ADM mass) in axisymmetric electrovacuum
spacetime, and assuming that the angular momentum 𝑚𝑎/𝐺, measured at the future null infinity
in the stationary stage (defined by the Komar integral using the Killing vector of axisymmetry)
coincides with the ADM angular momentum 𝐽ADM, for the irreducible mass 𝑀 of the black hole
we obtain the upper bound (see also [154])

2𝑀2 ≤ 𝑚2
ADM − 1

2𝐺
𝑞2 +

√︃
𝑚4

ADM −𝑚2
ADM

𝑞2

𝐺
−
(︂
𝐽ADM

𝐺

)︂2

. (13.1)

Here the electric charge 𝑞, measured at spatial infinity as well, is related to the charge parameter
of the black hole final state as 𝑞 = 𝑒/

√
𝐺. If initially there are more, say 𝑘, black holes, then 𝑀 in

(13.1) is built from the irreducible masses of the individual black holes as 𝑀2 :=
∑︀𝑘

𝑖=1𝑀
2
𝑖 . The

inequality (13.1) implies that one of the following inequalities:

21I am grateful to Sergio Dain for pointing this out to me.
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𝑚2
ADM > 2𝑀

(︂
𝑀 +

𝑞2

4𝐺𝑀

)︂
, (13.2)

𝑚2
ADM ≥

(︂
𝑀 +

𝑞2

4𝐺𝑀

)︂2

+
(︂
𝐽ADM

2𝐺𝑀

)︂2

(13.3)

holds: If (13.2) is violated, then, by (13.1), the inequality (13.3) holds (though one does not
exclude the other). Both inequalities give positive lower bounds for the ADM mass in terms of
the irreducible mass 𝑀 and other quantities measured also at spatial infinity. The Kerr–Newman
solution saturates (13.3). However, while lower bounds for 𝑚ADM in terms of 𝑞 and 𝑀 can be
given even on a general asymptotically flat data set, in lack of axisymmetry it does not seem to be
possible to control 𝑚𝑎/𝐺 in terms of 𝐽ADM, and hence, to derive lower bounds for 𝑚ADM in terms
of 𝑀 , 𝑞 and 𝐽ADM.

The structure of Equations (13.2) and (13.3) suggests another interpretation, too. In fact, since
𝑀 is a quasi-locally defined property of the black hole itself, it is natural to ask if the lower bound
for the ADM mass can be given only in terms of quasi-locally defined quantities. In the absence
of charges outside the horizon, 𝑞 is just the charge measured at 𝒮min, and if, in addition, the
spacetime is axisymmetric and vacuum, then 𝐽ADM coincides with the Komar angular momentum
also at 𝒮min. However, in general it is not clear what 𝐽2 would have to be: The magnitude of
some quasi-locally defined relativistic angular momentum, or only of the spatial part of the angular
momentum, or even the Pauli–Lubanski spin?

A recent (and a much more detailed) overview of the Penrose inequality with an extended
bibliography is [326]; numerical studies of the Penrose-like inequalities are given in [270].

13.2.2 On the hoop conjecture

In connection with the formation of black holes and the weak cosmic censorship hypothesis, another
geometric inequality has also been formulated. This is the hoop conjecture of Thorne [465, 334],
saying that ‘black holes with horizons form when and only when a mass 𝑚 gets compacted into
a region whose circumference 𝐶 in every direction is 𝐶 ≤ 4𝜋𝐺𝑚’ (see, also, [172, 494]). Math-
ematically, this conjecture is not precisely formulated. Neither the mass nor the notion of the
circumference is well defined. In certain situations the mass might be the ADM or the Bondi mass,
but might be the integral of some locally-defined ‘mass density’, as well [172, 43, 322, 294]. The
most natural formulation of the hoop conjecture would be based on some spacelike two-surface 𝒮
and some reasonable notion of the quasi-local mass, and the trapped nature of the surface would
be characterized by the mass and the ‘circumference’ of 𝒮. In fact, for round spheres outside the
outermost trapped surface and the standard round-sphere definition of the quasi-local energy (4.7)
one has 4𝜋𝐺𝐸 = 2𝜋𝑟[1−exp(−2𝛼)] < 2𝜋𝑟 = 𝐶, where we use the fact that 𝑟 is an areal radius (see
Section 4.2.1). If, however, 𝒮 is not axisymmetric, then there is no natural definition (or, there are
several inequivalent ‘natural’ definitions) for the circumference of 𝒮. Interesting, necessary and also
sufficient conditions for the existence of averaged trapped surfaces in non–spherically-symmetric
cases, both in special asymptotically flat and cosmological spacetimes, are found in [322, 294].
For the investigations of the hoop conjecture in the Gibbons–Penrose spacetime of the collapsing
thin matter shell see [44, 43, 477, 377], and for colliding black holes see [520]. A reformulation
of the hoop conjecture, using the new concept of the ‘trapped circle’ instead of the ill-defined
circumference, is suggested by Senovilla [415].
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13.2.3 Other inequalities

The Kerr–Newman solution describes a black hole precisely when the mass parameter dominates
the angular momentum and the charge parameters: 𝑚2 ≥ 𝑎2 + 𝑒2. Thus, it is natural to ask
whether or not an analogous inequality holds for more general, dynamic black holes. As Dain
has proven, in the axisymmetric, vacuum case there is an analogous inequality, a consequence of
an extremality property of Brill’s form of the ADM mass. Namely, it is shown in [153], that the
unique absolute minimum of the ADM mass functional on the set of the vacuum Brill data sets
with fixed ADM angular momentum is the extreme Kerr data set. Here a Brill data set is an
axisymmetric, asymptotically flat, maximal, vacuum data set, which, in addition, satisfies certain
global conditions (viz. the form of the metric is given globally, and nontrivial boundary conditions
are imposed) [198, 153]. The key tool is a manifestly positive definite expression of the ADM
energy in the form of a three-dimensional integral, given in globally defined coordinates. If the
angular momentum is nonzero, then by the assumption of axisymmetry and vacuum, the data set
contains a black hole (or black holes), and hence, the extremality property of the ADM energy
implies that the ADM mass of this (in general, nonstationary) black hole cannot be less than its
ADM angular momentum. For further discussion of this inequality, in particular its role analogous
to that of the Penrose inequality, see [152]; and for earlier versions of the extremality result above,
see [151, 150, 149].

Since in the above result the spacetime is axisymmetric and vacuum, the ADM angular mo-
mentum could be written as the Komar integral built from the Killing vector of axisymmetry on
any closed spacelike spherical two-surface homologous to the large sphere near the actual infinity.
Thus, the angular momentum in Dain’s inequality can be considered as a quasi-local expression.
Hence, it is natural to ask if the whole inequality is a condition on quasi-locally defined quantities
or not. However, as already noted in Section 12.1, in the stationary axisymmetric but nonvacuum
case it is possible to arrange the matter outside the horizon in such a way that the Komar angular
momentum on the horizon is greater than the Komar energy there, or the latter can even be neg-
ative [13, 14]. Therefore, if a mass–angular momentum inequality is expected to hold quasi-locally
at the horizon, then it is not obvious which definitions for the quasi-local mass and angular mo-
mentum should be used. In the stationary axisymmetric case, the angular momentum could still
be the Komar expression, but the mass is the area of the event horizon [244]: Area(𝒮) ≥ 8𝜋𝐺𝐽K.
For the extremal case (even in the presence of Maxwell fields), see [15]. (For the extremality of
black holes formulated in terms of isolated and dynamic horizons, see [88] and Section 13.3.2.)

13.3 Quasi-local laws of black hole dynamics

13.3.1 Quasi-local thermodynamics of black holes

Black holes are usually introduced in asymptotically flat spacetimes [215, 216, 218, 490], and
hence, it is natural to derive the formal laws of black hole mechanics/thermodynamics in the
asymptotically flat context (see, for example, [42, 59, 60], and for a comprehensive review, [495]).
The discovery of Hawking radiation [217] showed that the laws of black hole thermodynamics are
not only analogous to the laws of thermodynamics, but black holes are genuine thermodynamic
objects; black hole temperature is a physical temperature, that is ~𝑐/(2𝜋𝑘) times the surface
gravity, and its entropy is a physical entropy, 𝑘𝑐3/(4𝐺~) times the area of the horizon (in the
traditional units with the Boltzmann constant 𝑘, speed of light 𝑐, Newton’s gravitational constant
𝐺, and Planck’s constant ~) (see, also, [493]). Apparently, the detailed microscopic (quantum)
theory of gravity is not needed to derive black hole entropy, and it can be derived even from the
general principles of a conformal field theory on the horizon of black holes [115, 116, 117, 375, 118,
119].

However, black holes are localized objects, thus, one must be able to describe their properties
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114 László B. Szabados

and dynamics even at the quasi-local level. Nevertheless, beyond this rather theoretical claim,
there are pragmatic reasons that force us to quasi-localize the laws of black hole dynamics. In
particular, it is well known that the Schwarzschild black hole, fixing its temperature at infinity, has
negative heat capacity. Similarly, in an asymptotically anti-de Sitter spacetime, fixing black hole
temperature via the normalization of the timelike Killing vector at infinity is not justified because
there is no such physically-distinguished Killing field (see [107]). These difficulties lead to the
need of a quasi-local formulation of black hole thermodynamics. In [107], Brown, Creighton, and
Mann investigated the thermal properties of the Schwarzschild–anti-de Sitter black hole. They
used the quasi-local approach of Brown and York to define the energy of the black hole on a
spherical two-surface 𝒮 outside the horizon. Identifying the Brown–York energy with the internal
(thermodynamic) energy and (in the 𝑘 = ~ = 𝑐 = 1 units) 1/(4𝐺) times the area of the event
horizon with the entropy, they calculated the temperature, surface pressure, and heat capacity.
They found that these quantities do depend on the location of the surface 𝒮. In particular, there is
a critical value 𝑇0 such that for temperatures 𝑇 greater than 𝑇0 there are two black hole solutions,
one with positive and one with negative heat capacity, but there are no Schwarzschild–anti-de
Sitter black holes with temperature 𝑇 less than 𝑇0. In [145] the Brown–York analysis is extended
to include dilaton and Yang–Mills fields, and the results are applied to stationary black holes to
derive the first law of black hole thermodynamics. The Noether charge formalism of Wald [492],
and Iyer and Wald [264] can be interpreted as a generalization of the Brown–York approach from
general relativity to any diffeomorphism invariant theory to derive quasi-local quantities [265].
However, this formalism gave a general expression for the black hole entropy, as well. That is
the Noether charge derived from the Hilbert Lagrangian corresponding to the null normal of the
horizon, and explicitly this is still 1/(4𝐺) times the area of the horizon. (For related work see,
for example, [186, 231]). A comparison of the various proposals for the surface gravity of dynamic
black holes in spherically-symmetric black hole spacetimes is given by Nielsen and Yoon [363].

There is extensive literature on the quasi-local formulation of the black hole dynamics and
relativistic thermodynamics in the spherically-symmetric context (see, for example, [228, 230, 229,
234] and for non–spherically-symmetric cases [340, 232, 85]). These investigations are based on the
quasi-locally defined notion of trapping horizons [224]. A trapping horizon is a smooth hypersurface
that can be foliated by (e.g., future) marginally-trapped surfaces such that the expansion of the
outgoing null normals is decreasing along the incoming null normals. (On the other hand, the
investigations of [226, 224, 227] are based on gauge-dependent energy and angular momentum
definitions; see also Sections 4.1.8 and 6.3.) For recent reviews of the quasi-local formulations and
the various aspects of black hole dynamics based on the notion of trapping horizons, see [34, 269,
362, 233].

13.3.2 On isolated and dynamic horizons

The idea of isolated horizons (more precisely, the gradually more restrictive notion of nonexpand-
ing, weakly isolated and isolated horizons, and the special weakly isolated horizon called rigidly
rotating) generalizes the notion of Killing horizons by keeping their basic properties without the
existence of any Killing vector in general. Thus, while the black hole is thought to be settled
down to its final state, the spacetime outside the black hole may still be dynamic. (For a review
see [25, 34] and references therein, especially [27, 24].) The phase space for asymptotically flat
spacetimes containing an isolated horizon is based on a three-manifold with an asymptotic end (or
finitely many such ends) and an inner boundary. The boundary conditions on the inner boundary
are determined by the precise definition of the isolated horizon. Then the Hamiltonian is the sum
of the constraints and boundary terms, corresponding both to the ends and the horizon. Thus, the
appearance of the boundary term on the inner boundary makes the Hamiltonian partly quasi-local.
It is shown that the condition of the Hamiltonian evolution of the states on the inner boundary
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along the evolution vector field is precisely the first law of black hole mechanics [27, 24].
Booth [89] applied the general idea of Brown and York to a domain 𝐷 whose boundary consists

not only of two spacelike submanifolds Σ1 and Σ2 and a timelike one 3𝐵, but a further, internal
boundary Δ as well, which is null. Thus, he made the investigations of the isolated horizons fully
quasi-local. Therefore, the topology of Σ1 and Σ2 is 𝑆2 × [𝑎, 𝑏], and the inner (null) boundary
is interpreted as (a part of) a nonexpanding horizon. Then, to have a well-defined variational
principle on 𝐷, the Hilbert action had to be modified by appropriate boundary terms. However,
by requiring Δ to be a rigidly-rotating horizon, the boundary term corresponding to Δ and the
allowed variations are considerably restricted. This made it possible to derive the ‘first law of
rigidly rotating horizon mechanics’ quasi-locally, an analog of the first law of black hole mechanics.
The first law for rigidly-rotating horizons was also derived by Allemandi, Francaviglia, and Raiteri
in the Einstein–Maxwell theory [4] using their Regge–Teitelboim-like approach [175]. The first law
for ‘slowly evolving horizons’ was derived in [85].

Another concept is the notion of a dynamic horizon [32, 33]. This is a smooth spacelike hy-
persurface that can be foliated by a geometrically distinguished family of (e.g., future) marginally-
trapped surfaces, i.e., it is a generalization of the trapping horizon above. The isolated horizons
are thought to be the asymptotic state of dynamic horizons. The local existence of such horizons
was proven by Andersson, Mars and Simon [12]: If 𝒮 is a (strictly stably outermost) marginally
trapped surface lying in a leaf, e.g., Σ0, of a foliation Σ𝑡 of the spacetime, then there exists a
hypersurface ℋ (the ‘horizon’) such that 𝒮 lies in ℋ, and which is foliated by marginally outer-
trapped surfaces. (For the related uniqueness properties of the structure of the dynamic horizons
see [28]). This structure of the dynamic horizons makes it possible to derive balance equations for
the areal radius of the surfaces 𝒮 and the angular momentum given by Equation (11.3) [25, 33]
(see also [34]). In particular, the difference of the areal radius of two marginally-trapped surfaces
of the foliation, e.g., 𝒮1 and 𝒮2, is just the flux integral on the portion of ℋ between 𝒮1 and 𝒮2 of
a positive definite expression: This is the flux of the energy current of the matter fields and terms
that can be interpreted as the energy flux carried by the gravitational waves. Interestingly enough,
the generator vector field in this flux expression is proportional to the geometrically distinguished
outward null normal of the surfaces 𝒮, just as in the derivation of black hole entropy as a Noether
charge by Wald [492] and Iyer and Wald [264] above. Thus, the second law of black hole me-
chanics is proven for dynamic horizons. Moreover, this supports the view that the energy that we
should associate with marginally-trapped surfaces is the irreducible mass. For further discussion
(and generalizations) of the basic flux expressions see [206, 207]. For a different calculation of the
energy flux in the Vaidya spacetime, see [487].

In [86, 87] Booth and Fairhurst extended their previous investigations [89, 84] (see above and
Section 10.1.5). In [86] a canonical analysis, based on the extended phase space, is given such
that the underlying three-manifold has an inner boundary, which can be any of the horizon types
above. Though the formalism does not give any explicit expression for the energy on the horizons,
an argument is given that supports the expectation that this must be the irreducible mass of the
horizon. The variations of marginally trapped surfaces, generated by vector fields orthogonal to the
surfaces, are investigated and the corresponding variations of various geometric objects (intrinsic
metric, expansions, connection one-form on the normal bundle, etc.) on the surfaces are calculated
in [87]. In terms of these, several basic properties of marginally trapped or future outer trapped
surfaces (and hence, of the horizons themselves) are derived in a straightforward way.

13.4 Entropy bounds

13.4.1 On Bekenstein’s bounds for the entropy

Having associated the entropy 𝑆bh := [𝑘𝑐3/(4𝐺~)] Area(𝒮) with the (spacelike cross section 𝒮 of
the) event horizon, it is natural to expect the generalized second law (GSL) of thermodynamics to
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hold, i.e., the sum 𝑆m + 𝑆bh of the entropy of the matter and the black holes cannot decrease in
any process. However, as Bekenstein pointed out, it is possible to construct thought experiments
(e.g., the Geroch process) in which the GSL is violated, unless a universal upper bound for the
entropy-to-energy ratio for bounded systems exists [61, 62]. (For another resolution of the apparent
contradiction to the GSL, based on the calculation of the buoyancy force in the thermal atmosphere
of the black hole, see [488, 493].) In traditional units this upper bound is given by 𝑆m/𝐸 ≤
[2𝜋𝑘/(~𝑐)]𝑅, where 𝐸 and 𝑆m are, respectively, the total energy and entropy of the system, and 𝑅
is the radius of the sphere that encloses the system. It is remarkable that this inequality does not
contain Newton’s constant, and hence, it can be expected to be applicable even for nongravitating
systems. Although this bound is violated for several model systems, for a wide class of systems in
Minkowski spacetime the bound does hold [370, 371, 372, 63] (see also [95]). The Bekenstein bound
has been extended to systems with electric charge by Zaslavskii [525] and to rotating systems by
Hod [247] (see also [64, 205]). Although these bounds were derived for test bodies falling into black
holes, interestingly enough these Bekenstein bounds hold for the black holes themselves, provided
the generalized Gibbons–Penrose inequality (13.1) holds. Identifying 𝐸 with 𝑚ADM𝑐

2 and letting
𝑅 be a radius for which 4𝜋𝑅2 is not less than the area of the event horizon of the black hole,
Equation (13.3) can be rewritten in the traditional units as

2𝜋
√︁

(𝑅𝐸)2 − 𝐽2 ≥ ~𝑐
𝑘
𝑆bh + 𝜋𝑞2. (13.4)

Obviously, the Kerr–Newman solution saturates this inequality, and in the 𝑞 = 0 = 𝐽 , 𝐽 = 0, and
𝑞 = 0 special cases, (13.4) reduces to the upper bound given, respectively, by Bekenstein, Zaslavskii,
and Hod. A further consequence of the GSL is that there is a lower bound for the viscosity of
fluids [174]. (It is interesting to note that an analogous lower bound for the relaxation time of
any perturbed system, derived for nongravitational systems in [248], is saturated by extremal
Reissner–Nordström black holes.)

One should stress, however, that in general curved spacetimes the notion of energy, angular
momentum, and radial distance appearing in Equation (13.4) are not yet well defined. Perhaps it
is just the quasi-local ideas that should be used to make them well defined, and there is a deep
connection between the Gibbons–Penrose inequality and the Bekenstein bound. The former is the
geometric manifestation of the latter for black holes.

13.4.2 On the holographic hypothesis

In the literature there is another kind of upper bound for the entropy of a localized system,
the holographic bound. The holographic principle [463, 443, 95] says that, at the fundamental
(quantum) level, one should be able to characterize the state of any physical system located in a
compact spatial domain by degrees of freedom on the surface of the domain as well, analogous to
the holography by means of which a three-dimensional image is encoded into a two-dimensional
surface. Consequently, the number of physical degrees of freedom in the domain is bounded from
above by the area of the boundary of the domain instead of its volume, and the number of physical
degrees of freedom on the two-surface is not greater than one-fourth of the area of the surface
measured in Planck-area units 𝐿2

P := 𝐺~/𝑐3. This expectation is formulated in the (spacelike)
holographic entropy bound [95]. Let Σ be a compact spacelike hypersurface with boundary 𝒮.
Then the entropy 𝑆(Σ) of the system in Σ should satisfy 𝑆(Σ) ≤ 𝑘Area(𝒮)/(4𝐿2

P). Formally, this
bound can be obtained from the Bekenstein bound with the assumption that 2𝐸 ≤ 𝑅𝑐4/𝐺, i.e.,
that 𝑅 is not less than the Schwarzschild radius of 𝐸. Also, as with the Bekenstein bounds, this
inequality can be violated in specific situations (see also [495, 95]).

On the other hand, there is another formulation of the holographic entropy bound, due to
Bousso [94, 95]. Bousso’s covariant entropy bound is much more quasi-local than the previous
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formulations, and is based on spacelike two-surfaces and the null hypersurfaces determined by
the two-surfaces in the spacetime. Its classical version has been proven by Flanagan, Marolf,
and Wald [173]. If 𝒩 is an everywhere noncontracting (or nonexpanding) null hypersurface with
spacelike cuts 𝒮1 and 𝒮2, then, assuming that the local entropy density of the matter is bounded
by its energy density, the entropy flux 𝑆𝒩 through 𝒩 between the cuts 𝒮1 and 𝒮2 is bounded:
𝑆𝒩 ≤ 𝑘 |Area(𝒮2)−Area(𝒮1)| /(4𝐿2

P). For a detailed discussion see [495, 95]. For another, quasi-
local formulation of the holographic principle see Section 2.2.5 and [459].

13.5 Quasi-local radiative modes of general relativity

In Section 8.2.3 we discuss the properties of the Dougan–Mason energy-momenta, and we see that,
under the conditions explained there, the energy-momentum is vanishing iff 𝐷(Σ) is flat, and it
is null iff 𝐷(Σ) is a pp-wave geometry with pure radiative matter, and that these properties of
the domain of dependence 𝐷(Σ) are completely encoded into the geometry of the two-surface 𝒮.
However, there is an important difference between these two statements. While in the former case
we know the metric of 𝐷(Σ) is flat, in the second we know only that the geometry admits a constant
null vector field, but we do not know the line element itself. Thus, the question arises as to whether
the metric of 𝐷(Σ) is also determined by the geometry of 𝒮 even in the zero quasi-local–mass case.

In [453] it is shown that under the condition above there is a complex valued function Φ on
𝒮, describing the deviation of the antiholomorphic and holomorphic spinor dyads from each other,
which plays the role of a potential for the curvature 𝐹𝐴

𝐵𝑐𝑑 on 𝒮. Then, assuming that 𝒮 is future
and past convex and the matter is an N-type zero-rest-mass field, Φ and the value 𝜑 of the matter
field on 𝒮 determine the curvature of 𝐷(Σ). Since the field equations for the metric of 𝐷(Σ) reduce
to Poisson-like equations with the curvature as the source, the metric of 𝐷(Σ) is also determined
by Φ and 𝜑 on 𝒮. Therefore, the (purely radiative) pp-wave geometry and matter field on 𝐷(Σ)
are completely encoded in the geometry of 𝒮 and complex functions defined on 𝒮, respectively, in
complete agreement with the holographic principle of Section 13.4.

As we saw in Section 2.2.5, the radiative modes of the zero-rest-mass-fields in Minkowski space-
time, defined by their Fourier expansion, can be characterized quasi-locally on the globally hy-
perbolic subset 𝐷(Σ) of the spacetime by the value of the Fourier modes on the appropriately
convex spacelike two-surface 𝒮 = 𝜕Σ. Thus, the two transversal radiative modes of these fields
are encoded in certain fields on 𝒮. On the other hand, because of the nonlinearity of the Einstein
equations, it is difficult to define the radiative modes of general relativity. It could be done when
the field equations become linear, i.e., near the null infinity, in the linear approximation and for pp-
waves. In the first case the gravitational radiation is characterized on a cut 𝒮∞ of the null infinity
I + by the 𝑢-derivative �̇�0 of the asymptotic shear of the outgoing null hypersurface 𝒩 for which
𝒮∞ = 𝒩 ∩I +, i.e., by a complex function on 𝒮∞. It is remarkable that it is precisely this complex
function, which yields the deviation of the holomorphic and antiholomorphic spin frames at the null
infinity (see, for example, [457]). The linear approximation of Einstein’s theory is covered by the
analysis of Section 2.2.5, thus those radiative modes can be characterized quasi-locally, while for
the pp-waves, the result of [453], reported above, gives just such a quasi-local characterization in
terms of a complex function measuring the deviation of the holomorphic and antiholomorphic spin
frames. However, the deviation of the holomorphic and antiholomorphic structures on 𝒮 can be
defined even for generic two-surfaces in generic spacetimes as well, which might yield the possibility
of introducing the radiative modes quasi-locally in general.

13.6 Potential applications in cosmology

The systematic deviation of the observed luminosity–red-shift values for type Ia supernovae for
large red shift from the expected ones in the standard Friedmann–Robertson–Walker model is
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usually interpreted as evidence that the expansion of the universe is accelerating. To generate this
acceleration, a hypothetical matter field, the dark matter violating the strong energy condition,
is postulated. Here the homogeneity and isotropy of the space, i.e., the use of the Friedmann–
Robertson–Walker line element, seems to be justified by the isotropy and the thermal nature of
the cosmic microwave background radiation. Nevertheless, as is well known, the observed matter
distribution is far from being homogeneous. There are huge voids and the matter is distributed
as walls between the voids, as in as foam; and hence, the homogeneity of the universe is expected
only after an averaging at a larger scale.

However, motivated by quasi-local energy-momentum ideas, Wiltshire [500, 501, 504] suggested
a new averaging procedure (see also [503, 502]). Since by general relativistic redshift clocks in the
voids run significantly faster than in the presence of matter (i.e., in the walls), the average should
be taken in the voids and in the walls separately, and the model of the universe is built from these
two like Swiss cheese. Then cosmic acceleration is explained only as an apparent effect, due to the
näıve averaging above, in which the general relativistic clock effect was not taken into account,
and hence, no dark energy is needed.
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14 Summary: Achievements, Difficulties, and Open Issues

In the previous sections we have tried to give an objective review of the present state of the art.
This section is, however, more subjective: We close the present review with a critical discussion,
evaluating strategies, approaches etc. that are explicitly and unambiguously given and (at least in
principle) applicable in any generic spacetime.

14.1 On the Bartnik mass and Hawking energy

Although in the literature the notions mass and energy are used almost synonymously, in the
present review we have made a distinction between them. By energy we mean the time compo-
nent of the energy-momentum four-vector, i.e., a reference-frame–dependent quantity, while by
mass we mean the length of the energy-momentum, i.e., an invariant. In fact, these two have
different properties. The quasi-local energy (both for matter fields and for gravity according to
the Dougan–Mason definition) is vanishing precisely for the ‘ground state’ of the theory (i.e., for
the vanishing energy-momentum tensor in the domain of dependence 𝐷(Σ) and the flatness of
𝐷(Σ), see Sections 2.2.5 and 8.2.3, respectively). In particular, for configurations describing pure
radiation (purely radiative matter fields and pp-waves, respectively) the energy is positive. On the
other hand, the vanishing of the quasi-local mass does not characterize the ‘ground state’, rather
that is equivalent only to these purely radiative configurations.

The Bartnik mass is a natural quasi-localization of the ADM mass, and its monotonicity and
positivity makes it a potentially very useful tool in proving various statements on the spacetime,
because it fully characterizes the nontriviality of the finite Cauchy data by a single scalar. However,
our personal opinion is that, by its strict positivity requirement for nonflat three-dimensional
domains, it overestimates the ‘physical’ quasi-local mass. In fact, if (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏) is a finite data set
for a pp-wave geometry (i.e., a compact subset of the data set for a pp-wave metric), then it probably
has an asymptotically flat extension (Σ̂, ℎ̂𝑎𝑏, �̂�𝑎𝑏) satisfying the dominant energy condition with
bounded ADM energy and no apparent horizon between 𝜕Σ and infinity. Thus, while the Dougan–
Mason mass of 𝜕Σ is zero, the Bartnik mass 𝑚B(Σ) is strictly positive, unless (Σ, ℎ𝑎𝑏, 𝜒𝑎𝑏) is
trivial. Thus, this example shows that it is the procedure of taking the asymptotically flat extension
that gives strictly positive mass. Indeed, one possible proof of the rigid part of the positive
energy theorem [31] (see also [449]) is to prove first that the vanishing of the ADM mass implies,
through the Witten equation, that the spacetime admits a constant spinor field, i.e., it is a pp-wave
spacetime, and then that the only asymptotically flat spacetime that admits a constant null vector
field is the Minkowski spacetime. Therefore, it is only the global condition of the asymptotic
flatness that rules out the possibility of nontrivial spacetimes with zero ADM mass. Hence, it
would be instructive to calculate the Bartnik mass for a compact part of a pp-wave data set. It
might also be interesting to calculate its small surface limit to see its connection with the local
fields (energy-momentum tensor and probably the Bel–Robinson tensor).

The other very useful definition is the Hawking energy (and its slightly modified version, the
Geroch energy). Its advantage is its simplicity, calculability, and monotonicity for special families of
two-surfaces, and it has turned out to be a very effective tool in practice in proving for example the
Penrose inequality. The small sphere limit calculation shows that the Hawking energy is, in fact,
energy rather than mass, so, in principle, one should be able to complete this by a linear momentum
to an energy-momentum four-vector. One possibility is Equation (6.2), but, as far as we are aware,
its properties have not been investigated. Unfortunately, although the energy can be defined for
two-surfaces with nonzero genus, it is not clear how the four-momentum could be extended for
such surfaces. Although Hawking energy is a well-defined two-surface observable, it has not been
linked to any systematic (Lagrangian or Hamiltonian) scenario. Perhaps it does not have any such
interpretation, and it is simply a natural (but, in general spacetimes for quite general two-surfaces,
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not quite viable) generalization of the standard round sphere expression (4.8). This view appears
to be supported by the fact that Hawking energy has strange properties for nonspherical surfaces,
e.g., for two-surfaces in Minkowski spacetime, which are not metric spheres.

14.2 On the Penrose mass

Penrose’s suggestion for the quasi-local mass (or, more generally, energy-momentum and angular
momentum) was based on a promising and far-reaching strategy to use twistors at the fundamen-
tal level. The basic object of the construction, the kinematical twistor, is intended to comprise
both the energy-momentum and angular momentum, and is a well-defined quasi-local quantity on
generic spacelike surfaces homeomorphic to 𝑆2. It can be interpreted as the value of a quasi-local
Hamiltonian, and the four independent two-surface twistors play the role of the quasi-translations
and quasi-rotations. The kinematical twistor was calculated for a large class of special two-surfaces
and gave acceptable results.

However, the construction is not complete. First, the construction does not work for two-
surfaces, whose topology is different from 𝑆2, and does not work even for certain topological two-
spheres for which the two-surface twistor equation admits more than four independent solutions
(‘exceptional two-surfaces’). Second, two additional objects, the infinity twistor and a Hermitian
inner product on the space of two-surface twistors, are needed to get the energy-momentum and
angular momentum from the kinematical twistor and to ensure their reality. The latter is needed
if we want to define the quasi-local mass as a norm of the kinematical twistor. However, no
natural infinity twistor has been found, and no natural Hermitian scalar product can exist if the
two-surface cannot be embedded into a conformally-flat spacetime. In addition, in small surface
calculations the quasi-local mass may be complex. If, however, we do not want to form invariants
of the kinematical twistor (e.g., the mass), but we do want to extract the energy-momentum and
angular momentum from the kinematical twistor and we want them to be real, then only a special
combination of the infinity twistor and the Hermitian scalar product, the ‘bar-hook combination’
(see Equation (7.10)), would be needed.

To save the main body of the construction, the definition of the kinematical twistor was mod-
ified. Nevertheless, the mass in the modified constructions encountered an inherent ambiguity in
the small surface approximation. One can still hope to find an appropriate ‘bar-hook’, and hence,
real energy-momentum and angular momentum, but invariants, such as norms, cannot be formed.

14.3 On the Dougan–Mason energy-momenta and the holomorphic/anti-
holomorphic spin angular momenta

From pragmatic points of view the Dougan–Mason energy-momenta (see Section 8.2) are certainly
among the most successful definitions. The energy-positivity and rigidity (zero energy implies
flatness), and the intimate connection between the pp-waves and the vanishing of the masses make
these definitions potentially useful quasi-local tools such as the ADM and Bondi–Sachs energy-
momenta in the asymptotically flat context. Similar properties are proven for the quasi-local
energy-momentum of the matter fields, in particular for the non-Abelian Yang–Mills fields. The
properties depend only on the two-surface data on 𝒮, they have a clear Lagrangian interpretation,
and the spinor fields that they are based on can be considered as the spinor constituents of the quasi-
translations of the two-surface. In fact, in the Minkowski spacetime the corresponding spacetime
vectors are precisely the restriction to 𝒮 of the constant Killing vectors. These notions of energy-
momentum are linked completely to the geometry of 𝒮, and are independent of any ad hoc choice
for the ‘fleet of observers’ on it. On the other hand, the holomorphic/antiholomorphic spinor fields
determine a six–real-parameter family of orthonormal frame fields on 𝒮, which can be interpreted
as some distinguished class of observers. In addition, they reproduce the expected, correct limits in
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a number of special situations. In particular, these energy-momenta appear to have been completed
by spin angular momenta (see Section 9.2) in a natural way.

However, in spite of their successes, the Dougan–Mason energy-momenta and the spin angular
momenta based on Bramson’s superpotential and the holomorphic/antiholomorphic spinor fields
have some unsatisfactory properties, as well (see the lists of our expectations in Section 4.3).
First, they are defined only for topological two-spheres (but not for other topologies, e.g., for the
torus 𝑆1 × 𝑆1), and, even for certain topological two-spheres, they are not well defined. Such
surfaces are, for example, past marginally-trapped surfaces in the antiholomorphic (and future
marginally-trapped surfaces in the holomorphic) case. Although the quasi-local mass associated
with a marginally trapped surface 𝒮 is expected to be its irreducible mass

√︀
Area(𝒮)/(16𝜋𝐺2), nei-

ther of the Dougan–Mason masses is well defined for the bifurcation surfaces of the Kerr–Newman
(or even Schwarzschild) black hole. Second, the role and the physical content of the holomorphic-
ity/antiholomorphicity of the spinor fields is not clear. The use of the complex structure is justified
a posteriori by the nice physical properties of the constructions and the pure mathematical fact
that it is only the holomorphy and antiholomorphy operators in a large class of potentially ac-
ceptable first-order linear differential operators acting on spinor fields that have a two-dimensional
kernel. Furthermore, since the holomorphic and antiholomorphic constructions are not equivalent,
we have two constructions instead of one, and it is not clear why we should prefer, for example,
holomorphicity instead of antiholomorphicity, even at the quasi-local level.

The angular momentum based on Bramson’s superpotential and the antiholomorphic spinors
together with the antiholomorphic Dougan–Mason energy-momentum give acceptable Pauli–Lu-
banski spin for axisymmetric zero-mass Cauchy developments, for small spheres, and at future null
infinity, but the global angular momentum at the future null infinity is finite and well defined only
if the spatial three-momentum part of the Bondi–Sachs four-momentum is vanishing, i.e., only in
the center-of-mass frame. (The spatial infinity limit of the spin angular momenta has not been
calculated.)

Thus, the Nester–Witten two-form appears to serve as an appropriate framework for defining
the energy-momentum, and it is the two spinor fields, which should probably be changed, and a
new choice would be needed. The holomorphic/antiholomorphic spinor fields appears to be ‘too
rigid’. In fact, it is the topology of 𝒮, namely the zero genus of 𝒮, that restricts the solution
space to two complex dimensions, instead of the local properties of the differential equations.
(Thus, the situation is the same as in the twistorial construction of Penrose.) On the other
hand, Bramson’s superpotential is based on the idea of Bergmann and Thomson, that the angular
momentum of gravity is analogous to the spin. Thus, the question arises as to whether this picture is
correct, or if the gravitational angular momentum also has an orbital part, in which case Bramson’s
superpotential describes only (the general form of) its spin part. The fact that our antiholomorphic
construction gives the correct, expected results for small spheres, but unacceptable ones for large
spheres near future null infinity in frames that are not center-of-mass frames, may indicate the lack
of such an orbital term. This term could be neglected for small spheres, but certainly not for large
spheres. For example, in the special quasi-local angular momentum of Bergqvist and Ludvigsen
for the Kerr spacetime (see Section 9.3), it is the sum of Bramson’s expression and a term that
can be interpreted as the orbital angular momentum.

14.4 On the Brown–York–type expressions

The idea of Brown and York that the quasi-local conserved quantities should be introduced via the
canonical formulation of the theory is quite natural. In fact, as we saw, one could arrive at their
general formulae from different points of departure (functional differentiability of the Hamiltonian
two-surface observables). If the a priori requirement that we should have a well-defined action
principle for the trace-𝜒-action yielded undoubtedly well behaving quasi-local expressions, then
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the results would a posteriori justify this basic requirement (like the holomorphicity or antiholo-
morphicity of the spinor fields in the Dougan–Mason definitions). However, if not, then that might
be considered as an unnecessarily restrictive assumption, and the question arises as to whether the
present framework is wide enough to construct reasonable quasi-local energy-momenta and angular
momenta.

Indeed, the basic requirement automatically yields the boundary condition that the three-
metric 𝛾𝑎𝑏 should be fixed on the boundary 𝒮, and that the boundary term in the Hamiltonian
should be built only from the surface stress tensor 𝜏𝑎𝑏. Since the boundary conditions are given, no
Legendre transformation of the canonical variables on the two-surface is allowed (see the derivation
of Kijowski’s expression in Section 10.2). The use of 𝜏𝑎𝑏 has important consequences. First, the
quasi-local quantities depend not only on the geometry of the two-surface 𝒮, but on an arbitrarily
chosen boost gauge, interpreted as a ‘fleet of observers 𝑡𝑎 being at rest with respect to 𝒮’, as well.
This leaves a huge ambiguity in the Brown–York energy (three arbitrary functions of two variables,
corresponding to the three boost parameters at each point of 𝒮) unless a natural gauge choice is
prescribed22. Second, since 𝜏𝑎𝑏 does not contain the extrinsic curvature of 𝒮 in the direction 𝑡𝑎,
which is a part of the two-surface data, this extrinsic curvature is ‘lost’ from the point of view
of the quasi-local quantities. Moreover, since 𝜏𝑎𝑏 is a tensor only on the three-manifold 3𝐵, the
integral of 𝐾𝑎𝜏𝑎𝑏𝑡

𝑏 on 𝒮 is not sensitive to the component of 𝐾𝑎 normal to 3𝐵. The normal piece
𝑣𝑎𝑣𝑏𝐾

𝑏 of the generator 𝐾𝑎 is ‘lost’ from the point of view of the quasi-local quantities.
The other important ingredient of the Brown–York construction is the prescription of the

subtraction term. Considering the Gauss–Codazzi–Mainardi equations of the isometric embedding
of the two-surface into the flat three-space (or rather into a spacelike hyperplane of Minkowski
spacetime) only as a system of differential equations for the reference extrinsic curvature, this
prescription – contrary to frequently appearing opinions – is as explicit as the condition of the
holomorphicity/antiholomorphicity of the spinor fields in the Dougan–Mason definition. (One
essential, and, from pragmatic points of view, important, difference is that the Gauss–Codazzi–
Mainardi equations form an underdetermined elliptic system constrained by a nonlinear algebraic
equation.) Similar to the Dougan–Mason definitions, the general Brown–York formulae are valid for
arbitrary spacelike two-surfaces, but solutions to the equations defining the reference configuration
exist certainly only for topological two-spheres with strictly positive intrinsic scalar curvature.
Thus, there are exceptional two-surfaces here, too. On the other hand, the Brown–York expressions
(both for the flat three-space and the light cone references) work properly for large spheres.

At first sight, this choice for the definition of the subtraction term seems quite natural. However,
we do not share this view. If the physical spacetime is the Minkowski one, then we expect that
the geometry of the two-surface in the reference Minkowski spacetime would be the same as in the
physical Minkowski spacetime. In particular, if 𝒮 – in the physical Minkowski spacetime – does not
lie in any spacelike hyperplane, then we think that it would be unnatural to require the embedding
of 𝒮 into a hyperplane of the reference Minkowski spacetime. Since in the two Minkowski spacetimes
the extrinsic curvatures can be quite different, the quasi-local energy expressions based on this
prescription of the reference term can be expected to yield a nonzero value even in flat spacetime.
Indeed, there are explicit examples showing this defect. (Epp’s definition is free of this difficulty,
because he embeds the two-surface into the Minkowski spacetime by preserving its ‘universal
structure’; see Section 4.1.4.)

Another objection against the embedding into flat three-space is that it is not Lorentz covariant.
As we discussed in Section 4.2.2, Lorentz covariance (together with the positivity requirement) was
used to show that the quasi-local energy expression for small spheres in vacuum is of order 𝑟5 with
the Bel–Robinson ‘energy’ as the factor of proportionality. The Brown–York expression (even with
the light cone reference 𝑘0 =

√
2 𝒮𝑅 ) fails to give the Bel–Robinson ‘energy’.

22It could be interesting to clarify the consequences of the boost gauge choice that is based on the main extrinsic
curvature vector 𝑄𝑎, discussed in Section 4.1.2. This would rule out the arbitrary element of the construction.
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Finally, in contrast to the Dougan–Mason definitions, the Brown–York type expressions are well
defined on marginally trapped surfaces. However, they yield just twice the expected irreducible
mass, and they do not reproduce the standard round sphere expression, which, for nontrapped
surfaces, arises from all the other expressions discussed in the present section (including Kijowski’s
definition). It is remarkable that the derivation of the first law of black hole thermodynamics,
based on the identification of the thermodynamic internal energy with the Brown–York energy, is
independent of the definition of the subtraction term.
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general relativity”, Ann. Phys. (N.Y.), 174, 463–498, (1987). 3.2.1, 3.2.2, 10.1.7

[57] Beig, R., and Schmidt, B.G., “Einstein’s equations near spatial infinity”, Commun. Math.
Phys., 87, 65–80, (1982). 3.2.1, 4.2.3, 7.2.4

[58] Beig, R., and Szabados, L.B., “On a global conformal invariant of initial data sets”, Class.
Quantum Grav., 14, 3091–3107, (1997). [gr-qc/9706078]. 7.2.5

[59] Bekenstein, J.D., “Black Holes and Entropy”, Phys. Rev. D, 7, 2333–2346, (1973). 13.3.1

[60] Bekenstein, J.D., “Generalized second law of thermodynamics in black-hole physics”, Phys.
Rev. D, 9, 3292–3300, (1974). 13.3.1

[61] Bekenstein, J.D., “Universal upper bound on the entropy-to energy ratio for bounded sys-
tems”, Phys. Rev. D, 23, 287–298, (1981). 13.4.1

[62] Bekenstein, J.D., “Black holes and everyday physics”, Gen. Relativ. Gravit., 14, 355–359,
(1982). 13.4.1

[63] Bekenstein, J.D., “On Page’s examples challenging the entropy bound”, arXiv e-print, (2000).
[gr-qc/0006003v3]. 13.4.1

[64] Bekenstein, J.D., and Mayo, A.E., “Black hole polarization and new entropy bounds”, Phys.
Rev. D, 61, 024022, 1–8, (1999). [DOI], [gr-qc/9903002v2]. 13.4.1

[65] Belinfante, F.J., “On the spin angular momentum of mesons”, Physica, VI(9), 887–898,
(1939). [DOI], [ADS]. 2.1.2, 3.1.1

[66] Belinfante, F.J., “On the current and the density of the electric charge, the energy, the linear
momentum and the angular momentum of arbitrary fields”, Physica, VII, 449–474, (1940).
[DOI], [ADS]. 2.1.2, 3.1.1

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://arxiv.org/abs/math.DG/0304259
http://arxiv.org/abs/gr-qc/0301069v2
http://arxiv.org/abs/arXiv:0808.1745
http://arxiv.org/abs/gr-qc/9706078
http://arxiv.org/abs/gr-qc/0006003v3
http://dx.doi.org/10.1103/PhysRevD.61.024022
http://arxiv.org/abs/gr-qc/9903002v2
http://dx.doi.org/10.1016/S0031-8914(39)90090-X
http://adsabs.harvard.edu/abs/1939Phy.....6..887B
http://dx.doi.org/10.1016/S0031-8914(40)90091-X
http://adsabs.harvard.edu/abs/1940Phy.....7..449B
http://www.livingreviews.org/lrr-2009-4


Quasi-Local Energy-Momentum and Angular Momentum in General Relativity 129

[67] Ben-Dov, I., “Penrose inequality and apparent horizons”, Phys. Rev. D, 70, 124031, 1–11,
(2004). [DOI], [gr-qc/0408066v2]. 13.2.1

[68] Bergmann, P.G., “Observables in general relativity”, Rev. Mod. Phys., 33, 510–514, (1961).
3.3.1

[69] Bergmann, P.G., “The general theory of relativity”, in Flügge, S., ed., Handbuch der Physik.
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[135] Chruściel, P.T., Jezierski, J., and MacCallum, M.A.H., “Uniqueness of scalar field energy
and gravitational energy in the radiating regime”, Phys. Rev. Lett., 80, 5052–5055, (1998).
[gr-qc/9801073]. 3.2.3
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136 László B. Szabados

[182] Friedrich, H., “Gravitational fields near space-like and null infinity”, J. Geom. Phys., 24,
83–163, (1998). 3.2.1

[183] Friedrich, H., and Nagy, G., “The Initial Boundary Value Problem for Einstein’s Vacuum
Field Equation”, Commun. Math. Phys., 201, 619–655, (1999). [DOI], [ADS]. 3.3.1, 11.1

[184] Frolov, V.P., “Embedding of the Kerr–Newman black hole surface in Euclidean space”, Phys.
Rev. D, 73, 064021, 1–5, (2006). [DOI], [gr-qc/0601104]. 10.1.6

[185] Gallo, E., Lehner, L., and Moreschi, O.M., “A note on computations of angular momentum
and its flux in numerical relativity”, Class. Quantum Grav., 26, 048002, 1–9, (2009). [DOI],
[arXiv:0810.0666v3]. 3.2.4

[186] Garfinkle, D., and Mann, R., “Generalized entropy and Noether charge”, Class. Quantum
Grav., 17, 3317–3324, (2000). [gr-qc/0004056v2]. 13.3.1

[187] Geroch, R., “Spinor Structure of Space-Times in General Relativity. I”, J. Math. Phys., 9,
1739–1744, (1968). [DOI]. 3.1.4

[188] Geroch, R., “Energy extraction”, Ann. N.Y. Acad. Sci., 224, 108–117, (1973). 6.2.1, 6.2.2,
6.2.2

[189] Geroch, R., “Asymptotic structure of space-time”, in Esposito, F.P., and Witten, L., eds.,
Asymptotic Structure of Spacetime, Proceedings of a Symposium on Asymptotic Structure
of Space-Time (SOASST), held at the University of Cincinnati, Ohio, June 14 – 18, 1976, pp.
1–105, (Plenum Press, New York, 1977). 3.2, 3.2.1, 4.2.4

[190] Geroch, R., Held, A., and Penrose, R., “A spacetime calculus based on pairs of null direc-
tions”, J. Math. Phys., 14, 874–881, (1973). 4.1, 4.1.6, 11.2.1

[191] Geroch, R., and Winicour, J., “Linkages in general relativity”, J. Math. Phys., 22, 803–812,
(1981). 3.2.3

[192] Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian
Field Theory. Part 1. Superpotentials”, arXiv e-print, (1995). [gr-qc/9510061]. 3.1.2

[193] Giachetta, G., and Sardanashvily, G., “Stress-Energy-Momentum Tensors in Lagrangian
Field Theory. Part 2. Gravitational Superpotential”, arXiv e-print, (1995). [gr-qc/9511040].
3.1.2

[194] Gibbons, G.W., “The isoperimetric and Bogomolny inequalities for black holes”, in Willmore,
T.J., and Hitchin, N.J., eds., Global Riemannian Geometry, pp. 194–202, (Ellis Horwood;
Halsted Press, Chichester; New York, 1984). 4.2.1, 5.1.1, 13.2.1

[195] Gibbons, G.W., “Collapsing shells and the isoperimetric inequality for black holes”, Class.
Quantum Grav., 14, 2905–2915, (1997). [hep-th/9701049]. 13.2.1

[196] Gibbons, G.W., and Hawking, S.W., “Action integrals and partition functions in general
relativity”, Phys. Rev. D, 15, 2752–2756, (1977). 10.1.6, 10.1.8

[197] Gibbons, G.W., Hawking, S.W., Horowitz, G.T., and Perry, M.J., “Positive mass theorem
for black holes”, Commun. Math. Phys., 88, 295–308, (1983). 3.2.1, 5.1.1, 13.2.1

[198] Gibbons, G.W., and Holzegel, G., “The positive mass and isoperimetric inequalities for
axisymmetric black holes in four and five dimensions”, Class. Quantum Grav., 23, 6459–
6478, (2006). [gr-qc/0606116]. 13.2.1, 13.2.3

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2009-4

http://dx.doi.org/10.1007/s002200050571
http://adsabs.harvard.edu/abs/1999CMaPh.201..619F
http://dx.doi.org/10.1103/PhysRevD.73.064021
http://arxiv.org/abs/gr-qc/0601104
http://dx.doi.org/10.1088/0264-9381/26/4/048002
http://arxiv.org/abs/arXiv:0810.0666v3
http://arxiv.org/abs/gr-qc/0004056v2
http://dx.doi.org/10.1063/1.1664507
http://arxiv.org/abs/gr-qc/9510061
http://arxiv.org/abs/gr-qc/9511040
http://arxiv.org/abs/hep-th/9701049
http://arxiv.org/abs/gr-qc/0606116
http://www.livingreviews.org/lrr-2009-4


Quasi-Local Energy-Momentum and Angular Momentum in General Relativity 137

[199] Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solutions
in N=2 supergravity”, Phys. Lett. B, 109, 190–194, (1982). 13.2.1

[200] Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl.
Phys. B, 218, 173–190, (1983). 4.2.5

[201] Goldberg, J.N., “Conservation laws in general relativity”, Phys. Rev., 111, 315–320, (1958).
3.1.2

[202] Goldberg, J.N., “Invariant transformations, conservation laws, and energy-momentum”, in
Held, A., ed., General Relativity and Gravitation: One Hundred Years After the Birth of
Albert Einstein, vol. 1, pp. 469–489, (Plenum Press, New York, 1980). 3.1.2, 3.2, 3.2.1, 3.2.1,
3.2.1, 3.2.3

[203] Goldberg, J.N., “Conserved quantities at spatial and null infinity: The Penrose potential”,
Phys. Rev. D, 41, 410–417, (1990). 11

[204] Goldberg, J.N., and Soteriou, C., “Canonical general relativity on a null surface with coor-
dinate and gauge fixing”, Class. Quantum Grav., 12, 2779–2797, (1995). 11.2.1

[205] Gour, G., “Entropy bounds for charged and rotating systems”, Class. Quantum Grav., 20,
3403–3412, (2003). [gr-qc/0302117]. 13.4.1

[206] Gourgoulhon, E., “Generalized Damour–Navier–Stokes equation applied to trapping hori-
zons”, Phys. Rev. D, 72, 104007, 1–16, (2005). [DOI], [gr-qc/0508003v2]. 11.1.2, 13.3.2

[207] Gourgoulhon, E., and Jaramillo, J.L., “Area evolution, bulk viscosity, and entropy prin-
ciples for dynamical horizons”, Phys. Rev. D, 74, 087502, 1–4, (2006). [DOI], [ADS], [gr-

qc/0607050v2]. 13.3.2
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