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Black Holes in Higher Dimensions 5

1 Introduction

Classical general relativity in more than four spacetime dimensions has been the subject of increas-
ing attention in recent years. Among the reasons it should be interesting to study this extension
of Einstein’s theory, and in particular its black-hole solutions, we may mention that

• String theory contains gravity and requires more than four dimensions. In fact, the first
successful statistical counting of black-hole entropy in string theory was performed for a five-
dimensional black hole [229]. This example provides the best laboratory for the microscopic
string theory of black holes.

• The AdS/CFT correspondence relates the dynamics of a d-dimensional black hole with those
of a quantum field theory in d− 1 dimensions [187] (for a review see [1]).

• The production of higher-dimensional black holes in future colliders becomes a conceivable
possibility in scenarios involving large extra dimensions and TeV-scale gravity [30, 155].

• As mathematical objects, black-hole spacetimes are among the most important Lorentzian
Ricci-flat manifolds in any dimension.

These, however, refer to applications of the subject – important though they are – but we
believe that higher-dimensional gravity is also of intrinsic interest. Just as the study of quantum
field theories, with a field content very different than any conceivable extension of the Standard
Model, has been a very useful endeavor, throwing light on general features of quantum fields,
we believe that endowing general relativity with a tunable parameter – namely the spacetime
dimensionality d – should also lead to valuable insights into the nature of the theory, in particular
into its most basic objects: black holes. For instance, four-dimensional black holes are known to
have a number of remarkable features, such as uniqueness, spherical topology, dynamical stability,
and to satisfy a set of simple laws — the laws of black hole mechanics. One would like to know
which of these are peculiar to four-dimensions, and which hold more generally. At the very least,
this study will lead to a deeper understanding of classical black holes and of what spacetime can
do at its most extreme.

There is a growing awareness that the physics of higher-dimensional black holes can be markedly
different, and much richer, than in four dimensions. Arguably, two advances are largely responsible
for this perception: the discovery of dynamical instabilities in extended black-hole horizons [118]
and the discovery of black-hole solutions with horizons of nonspherical topology that are not fully
characterized by their conserved charges [83].

At the risk of anticipating results and concepts that will be developed only later in this review,
in the following we try to give simple answers to two frequently asked questions: 1) why should
one expect any interesting new dynamics in higher-dimensional general relativity, and 2) what are
the main obstacles to a direct generalization of the four-dimensional techniques and results. A
straightforward answer to both questions is to simply say that as the number of dimensions grows,
the number of degrees of freedom of the gravitational field also increases, but more specific, yet
intuitive, answers are possible.

1.1 Why gravity is richer in d > 4

The novel features of higher-dimensional black holes that have been identified so far can be un-
derstood in physical terms as due to the combination of two main ingredients: different rotation
dynamics and the appearance of extended black objects.

There are two aspects of rotation that change significantly when spacetime has more than four
dimensions. First, there is the possibility of rotation in several independent rotation planes [200].
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6 Roberto Emparan and Harvey S. Reall

The rotation group SO(d− 1) has Cartan subgroup U(1)N , with

N ≡
⌊
d− 1

2

⌋
; (1)

hence, there is the possibility of N independent angular momenta. In simpler and more explicit
terms, one can group the d − 1 spatial dimensions (say, at asymptotically-flat infinity) into pairs
(x1, x2), (x3, x4),. . . , each pair defining a plane, and choose polar coordinates in each plane, (r1, φ1),
(r2, φ2),. . . . Here we see the possibility of having N independent (commuting) rotations associ-
ated to the vectors ∂φ1 , ∂φ2 . . . . To each of these rotations we associate an angular momentum
component Ji.

The other aspect of rotation that changes qualitatively as the number of dimensions increases
is the relative competition between the gravitational and centrifugal potentials. The radial falloff
of the Newtonian potential

− GM

rd−3
(2)

depends on the number of dimensions, whereas the centrifugal barrier

J2

M2r2
(3)

does not, since rotation is confined to a plane. We see that the competition between (2) and (3)
is different in d = 4, d = 5, and d ≥ 6. In Newtonian physics this is well known to result in a
different stability of Keplerian orbits, but this precise effect is not directly relevant to the black-
hole dynamics we are interested in. Still, the same kind of dimension dependence will have rather
dramatic consequences for the behavior of black holes.

The other novel ingredient that appears in d > 4 but is absent in lower dimensions (at least
in vacuum gravity) is the presence of black objects with extended horizons, i.e., black strings and,
in general, black p-branes. Although these are not asymptotically-flat solutions, they provide the
basic intuition for understanding novel kinds of asymptotically-flat black holes.

Let us begin with the simple observation that, given a black-hole solution of the vacuum
Einstein equations in d dimensions with horizon geometry ΣH , we can immediately construct a
vacuum solution in d + 1 dimensions by simply adding a flat spatial direction1. The new horizon
geometry is then a black string with horizon ΣH × R. Since the Schwarzschild solution is easily
generalized to any d ≥ 4, it follows that black strings exist in any d ≥ 5. In general, adding p flat
directions we find that black p-branes with horizon Sq×Rp (with q ≥ 2) exist in any d ≥ 6+p− q.

How are these related to new kinds of asymptotically-flat black holes? Heuristically, take a
piece of black string with Sq ×R horizon, and curve it to form a black ring with horizon topology
Sq × S1. Since the black string has a tension, the S1, being contractible, will tend to collapse.
But we may try to set the ring into rotation and in this way provide a centrifugal repulsion that
balances the tension. This turns out to be possible in any d ≥ 5, so we expect that nonspherical
horizon topologies are a generic feature of higher-dimensional general relativity.

It is also natural to try to apply this heuristic construction to black p-branes with p > 1, namely,
to bend the worldvolume spatial directions into a compact manifold and balance the tension by
introducing suitable rotations. The possibilities are still under investigation, but it is clear that an
increasing variety of black holes should be expected as d grows. Observe again that the underlying
reason is a combination of extended horizons with rotation.

Horizon topologies other than spherical are forbidden in d = 4 by well-known theorems [132].
These are rigorous, but also rather technical and formal results. Can we find a simple, intuitive

1This is no longer true if the field equations involve not only the Ricci tensor but also the Weyl tensor, such as
in Lovelock theories.
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Black Holes in Higher Dimensions 7

explanation for the absence of vacuum black rings in d = 4? The previous argument would trace
this fact back to the absence of asymptotically-flat vacuum black holes in d = 3. This is often
attributed to the absence of propagating degrees of freedom for the three-dimensional graviton
(or one of its paraphrases: 2 + 1-gravity is topological, the Weyl tensor vanishes identically, etc),
but here we shall use the simple observation that the quantity GM is dimensionless in d = 3.
Hence, given any amount of mass, there is no length scale to tell us where the black-hole horizon
should be2. So we attribute the absence of black strings in d = 4 to the lack of such a scale. This
observation goes some way towards understanding the absence of vacuum black rings with horizon
topology S1 × S1 in four dimensions; it implies that there cannot exist black-ring solutions with
different scales for each of the two circles, and, in particular one can not make one radius arbitrarily
larger than the other. This argument, though, could still allow for black rings, where the radii of
the two S1 are set by the same scale, i.e., the black rings should be plump. The horizon-topology
theorems then tell us that plump black rings do not exist; they would actually be within a spherical
horizon.

Extended horizons also introduce a feature absent in d = 4: dynamical horizon instabili-
ties [118]. Again, this is to some extent an issue of scales. Black brane horizons can be much larger
in some of their directions than in others, and so perturbations with wavelengths on the order of the
‘short’ horizon length can fit several times along the ‘long’ extended directions. Since the horizon
area tends to increase by dividing up the extended horizon into black holes of roughly the same
size in all its dimensions, this provides grounds to expect an instability of the extended horizon
(however, when other scales are present, as in charged solutions, the situation can become quite a
bit more complicated). It turns out that higher-dimensional rotation can extend the horizon much
more in some directions than in others, which is expected to trigger this kind of instability [81].
At the threshold of the instability, a zero-mode deformation of the horizon has been conjectured
to lead to new ‘pinched’ black holes that do not have four-dimensional counterparts.

Finally, an important question raised in higher dimensions refers to the rigidity of the horizon.
In four dimensions, stationarity implies the existence of a U(1) rotational isometry [132]. In higher
dimensions stationarity has been proven to imply one rigid rotation symmetry too [138], but not
(yet?) more than one. However, all known higher-dimensional black holes have multiple rotational
symmetries. Are there stationary black holes with less symmetry, for example just the single U(1)
isometry guaranteed in general? Or are black holes always as rigid as can be? This is, in our
opinion, the main unsolved problem on the way to a complete classification of five-dimensional
black holes and an important issue in understanding the possibilities for black holes in higher
dimensions.

1.2 Why gravity is more difficult in d > 4

Again, the simple answer to this question is the larger number of degrees of freedom. However,
this cannot be an entirely satisfactory reply, since one often restricts oneself to solutions with a
large degree of symmetry for which the number of actual degrees of freedom may not depend on
the dimensionality of spacetime. A more satisfying answer should explain why the methods that
are so successful in d = 4 become harder, less useful, or even inapplicable, in higher dimensions.

Still, the larger number of metric components, and of equations determining them, is the main
reason for the failure so far to find a useful extension of the Newman–Penrose (NP) formalism
to d > 4. This formalism, in which all the Einstein equations and Bianchi identities are written
out explicitly, was instrumental in deriving the Kerr solution and analyzing its perturbations. The
formalism is tailored to deal with algebraically-special solutions, but even if algebraic classifications
have been developed for higher dimensions [51] and applied to known black-hole solutions, no

2It follows that the introduction of a length scale, for instance in the form of a (negative) cosmological constant, is
a necessary condition for the existence of a black hole in 2+1 dimensions. But gravity may still remain topological.
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8 Roberto Emparan and Harvey S. Reall

practical extension of the NP formalism has appeared yet that can be used to derive the solutions,
nor to study their perturbations.

Then, it seems natural to restrict oneself to solutions with a high degree of symmetry. Spher-
ical symmetry yields easily by force of Birkhoff’s theorem. The next simplest possibility is to
impose stationarity and axial symmetry. In four dimensions this implies the existence of two
commuting Abelian isometries, time translation and axial rotation, which are extremely powerful;
by integrating out the two isometries from the theory, we obtain an integrable two-dimensional
GL(2,R) sigma-model. The literature on these theories is enormous and many solution-generating
techniques are available, which provide a variety of derivations of the Kerr solution.

There are two natural ways of extending axial symmetry to higher dimensions. We may look
for solutions invariant under the group O(d−2) of spatial rotations around a given line axis, where
the orbits of O(d−2) are (d−3)-spheres. However, in more than four dimensions these orbits have
nonzero curvature. As a consequence, after dimensional reduction of these orbits, the sigma model
acquires terms (of exponential type) that prevent a straightforward integration of the equations
(see [34, 35] for an investigation of these equations).

This suggests that one should look for a different higher-dimensional extension of the four-
dimensional axial symmetry. Instead of rotations around a line, consider rotations around (spatial)
codimension-2 hypersurfaces. These are U(1) symmetries. If we assume d − 3 commuting U(1)
symmetries, so that we have a spatial U(1)d−3 symmetry in addition to the timelike symmetry R,
then the vacuum Einstein equations again reduce to an integrable two-dimensional GL(d − 2,R)
sigma model with powerful solution-generating techniques.

However, there is an important limitation: only in d = 4, 5 can these geometries be globally
asymptotically flat. Global asymptotic flatness implies an asymptotic factor Sd−2 in the spatial
geometry, whose isometry group O(d− 1) has a Cartan subgroup U(1)N . If, as above, we demand
d−3 axial isometries, then, asymptotically, these symmetries must approach elements of O(d−1),
so we need U(1)d−3 ⊂ U(1)N , i.e.,

d− 3 ≤ N =
⌊
d− 1

2

⌋
, (4)

which is only possible in d = 4, 5. This is the main reason for the recent great progress in the
construction of exact five-dimensional black holes, and the failure to extend it to d > 5.

Finally, the classification of possible horizon topologies becomes increasingly complicated in
higher dimensions [98]. In four spacetime dimensions the (spatial section of the) horizon is a two-
dimensional surface, so the possible topologies can be easily characterized and restricted. Much
less restriction is possible as d is increased.

All these aspects will be discussed in more detail below.
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Black Holes in Higher Dimensions 9

2 Scope and Organization of this Article

2.1 Scope

The emphasis of this article is on classical properties of exact higher-dimensional black-hole so-
lutions. We devote most space to a rather pedagogical discussion of vacuum solutions. Since
this includes black rings, there is some overlap with our earlier review [84]. The present review
discusses material that has appeared since [84], in particular the “doubly spinning” black-ring so-
lution of [212]. However, we shall not discuss several aspects of black-ring physics that were dealt
with at length in [84], for example, black-ring microphysics. On the other hand, we present some
new material: Figures 3, 6, 7, 13, and 14 describe the physical parameter ranges (phase space) of
higher-dimensional black holes, and Figure 4 for the area of 5D Myers–Perry solutions, have not
been presented earlier. Some of our discussion of the properties of the solutions is also new.

Our discussion of nonvacuum black holes is less pedagogical than that of the vacuum solutions.
It is essentially a survey of the literature. In going beyond vacuum solutions, we had to decide
what kinds of matter fields to consider. Since much of the motivation for the study of extra di-
mensions comes from string theory, we have restricted ourselves to considering black-hole solutions
of supergravity theories known to arise as consistent truncations of d = 10, 11 supergravity. We
consider both asymptotically flat and asymptotically anti-de Sitter black holes.

In the asymptotically flat case, we consider only solutions of maximal supergravity theories
arising from the toroidal reduction of d = 10, 11 supergravity to five or more dimensions. In
particular, this implies that in five dimensions we demand the presence of a Chern–Simons term
for the gauge field, with a precise coefficient. A review of charged rotating black holes with other
values for the Chern–Simons coupling can be found in [161].

In the asymptotically AdS case, we consider solutions of gauged supergravity theories aris-
ing from the dimensional reduction of d = 10, 11 supergravity on spheres, in particular the
maximal-gauged supergravity theories in d = 4, 5, 7. Obviously d = 4 does not fall within our
“higher-dimensional” remit but asymptotically AdS d = 4 black holes are not as familiar as their
asymptotically-flat cousins so it seems worthwhile reviewing them here. In the AdS case, several
different asymptotic boundary conditions are of physical interest. We consider only black holes
obeying standard “normalizable” boundary conditions [1]. Note that all known black-hole solutions
satisfying these restrictions involve only Abelian gauge fields.

Important related subjects that we do not discuss include: black holes in brane-world scenarios
(reviewed in [186]); black holes in spacetimes with Kaluza–Klein asymptotics (reviewed in [129]),
and in general black holes with different asymptotics than flat or AdS; black holes in higher-
derivative theories [199, 33]; black-hole formation at the LHC or in cosmic rays, and the spectrum
of their radiation (reviewed in [30, 155]).

2.2 Organization

Sections 3 to 6 are devoted to asymptotically-flat vacuum solutions: Section 3 introduces basic
notions and solutions, in particular the Schwarzschild–Tangherlini black hole. Section 4 presents
the Myers–Perry solutions, first with a single angular momentum, then with arbitrary rotation.
Section 5 reviews the great recent progress in five-dimensional vacuum black holes: first we discuss
black rings, with one and two angular momenta; then we introduce the general analysis of solutions
with two rotational isometries (or d−3, in general). In Section 6 we briefly describe a first attempt
at understanding d ≥ 6 vacuum black holes beyond the MP solutions.

Section 7 reviews asymptotically-flat black holes with gauge fields (within the restricted class
mentioned above). Section 8 concludes our overview of asymptotically-flat solutions (vacuum and
charged) with a discussion of general results and some open problems. Finally, Section 9 reviews
asymptotically AdS black-hole solutions of gauged supergravity theories.
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10 Roberto Emparan and Harvey S. Reall

3 Basic Concepts and Solutions

In this section we present the basic framework for general relativity in higher dimensions, beginning
with the definition of conserved charges in vacuum, i.e., mass and angular momentum, and the
introduction of a set of dimensionless variables that are convenient for describing the phase space
and phase diagrams of higher-dimensional rotating black holes. Then we introduce the Tangherlini
solutions that generalize the four-dimensional Schwarzschild solution. The analysis that proves
their classical stability is then reviewed. Black strings and black p-branes, and their Gregory–
Laflamme instability, are briefly discussed for their relevance to novel kinds of rotating black holes.

3.1 Conserved charges

The Einstein–Hilbert action is generalized to higher dimensions in the form

I =
1

16πG

∫
ddx

√
−gR+ Imatter. (5)

This is a straightforward generalization, and the only aspect that deserves some attention is the
implicit definition of Newton’s constant G in d dimensions. It enters the Einstein equations in the
conventional form

Rµν −
1
2
gµνR = 8πGTµν , (6)

where Tµν = 2(−g)−1/2(δImatter/δgµν). This definition of the gravitational coupling constant,
without any additional dimension-dependent factors, has the notable advantage that the Bekenstein-
Hawking entropy formula takes the same form

S =
AH
4G

(7)

in every dimension. This follows, e.g., from the standard Euclidean quantum gravity calculation
of the entropy.

Mass, angular momenta, and other conserved charges of isolated systems are defined through
comparison to the field created near asymptotic infinity by a weakly gravitating system ([154]
gives a careful Hamiltonian analysis of conserved charges in higher-dimensional asymptotically-flat
spacetimes). The Einstein equations for a small perturbation around flat Minkowski space

gµν = ηµν + hµν (8)

in linearized approximation take the conventional form

�h̄µν = −16πGTµν , (9)

where h̄µν = hµν − 1
2hηµν and we have imposed the transverse gauge condition ∇µh̄µν = 0.

Since the sources are localized and we work at linearized perturbation order, the fields in the
asymptotic region are the same as those created by point-like sources of mass M and angular mo-
mentum with antisymmetric matrix Jij , at the origin xk = 0 of flat space in Cartesian coordinates,

Ttt = Mδ(d−1)(xk), (10)

Tti = −1
2
Jij∇jδ(d−1)(xk). (11)

The equations are easily integrated, assuming stationarity, to find

h̄tt =
16πG

(d− 3)Ωd−2

M

rd−3
, (12)

h̄ti = − 8πG
Ωd−2

xkJki
rd−1

, (13)
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where r =
√
xixi, and Ωd−2 = 2π(d−1)/2/Γ

(
d−1
2

)
is the area of a unit (d − 2)-sphere. From here

we recover the metric perturbation hµν = h̄µν − 1
d−2 h̄ηµν as

htt =
16πG

(d− 2)Ωd−2

M

rd−3
, (14)

hij =
16πG

(d− 2)(d− 3)Ωd−2

M

rd−3
δij , (15)

hti = − 8πG
Ωd−2

xkJki
rd−1

. (16)

It is often convenient to have the off-diagonal rotation components of the metric in a different
form. By making a suitable coordinate rotation the angular momentum matrix Jij can be put into
block-diagonal form, each block being a 2× 2 antisymmetric matrix with parameter

Ja ≡ J2a−1,2a. (17)

Here a = 1, . . . , N labels the different independent rotation planes. If we introduce polar coordi-
nates on each of the planes

(x2a−1, x2a) = (ra cosφa, ra sinφa) (18)

then (no sum over a)

htφa
= −8πGJa

Ωd−2

r2a
rd−1

= −8πGJa
Ωd−2

µ2
a

rd−3
. (19)

In the last expression we have introduced the ‘direction cosines’

µa =
ra
r
. (20)

Given the abundance of black-hole solutions in higher dimensions, one is interested in comparing
properties, such as the horizon area AH , of different solutions characterized by the same set of
parameters (M,Ja). A meaningful comparison between dimensionful magnitudes requires the
introduction of a common scale, so the comparison is made between dimensionless magnitudes
obtained by factoring out this scale. Since classical general relativity in vacuum is scale invariant,
the common scale must be one of the physical parameters of the solutions, and a natural choice is
the mass. Thus we introduce dimensionless quantities for the spins ja and the area aH ,

jd−3
a = cJ

Jd−3
a

GMd−2
, ad−3

H = cA
Ad−3
H

(GM)d−2
, (21)

where the numerical constants are

cJ =
Ωd−3

2d+1

(d− 2)d−2

(d− 3)
d−3
2

, cA =
Ωd−3

2(16π)d−3
(d− 2)d−2

(
d− 4
d− 3

) d−3
2

(22)

(these definitions follow the choices in [80]). Studying the entropy, or the area AH , as a function
of Ja for fixed mass is equivalent to finding the function aH(ja).

Note that, with our definition of the gravitational constant G, both the Newtonian gravitational
potential energy,

Φ = −1
2
htt, (23)

and the force law (per unit mass)

F = −∇Φ =
(d− 3)8πG
(d− 2)Ωd−2

M

rd−2
r̂ (24)
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acquire d-dependent numerical prefactors. Had we chosen to define Newton’s constant so as to
absorb these factors in the expressions for Φ or F, Equation (7) would have been more complicated.

To warm up before dealing with black holes, we follow John Michell and Simon de Laplace and
compute, using Newtonian mechanics, the radius at which the escape velocity of a test particle in
this field reaches the speed of light. The kinetic energy of a particle of unit mass with velocity
v = c = 1 is K = 1/2, so the equation K + Φ = 0 that determines the Michell–Laplace ‘horizon’
radius is

htt(r = rML) = 1 ⇒ rML =
(

16πGM
(d− 2)Ωd−2

) 1
d−3

. (25)

We will see in the next section 3.2 that, just like in four dimensions, this is precisely equal to the
horizon radius for a static black hole in higher dimensions.

3.2 The Schwarzschild–Tangherlini solution and black p-branes

Consider the linearized solution above for a static source (14) in spherical coordinates, and pass
to a gauge where r is the area radius,

r → r − 8πG
(d− 2)(d− 3)Ωd−2

M

rd−3
. (26)

The linearized approximation to the field of a static source is then

ds2(lin) = −
(
1− µ

rd−3

)
dt2 +

(
1 +

µ

rd−3

)
dr2 + r2dΩ2

d−2, (27)

where, to lighten the notation, we have introduced the ‘mass parameter’

µ =
16πGM

(d− 2)Ωd−2
. (28)

This suggests that the Schwarzschild solution generalizes to higher dimensions in the form

ds2 = −
(
1− µ

rd−3

)
dt2 +

dr2

1− µ
rd−3

+ r2dΩ2
d−2 . (29)

In essence, all we have done is change the radial falloff 1/r of the Newtonian potential to the
d-dimensional one, 1/rd−3. As Tangherlini found in 1963 [232], this turns out to give the correct
solution: it is straightforward to check that this metric is indeed Ricci flat. It is apparent that
there is an event horizon at r0 = µ1/(d−3), which coincides with the Michell–Laplace result (25).

Having this elementary class of black-hole solutions, it is easy to construct other vacuum so-
lutions with event horizons in d ≥ 5. The direct product of two Ricci-flat manifolds is itself a
Ricci-flat manifold. So, given any vacuum black-hole solution B of the Einstein equations in d
dimensions, the metric

ds2d+p = ds2d(B) +
p∑
i=1

dxidxi (30)

describes a black p-brane, in which the black-hole horizon H ⊂ B is extended to a horizon H×Rp,
or H × Tp if we identify periodically xi ∼ xi + Li. A simple way of obtaining another kind of
vacuum solution is the following: unwrap one of the directions xi, perform a boost t→ coshαt+
sinhαxi, xi → sinhαt + coshαxi, and re-identify points periodically along the new coordinate
xi. Although locally equivalent to the static black brane, the new boosted black-brane solution is
globally different from it.

These black brane spacetimes are not (globally) asymptotically flat, so we only introduce them
insofar as they are relevant for understanding the physics of asymptotically-flat black holes.
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3.3 Stability of the static black hole

The stability of the d > 4 Schwarzschild solution against linearized gravitational perturbations can
be analyzed by decomposing such perturbations into scalar, vector and tensor types according to
how they transform under the rotational-symmetry group SO(d − 1) [105, 163, 151]. Assuming
a time dependence e−iωt and expanding in spherical harmonics on Sd−2, the equations governing
each type of perturbation reduce to a single ODE governing the radial dependence. This equation
can be written in the form of a time-independent Schrödinger equation with “energy” eigenvalue
ω2.

In investigating stability, we consider perturbations that are regular on the future horizon and
outgoing at infinity. An instability would correspond to a mode with Im ω > 0. For such modes,
the boundary conditions at the horizon and infinity imply that the left-hand side (LHS) of the
Schrödinger equation is self-adjoint, and hence ω2 is real. Therefore, an unstable mode must have
negative imaginary ω. For tensor modes, the potential in the Schrödinger equation is manifestly
positive, hence ω2 > 0 and there is no instability [105]. For vectors and scalars, the potential is
not everywhere positive. Nevertheless, it can be shown that the operator appearing on the LHS of
the Schrödinger equation is positive, hence ω2 > 0 and there is no instability [151]. In conclusion,
the d > 4 Schwarzschild solution is stable against linearized gravitational perturbations.

3.4 Gregory–Laflamme instability

The instabilities of black strings and black branes [118, 119] have been reviewed in [167, 128], so we
shall be brief in this section and only mention the features that are most relevant to our subject.
We shall only discuss neutral black holes and black branes; when charges are present, the problem
becomes more complex.

This instability is the prototype for situations in which the size of the horizon is much larger
in some directions than in others. Consider, as a simple, extreme case of this, the black string
obtained by adding a flat direction z to the Schwarzschild solution. One can decompose linearized
gravitational perturbations into scalar, vector and tensor types according to how they transform
with respect to transformations of the Schwarzschild coordinates. Scalar and vector perturbations
of this solution are stable [117]. Tensor perturbations that are homogeneous along the z-direction
are also stable, since they are the same as tensor perturbations of the Schwarzschild black hole.
However, there appears to be an instability for long-wavelength tensor perturbations with nontrivial
dependence on z; the frequency ω of perturbations ∼ e−i(ωt−kz) acquires a positive imaginary part
when k < kGL ∼ 1/r0, where r0 is the Schwarzschild horizon radius. Thus, if the string is
compactified on a circle of length L > 2π/kGL ∼ r0, it becomes unstable. Of the unstable modes,
the fastest one (with the largest imaginary frequency) occurs for k roughly one half of kGL. The
instability creates inhomogeneities along the direction of the string. Their evolution beyond the
linear approximation has been followed numerically in [42]. It is unclear yet what the endpoint is;
the inhomogeneities may well grow until a sphere pinches down to a singularity.3 In this case, the
Planck scale will be reached along the evolution, and fragmentation of the black string into black
holes, with a consistent increase in the total horizon entropy, may occur.

Another important feature of this phenomenon is the appearance of a zero-mode (i.e., static)
perturbation with k = kGL. Perturbing the black string with this mode yields a new static
solution with inhomogeneities along the string direction [117, 120]. Following numerically these
static perturbations beyond the linear approximation has given a new class of inhomogeneous black
strings [248].

These results easily generalize to black p-branes; for a wavevector k along the p directions

3It has been shown that this requires an infinite affine parameter distance along the null-geodesics generators of
the horizon [142]. However, it may still take finite time as measured by an external observer [190].
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tangent to the brane, the perturbations ∼ exp (−iωt+ ik · z)) with |k| ≤ kGL are unstable. The
value of kGL depends on the codimension of the black brane, but not on p.
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4 Myers–Perry Solutions

The generalization of the Schwarzschild solution to d > 4 is, as we have seen, a rather straight-
forward problem. However, in general relativity it is often very difficult to extend a solution from
the static case to the stationary one (as exemplified by the Kerr solution). Impressively, in 1986
Myers and Perry (MP) managed to find exact solutions for black holes in any dimension d > 4,
rotating in all possible independent rotation planes [200]. This feat was possible as the solutions
belong in the Kerr-Schild class

gµν = ηµν + 2H(xρ)kµkν , (31)

where kµ is a null vector with respect to both gµν and the Minkowski metric ηµν . This entails a
sort of linearization of the problem, which facilitates greatly the resolution of the equations. Of all
known vacuum black holes in d > 4, only the Myers–Perry solutions seem to have this property.

In this section, we review these solutions and their properties, beginning from black holes with
a single rotation, and then extending them to arbitrary rotation. The existence of ultraspinning
regimes in d ≥ 6 is emphasized. The symmetries and stability of the MP solutions are also
discussed.

4.1 Rotation in a single plane

Let us begin with solutions that rotate in a single plane. These are not only simpler, but also
exhibit more clearly the qualitatively new physics afforded by the additional dimensions.

The metric takes the form

ds2 = −dt2 +
µ

rd−5Σ
(
dt− a sin2 θ dφ

)2
+

Σ
∆
dr2 + Σdθ2 + (r2 + a2) sin2 θ dφ2

+r2 cos2 θ dΩ2
(d−4) , (32)

where
Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − µ

rd−5
. (33)

The physical mass and angular momentum are easily obtained by comparing the asymptotic field
to Equations (14) and (19), and are given in terms of the parameters µ and a by

M =
(d− 2)Ωd−2

16πG
µ , J =

2
d− 2

Ma . (34)

Hence, one can think of a as essentially the angular momentum per unit mass. We can choose
a ≥ 0 without loss of generality.4

As in Tangherlini’s solution, this metric seems to follow from a rather straightforward extension
of the Kerr solution, which is recovered when d = 4. The first line in Equation (32) looks indeed like
the Kerr solution, with the 1/r falloff replaced, in appropriate places, by 1/rd−3. The second line
contains the line element on a (d−4)-sphere, which accounts for the additional spatial dimensions.
It might, therefore, seem that, again, the properties of these black holes should not differ much
from their four-dimensional counterparts.

However, this is not the case. Heuristically, we can see the competition between gravitational
attraction and centrifugal repulsion in the expression

∆
r2
− 1 = − µ

rd−3
+
a2

r2
. (35)

4This choice corresponds to rotation in the positive sense (i.e., increasing φ). The solution presented in [200] is
obtained by φ→ −φ, which gives rotation in a negative sense.
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Roughly, the first term on the right-hand side (RHS) corresponds to the attractive gravitational
potential and falls off in a dimension-dependent fashion. In contrast, the repulsive centrifugal
barrier described by the second term does not depend on the total number of dimensions, since
rotations always refer to motions in a plane.

Given the similarities between Equation (32) and the Kerr solution, it is clear that the outer
event horizon lies at the largest (real) root r0 of g−1

rr = 0, i.e., ∆(r) = 0. Thus, we expect that the
features of the event horizons will be strongly dimension dependent, and this is indeed the case. If
there is an event horizon at r = r0,

r20 + a2 − µ

rd−5
0

= 0 , (36)

its area will be
AH = rd−4

0 (r20 + a2)Ωd−2 . (37)

For d = 4, a regular horizon is present for values of the spin parameter a up to the Kerr bound:
a = µ/2 (or a = GM), which corresponds to an extremal black hole with a single degenerate horizon
(with vanishing surface gravity). Solutions with a > GM correspond to naked singularities. In
d = 5, the situation is apparently quite similar since the real root at r0 =

√
µ− a2 exists only up

to the extremal limit µ = a2. However, this extremal solution has zero area, and in fact, has a
naked ring singularity.

For d ≥ 6, ∆(r) is always positive at large values of r, but the term −µ/rd−5 makes it negative
at small r (we are assuming positive mass). Therefore ∆ always has a (single) positive real root
independent of the value of a. Hence, regular black-hole solutions exist with arbitrarily large a.
Solutions with large angular momentum per unit mass are referred to as “ultraspinning”.

An analysis of the shape of the horizon in the ultraspinning regime a � r0 shows that the
black holes flatten along the plane of rotation [81]; the extent of the horizon along this plane is
∼ a, while, in directions transverse to this plane, its size is ∼ r0. In fact, a limit can be taken in
which the ultraspinning black hole becomes a black membrane with horizon geometry R2 × Sd−4.
This turns out to have important consequences for black holes in d ≥ 6, as we will discuss later.
The transition between the regime in which the black hole behaves like a fairly compact, Kerr-like
object, and the regime in which it is better characterized as a membrane, is most clearly seen by
analyzing the black hole temperature

TH =
1
4π

(
2r0

r20 + a2
+
d− 5
r0

)
. (38)

At (
a

r0

)
mem

=

√
d− 3
d− 5

, (39)

this temperature reaches a minimum. For a/r0 smaller than this value, quantities like TH and AH
decrease, in a manner similar to the Kerr solution. However, past this point they rapidly approach
the black membrane results in which TH ∼ 1/r0 and AH ∼ a2rd−4

0 , with a2 characterizing the area
of the membrane worldvolume.

The properties of the solutions are conveniently encoded using the dimensionless variables aH ,
j introduced in Equation (21). For the solutions (32) the curve aH(j) can be found in parametric
form, in terms of the dimensionless ‘shape’ parameter ν = r0

a , as

jd−3 =
π

(d− 3)
d−3
2

Ωd−3

Ωd−2

ν5−d

1 + ν2
, (40)

ad−3
H = 8π

(
d− 4
d− 3

) d−3
2 Ωd−3

Ωd−2

ν2

1 + ν2
. (41)
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The static and ultraspinning limits correspond to ν → ∞ and ν → 0, respectively. These curves
are represented for d = 5, 6, and 10 in Figure 1. The inflection point where d2aH/dj

2 changes sign
when d ≥ 6, occurs at the value (39).

0.25 0.5 0.75 1 1.25 1.5 1.75 2 j

0.5

1

1.5

2

2.5

3
aH

Figure 1: Horizon area vs. angular momentum for Myers–Perry black holes with a single spin in d = 5
(black), d = 6 (dark gray), and d = 10 (light gray).

4.2 General solution

[200] also gives black-hole solutions with arbitrary rotation in each of the N ≡
⌊
d−1
2

⌋
independent

rotation planes. The cases of odd and even d are slightly different. When d is odd, the solution is

ds2 = −dt2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr2

ΠF
(dt− aiµ

2
i dφi)

2 +
ΠF

Π− µr2
dr2 . (42)

Here and below i = 1, . . . , N and we assume summation over i. The mass parameter is µ, not to
be confused with the direction cosines µi, which satisfy µ2

i = 1. For even d, the general solution is

ds2 = −dt2 + r2dα2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr

ΠF
(dt− aiµ

2
i dφi)

2 +
ΠF

Π− µr
dr2 , (43)

where now µ2
i + α2 = 1.

For both cases we can write the functions F (r, µi) and Π(r) as

F (r, µi) = 1− a2
iµ

2
i

r2 + a2
i

, Π(r) =
N∏
i=1

(r2 + a2
i ) . (44)

The relation between µ and ai and the mass and angular momenta is the same as in Equation (34).
The event horizon is again at the largest real root of grr, that is,

Π(r0)− µr20 = 0 (odd d) , Π(r0)− µr0 = 0 (even d) . (45)

The horizon area is

AH =
Ωd−2

2κ
µ

(
d− 3− 2a2

i

r20 + a2
i

)
, (46)
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and the surface gravity κ is

κ = lim
r→r0

Π′ − 2µr
2µr2

(odd d) , κ = lim
r→r0

Π′ − µ

2µr
(even d) . (47)

Extremal solutions are obtained when κ = 0 at the event horizon.

4.2.1 Phase space

The determination of r0 involves an equation of degree 2N , which in general is difficult, if not im-
possible, to solve algebraically. So the presence of horizons for generic parameters in Equation (42)
and (43) is difficult to ascertain. Nevertheless, a number of features, in particular the ultraspinning
regimes that are important in the determination of the allowed parameter range, can be analyzed.

Following Equation (21), we can fix the mass and define dimensionless quantities ji for each of
the angular momenta. Up to a normalization constant, the rotation parameters ai at fixed mass
are equivalent to the ji. We take (j1, . . . , jN ) as the coordinates in the phase space of solutions.
We aim to determine the region in this space that corresponds to actual black-hole solutions.

Consider first the case in which all spin parameters are nonzero. Then an upper extremality
bound on a combination of the spins arises. If it is exceeded, naked singularities appear, as in the
d = 4 Kerr black hole [200]. So we can expect that, as long as all spin parameters take values
not too dissimilar, j1 ∼ j2 ∼ · · · ∼ jN , all spins must remain parametrically O(1), i.e., there is no
ultraspinning regime in which all ji � 1.

Next, observe that for odd d, a sufficient (but not necessary) condition for the existence of a
horizon is that any two of the spin parameters vanish, i.e., if two ai vanish, a horizon will always
exist, irrespective of how large the remaining spin parameters are. For even d, the existence of a
horizon is guaranteed if any one of the spins vanishes. Thus, arbitrarily large (i.e., ultraspinning)
values can be achieved for all but two (one) of the ji in odd (even) dimensions.

Assume, then, an ultraspinning regime in which n rotation parameters are comparable among
themselves, and much larger than the remaining N − n ones. A limit then exists to a black 2n-
brane of limiting horizon topology Sd−2 → R2n × Sd−2(n+1). The limiting geometry is in fact
the direct product of R2n and a (d − 2n)-dimensional Myers–Perry black hole [81]. Thus, in an
ultraspinning regime the allowed phase space of d-dimensional black holes can be inferred from
that of (d− 2n)-dimensional black holes. Let us then begin from d = 5, 6 and proceed to higher d.

The phase space is fairly easy to determine in d = 5, 6; see Figure 2. In d = 5 Equation (45)
admits a real root for

|j1|+ |j2| ≤ 1 , (48)

which is a square, with extremal solutions at the boundaries, where the inequality is saturated.
These extremal solutions have regular horizons if, and only if, both angular momenta are nonvanish-
ing. There are no ultraspinning regimes: our arguments above relate this fact to the nonexistence
of three-dimensional vacuum black holes.

In d = 6 the phase space of regular black-hole solutions is again bounded by a curve of extremal
black holes. In terms of the dimensionless parameter ν = r0/µ

1/3, the extremal curve is

|j1| =
(

π

2
√

3

)1/3
√

1− 4ν3 ±
√

1− 16ν3

4ν
, |j2| =

(
π

2
√

3

)1/3
√

1− 4ν3 ∓
√

1− 16ν3

4ν
, (49)

with 0 ≤ ν ≤ 2−4/3. As ν → 0 we get into the ultraspinning regimes, in which one of the spins
diverges while the other vanishes, according to the general behavior discussed above. In this regime,
at, say, constant large j1, the solutions approach a Kerr black membrane and thus the available
phase space is of the form j2 ≤ f(j1), i.e., a rescaled version of the Kerr bound j ≤ 1/4. Functions
such as aH can be recovered from the four-dimensional solutions.
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Figure 2: Phase space of (a) five-dimensional and (b) six-dimensional MP rotating black holes: black
holes exist for parameters within the shaded regions. The boundaries of the phase space correspond to
extremal black holes with regular horizons, except at the corners of the square in five dimensions, where
they become naked singularities. The six-dimensional phase space extends along the axes to arbitrarily
large values of each of the two angular momenta (ultraspinning regimes).

In d = 7, with three angular momenta j1, j2, j3, it is more complicated to obtain the explicit
form of the surface of extremal solutions that bind the phase space of MP black holes, but it is still
possible to sketch it; see Figure 3(a). There are ultraspinning regimes in which one of the angular
momenta becomes much larger than the other two. In this limit the phase space of solutions at,
say, large j3, becomes asymptotically of the form |j1| + |j2| ≤ f(j3), i.e., of the same form as the
five-dimensional phase space (48), only rescaled by a factor f(j3) (which vanishes as j3 →∞).

A similar ‘reduction’ to a phase space in two fewer dimensions along ultraspinning directions
appears in the phase space of d = 8 MP black holes; see Figure 3(b); a section at constant large
j3 becomes asymptotically of the same shape as the six-dimensional diagram (49), rescaled by a
j3-dependent factor.

These examples illustrate how we can infer the qualitative form of the phase space in dimension
d if we know it in d − 2, e.g., in d = 9, 10, with four angular momenta, the sections of the phase
space at large j4 approach the shapes in Figure 3 (a) and (b), respectively.

If we manage to determine the regime of parameters where regular black holes exist, we can
express other (dimensionless) physical magnitudes as functions of the phase-space variables ja.
Figure 4 is a plot of the area function aH(j1, j2) in d = 5, showing only the quadrant j1, j2 ≥ 0;
the complete surface allowing j1, j2 < 0 is a tent-like dome. In d = 6 the shape of the area surface
is a little more complicated to draw, but it can be visualized by combining the information from
the plots we have presented in this section. In general, the ‘ultraspinning reduction’ to d − 2n
dimensions also yields information about the area and other properties of the black holes.
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 j 3
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Figure 3: Phase space of (a) seven-dimensional, and (b) eight-dimensional MP rotating black holes (in a
representative quadrant ji ≥ 0). The surfaces for extremal black holes are represented: black holes exist
in the region bounded by these surfaces. (a) d = 7: the hyperbolas at which the surface intersects the
planes ji = 0 (which are jkjl = 1/

√
6, i.e., akal =

√
µ and r0 = 0) correspond to naked singularities with

zero area; otherwise, the extremal solutions are nonsingular. The three prongs extend to infinity; these
are the ultraspinning regimes in which one spin is much larger than the other two. The prong along ji
becomes asymptotically of the form |jk|+ |jl| ≤ f(ji), i.e., the same shape as the five-dimensional diagram
in Figure 2(a). (b) d = 8: ultraspinning regimes exist in which two spins are much larger than the third
one. The sections at large constant ji asymptotically approach the same shape as the six-dimensional
phase space Figure 2(b).

1

1

2�!!!!2

Figure 4: Horizon area aH(j1, j2) of five-dimensional MP black holes. We only display a representative
quadrant j1, j2 ≥ 0 of the full phase space of Figure 2(a), the rest of the surface being obtained by reflection
along the planes j1 = 0 and j2 = 0.
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4.2.2 Global structure

Let us now discuss briefly the global structure of these solutions, following [200]. The global
topology of the solutions outside the event horizon is essentially the same as for the Kerr solution.
However, there are cases in which there can be only one nondegenerate horizon: even d with at
least one spin vanishing; odd d with at least two spins vanishing; odd d with one ai = 0 and
µ >

∑
i Πj 6=ia

2
j There is also the possibility, for odd d and all nonvanishing spin parameters, of

solutions with event horizons with negative µ. However, they contain naked closed causal curves.
The MP solutions have singularities where µr/ΠF → ∞ for even d, µr2/ΠF → ∞ for odd d.

For even d and all spin parameters nonvanishing, the solution has a curvature singularity where
F = 0, which is the boundary of a (d − 2)-ball at r = 0, thus generalizing the ring singularity of
the Kerr solution; as in the latter, the solution can be extended to negative r. If one of the ai = 0,
then r = 0 itself is singular. For odd d and all ai 6= 0, there is no curvature singularity at any
r2 ≥ 0. The extension to r2 < 0 contains singularities, though. If one spin parameter vanishes, say
a1 = 0, then there is a curvature singularity at the edge of a (d−3)-ball at r = 0, µ1 = 0; however,
in this case, the ball itself is the locus of a conical singularity. If more than one spin parameter
vanishes then r = 0 is singular. The causal nature of these singularities varies according to the
number of horizons that the solution possesses; see [200] for further details.

4.3 Symmetries

The Myers–Perry solutions are manifestly invariant under time translations, as well as under the
rotations generated by the N Killing vector fields ∂/∂φi. These symmetries form a R × U(1)N

isometry group. In general, this is the full isometry group (up to discrete factors). However, the
solutions exhibit symmetry enhancement for special values of the angular momentum. For example,
the solution rotating in a single plane (32) has a manifest R × U(1) × SO(d − 3) symmetry. If n
angular momenta are equal and nonvanishing then the U(1)n associated with the corresponding
2-planes is enhanced to a non-Abelian U(n) symmetry. This reflects the freedom to rotate these 2-
planes into each other. If n angular momenta vanish then the symmetry enhancement is from U(1)n

to an orthogonal group SO(2n) or SO(2n+ 1) for d odd or even respectively [243]. Enhancement
of symmetry is reflected in the metric depending on fewer coordinates. For example, in the most
extreme case of N equal angular momenta in 2N + 1 dimensions, the solution has isometry group
R× U(N) and is cohomogeneity-1, i.e., it depends on a single (radial) coordinate [111, 112].

In addition to isometries, the Kerr solution possesses a “hidden” symmetry associated with
the existence of a second-rank Killing tensor, i.e., a symmetric tensor Kµν obeying K(µν;ρ) =
0 [245]. This gives rise to an extra constant of motion along geodesics, rendering the geodesic
equation integrable. It turns out that the general Myers–Perry solution also possesses hidden
symmetries [174, 91] (this was first realized for the special case of d = 5 [93, 94]). In fact, it
has sufficiently many hidden symmetries to render the geodesic equation integrable [207, 173].
In addition, the Klein–Gordon equation governing a free massive scalar field is separable in the
Myers–Perry background [90]. These developments have been reviewed in [88].

4.4 Stability

The classical linearized stability of these black holes remains largely an open problem. As just
mentioned, it is possible to separate variables in the equation governing scalar-field perturba-
tions [147, 26, 195]. However, little progress has been made with the study of linearized gravita-
tional perturbations. For Kerr, the study of gravitational perturbations is analytically tractable
because of a seemingly-miraculous decoupling of the components of the equation governing such
perturbations, allowing it to be reduced to a single scalar equation [234, 235]. An analogous de-
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coupling has not been achieved for Myers–Perry black holes, except in a particular case that we
discuss below.

Nevertheless, it has been possible to infer the appearance of an instability in the ultraspinning
regime of black holes in d ≥ 6 [81]. We have seen that in this regime, when n rotation parameters
ai become much larger than the mass parameter µ and the rest of the ai, the geometry of the
black-hole horizon flattens out along the fast-rotation planes and approaches a black 2n-brane. As
discussed in Section 3.4, black p-branes are unstable against developing ripples along their spatial
worldvolume directions. Therefore, in the limit of infinite rotation, the MP black holes evolve into
unstable configurations. It is then natural to conjecture that the instability already sets in at finite
values of the rotation parameters. In fact, the rotation may not need to be too large in order for
the instability to appear. The GL instability of a neutral black brane horizon Rp × Sq appears
when the size L of the horizon along the brane directions is larger than the size r0 of the Sq.
We have seen that the sizes of the horizon along directions parallel and transverse to the rotation
plane are ∼ ai and ∼ r0, respectively. This brane-like behavior of MP black holes begins when
ai >∼ r0, which suggests that the instability will appear shortly after crossing thresholds like (39).
This idea is supported by the study of the possible fragmentation of the rotating MP black hole:
the total horizon area can increase by splitting into smaller black holes whenever ai >∼ r0 [81]. The
analysis of [81] indicates that the instability should be triggered by gravitational perturbations.
It is, therefore, not surprising that scalar-field perturbations appear to remain stable even in the
ultraspinning regime [26, 195].

This instability has also played a central role in proposals for connecting MP black holes to
new black-hole phases in d ≥ 6. We discuss this in Section 6.

The one case in which progress has been made with the analytical study of linearized grav-
itational perturbations is the case of odd dimensionality, d = 2N + 1, with equal angular mo-
menta [177, 197]. As discussed above, this Myers–Perry solution is cohomogeneity-1, which im-
plies that the equations governing perturbations of this background are just ODEs. There are two
different approaches to this problem, one for N > 1 [177] and one for N = 1 (i.e., d = 5) [197].

For d = 5, the spatial geometry of the horizon is described by a homogeneous metric on
S3, with SU(2) × U(1) isometry group. Since S3 ∼ SU(2), one can define a basis of SU(2)-
invariant 1-forms and expand the components of the metric perturbation using this basis [197]. The
equations governing gravitational perturbations will then reduce to a set of coupled scalar ODEs.
These equations have not yet been derived for the Myers–Perry solution (however, this method
has been applied to study perturbations of a static Kaluza–Klein black hole with SU(2) × U(1)
symmetry [158]).

For N > 1, gravitational perturbations can be classified into scalar, vector and tensor types
according to how they transform with respect to the U(N) isometry group. The different types of
perturbation decouple from each other. Tensor perturbations are governed by a single ODE that
is almost identical to that governing a massless scalar field. Numerical studies of this ODE give no
sign of any instability [177]. Vector and scalar type perturbations appear to give coupled ODEs;
the analysis of these has not yet been completed.

It seems likely that other MP solutions with enhanced symmetry will also lead to more tractable
equations for gravitational perturbations. For example, it would be interesting to consider the cases
of equal angular momenta in even dimensions (which resemble the Kerr solution in many physical
properties), and MP solutions with a single nonzero angular momentum (whose geometry (32)
contains a four-dimensional factor, at a constant angle in the Sd−4, mathematically similar to the
Kerr metric; in fact this four-dimensional geometry is type D). The latter case would allow one to
test whether the ultraspinning instability is present.
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5 Vacuum Solutions in Five Dimensions

In Section 4 we discussed the MP solutions, which can be regarded as higher-dimensional versions
of the Kerr solution. However, in recent years it has been realized that higher dimensions allow for
a much richer landscape of black-hole solutions that do not have four-dimensional counterparts.
In particular, there has been great progress in our understanding of five-dimensional vacuum
black holes, insofar as we consider stationary solutions with two rotational Killing vectors. The
reason is that this sector of the theory is completely integrable, and solution-generating techniques
are available. We begin by analyzing in Section 5.1 a qualitatively new class of solutions with
connected horizons: black rings with one and two angular momenta. Then, in Section 5.2, we
present a general study of stationary solutions with two rotational symmetries; actually, we can
discuss the general case of d− 3 commuting U(1) spatial isometries. The simplest of these are the
generalized Weyl solutions (Section 5.2.1). The general case is addressed in Section 5.2.2, and we
discuss the characterization of solutions by their rod structures. The powerful solution-generating
technique of Belinsky and Zakharov, based on inverse-scattering methods, is then introduced: the
emphasis is on its practical application in generating old and new black-hole solutions. Section 5.3
discusses multiple-black-hole solutions (black Saturns, di-rings and bicycling black rings) obtained
in this way. Work towards determining the stability properties of black rings and multiple black
holes is reviewed in Section 5.4.

5.1 Black rings

5.1.1 One angular momentum

Five-dimensional black rings are black holes with horizon topology S1 × S2 in asymptotically flat
spacetime. The S1 describes a contractible circle, not stabilized by topology but by the centrifugal
force provided by rotation. An exact solution for a black ring with rotation along this S1 was
presented in [83]. Its most convenient form was given in [79] as5

ds2 = −F (y)
F (x)

(
dt− C R

1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

[
−G(y)
F (y)

dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)
F (x)

dφ2

]
, (50)

where
F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ) , (51)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
. (52)

The dimensionless parameters λ and ν must lie in the range

0 < ν ≤ λ < 1 . (53)

The coordinates vary in the ranges −∞ ≤ y ≤ −1 and −1 ≤ x ≤ 1, with asymptotic infinity
recovered as x → y → −1. The axis of rotation around the ψ direction is at y = −1, and the
axis of rotation around φ is divided into two pieces: x = 1 is the disk bounded by the ring, and
x = −1 is its complement from the ring to infinity. The horizon lies at y = −1/ν. Outside it, at
y = −1/λ, lies an ergosurface. A detailed analysis of this solution and its properties can be found
in [84] and [76], so we shall only discuss it briefly.

5An alternative form was found in [140]. The relation between the two is given in [84].
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In the form given above, the solution possesses three independent parameters: λ, ν, and R.
Physically, this sounds like one too many: given a ring with mass M and angular momentum J ,
we expect its radius to be dynamically fixed by the balance between the centrifugal and tensional
forces. This is also the case for the black ring (50): in general it has a conical defect on the plane
of the ring, x = ±1. In order to avoid it, the angular variables must be identified with periodicity

∆ψ = ∆φ = 4π

√
F (−1)

|G′(−1)|
= 2π

√
1− λ

1− ν
(54)

and the two parameters λ, ν must satisfy

λ =
2ν

1 + ν2
. (55)

This eliminates one parameter, and leaves the expected two-parameter (ν,R) family of solutions.
The mechanical interpretation of this balance of forces for thin rings is discussed in [80]. The
Myers–Perry solution with a single rotation is obtained as a limit of the general solution (50) [79],
but cannot be recovered if λ is eliminated through Equation (55).

The physical parameters of the solution (mass, angular momentum, area, angular velocity,
surface gravity) in terms of ν and R can be found in [84]. It can be seen that while R provides a
measure of the radius of the ring’s S1, the parameter ν can be interpreted as a ‘thickness’ parameter
characterizing its shape, corresponding roughly to the ratio between the S2 and the S1 radii.

More precisely, one finds two branches of solutions, whose physical differences are seen most
clearly in terms of the dimensionless variables j and aH introduced above. For a black ring in
equilibrium, the phase curve aH(j) can be expressed in parametric form as

aH = 2
√
ν(1− ν) , j =

√
(1 + ν)3

8ν
, (56)

and is depicted in Figure 5.
This curve is easily seen to have a cusp at ν = 1/2, which corresponds to a minimum value of

j =
√

27/32 and a maximum aH = 1. Branching off from this cusp, the thin black-ring solutions
(0 < ν < 1/2) extend to j → ∞ as ν → 0, with asymptotic aH → 0. The fat black-ring branch
(1/2 ≤ ν < 1) has lower area and extends only to j → 1, ending at ν → 1 at the same zero-area
singularity as the MP solution. This implies that in the range

√
27/32 ≤ j < 1 there exist three

different solutions (thin and fat black rings and MP black holes) with the same value of j. The
notion of black-hole uniqueness that was proven to hold in four dimensions does not extend to five
dimensions.

[76] and [89] contain detailed analyses of the geometrical features of black-ring horizons. Some
geodesics of the black-ring metric have been studied with a view towards different applications: [205]
studies them in the context of the Penrose process, and [76] considers them for tests of stability.
[143] is a more complete analysis of geodesics.
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Figure 5: Curve aH(j) of horizon area vs. spin for five-dimensional black rings rotating along their S1

(solid). The dashed curve corresponds to five-dimensional MP black holes (see Figure 1). The solid curve
for black rings has two branches that meet at a regular, nonextremal minimally-rotating black ring at
j =

p
27/32: an upper branch of thin black rings, and a lower branch of fat black rings. Fat black rings

always have a smaller area than MP black holes. Their curves meet at the same zero-area naked singularity
at j = 1.
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5.1.2 Two angular momenta

Rotation in the second independent plane corresponds to rotation of the S2 of the ring. In the
limit of infinite S1 radius, a section along the length of the ring gives an S2 that is essentially like
that of a four-dimensional black hole: setting it into rotation is thus similar to having a Kerr-like
black hole. Thus, an upper, extremal bound on the rotation of the S2 is expected (actually, the
motion of the ring along its S1 yields a momentum that can be viewed as an electric Kaluza–Klein
charge, so instead of a Kerr solution, the R→∞ limit yields a rotating electric KK black hole).

Solutions with rotation only along the S2, but not on the S1, are fairly straightforward to
construct and have been given in [192, 87]. However, these black rings cannot support themselves
against the centripetal tension and thus possess conical singularities on the plane of the ring.
Constructing the exact solution for a black ring with both rotations is a much more complicated
task, which has been achieved by Pomeransky and Sen’kov in [212] (the techniques employed are
reviewed in Section 5.2). They have furthermore managed to present it in a fairly compact form:

ds2 = −H(y, x)
H(x, y)

(dt+ Ω)2 − F (x, y)
H(y, x)

dψ2 − 2
J(x, y)
H(y, x)

dψdφ+
F (y, x)
H(y, x)

dφ2

+
2k2H(x, y)

(x− y)2(1− ν)2

(
dx2

G(x)
− dy2

G(y)

)
. (57)

Here we follow the notation introduced in [212], except that we have chosen mostly plus signature,
and exchanged φ↔ ψ to conform to the notation in Equation (50). The reader should be warned
that, although the meanings of x and y are essentially the same in both solutions, the same letters
are used in Equation (57) as in Equation (50) for different parameters and functions. In particular,
the angles φ and ψ have been rescaled here to have canonical periodicity 2π.

The metric functions take a very complicated form in the general case in which the black ring is
not in equilibrium (their explicit forms can be found in [196]), but they simplify significantly when
a balance of forces (i.e., cancellation of conical singularities) is imposed. In this case the one-form
Ω characterizing the rotation is [212]

Ω = −
2kλ

√
(1 + ν)2 − λ2

H(y, x)
[
(1− x2)y

√
νdφ

+
1 + y

1− λ+ ν

(
1 + λ− ν + x2yν(1− λ− ν) + 2νx(1− y)

)
dψ
]
, (58)

and the functions G, H, J , and F become

G(x) = (1− x2)
(
1 + λx+ νx2

)
,

H(x, y) = 1 + λ2 − ν2 + 2λν(1− x2)y + 2xλ(1− y2ν2) + x2y2ν(1− λ2 − ν2) ,

J(x, y) =
2k2(1− x2)(1− y2)λ

√
ν

(x− y)(1− ν)2
(
1 + λ2 − ν2 + 2(x+ y)λν − xyν(1− λ2 − ν2)

)
, (59)

F (x, y) =
2k2

(x− y)2(1− ν)2
[
G(x)(1− y2)

[(
(1− ν)2 − λ2

)
(1 + ν) + yλ(1− λ2 + 2ν − 3ν2)

]
+G(y)

[
2λ2 + xλ((1− ν)2 + λ2) + x2

(
(1− ν)2 − λ2

)
(1 + ν) + x3λ(1− λ2 − 3ν2 + 2ν3)

−x4(1− ν)ν(−1 + λ2 + ν2)
]]
.

When λ = 0 we find flat spacetime. In order to recover the metric (50) one must take ν → 0,
identify R2 = 2k2(1 + λ2) and rename λ→ ν.

The parameters ν and λ are restricted to

0 ≤ ν < 1 , 2
√
ν ≤ λ < 1 + ν (60)
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for the existence of regular black-hole horizons. The bound λ ≥ 2
√
ν is actually a Kerr-like bound

on the rotation of the S2. To see this, consider the equation for vanishing G(y),

1 + λy + νy2 = 0 , (61)

which determines the position of the horizon within the allowed range −∞ < y < −1. If we
identify y → −k/r, λ→ 2m/k and ν → a2/k2, this becomes the familiar r2 − 2mr + a2 = 0 (this
is not to say that m and a correspond to the physical mass and angular momentum parameters,
although they are related to them). Requiring the roots of Equation (61) to be real yields the
required bound. When it is saturated, λ = 2

√
ν, the horizon is degenerate, and when exceeded,

it becomes a naked singularity. The parameter k sets a scale in the solution and gives (roughly)
a measure of the ring radius. The extremal Myers–Perry solution is recovered as a limit of the
extremal solutions in which ν → 1, λ→ 2. However, in order to recover the general Myers–Perry
solution as a limit, one needs to relax the equilibrium condition that has been imposed to obtain
Equation (59), and use the more general form of these functions given in [196].

The physical parameters M , Jψ = J1, Jφ ≡ J2, and AH of the solution have been computed
in [212]. An analysis of the physical properties of the solution, and in particular the phase space,
has been presented in [78]. To plot the parameter region where black rings exist, we fix the mass
and employ the dimensionless angular-momentum variables j1 and j2 introduced in Equation (21).
The phase space of doubly-spinning black rings is in Figure 6 for the region j1 > j2 ≥ 0 (the rest
of the plane is obtained by iterating and exchanging ±j1,2). It is bounded by three curves (besides
the axis, which is not a boundary in the full phase plane):

1. Extremal black rings, with maximal j2 for given j1, along the curve

j1 =
1 + 4

√
ν + ν

4ν1/4(1 +
√
ν)
, j2 =

ν1/4

2(1 +
√
ν)
, 0 ≤ ν ≤ 1 (62)

(thin solid curve in Figure 6). This curve extends between j1 = 3/4, j2 = 1/4 (as ν → 1) to
j1 →∞, j2 → 0 (as ν → 0). (See [217] for more discussion of extremal rings.)

2. Nonextremal minimally spinning black rings, with minimal j1 for given j2, along the curve

j1 =

(
3(1 + ν2) + (1 + ν)

√
(9 + ν)(1 + 9ν)− 26ν

)3/2

8(1− ν)2
√(√

(9 + ν)(1 + 9ν)− 1− ν
)(

5(1 + ν)−
√

(9 + ν)(1 + 9ν)
) ,

j2 =

√
ν

“
3+
√

(9+ν)(1+9ν)+ν
“
18
√

(9+ν)(1+9ν)−103+ν
“
3ν+
√

(9+ν)(1+9ν)−103
”””

√
(9+ν)(1+9ν)−1−ν

2
√

2(1− ν)2
(63)

(thick solid curve in Figure 6). This curve extends between j1 = 4/5, j2 = 1/5 (as ν → 1)
and j1 =

√
27/32, j2 = 0 (as ν → 0).

3. Limiting extremal MP black holes, with j1 + j2 = 1 within the range j1 ∈ [3/4, 4/5] (dashed
line in Figure 6). There is a discontinuous increase in the area when the black rings reach
the extremal MP line.

For doubly-spinning black rings the angular momentum along the S2 is always bounded above
by the one in the S1 as

|j2| <
1
3
|j1| . (64)
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Figure 6: Phase space of doubly-spinning black rings (j1 ≡ jψ, j2 ≡ jφ), restricted to the representative
region j1 > j2 ≥ 0. The dashed line j1 + j2 = 1 corresponds to extremal MP black holes (see Figure 2(a)).
The (upper) thin black curve corresponds to regular extremal black rings with degenerate horizons at
maximal S2 spin j2, for given S1 rotation j1. It ends on the extremal MP curve at (3/4, 1/4). The (lower)
thick black curve corresponds to regular nonextremal black rings with minimal spin j1 along S1 for given
j2 on S2. It ends on the extremal MP curve at (4/5, 1/5). Black rings exist in the gray-shaded parameter
regions bounded by the black curves, the segment j1 ∈ [3/4, 4/5] of the extremal MP dashed line, and the
j1 axis with j1 ≥

p
27/32. In the light-gray region there exist only thin black rings. In the dark-gray

spandrel between the dashed MP line, the thick black curve, and the axis
p

27/32 < j1 < 1, there exist
thin and fat black rings and MP black holes: there is discrete three-fold nonuniqueness.
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This is saturated at the endpoint of the extremal black-ring curve j1 = 3/4, j2 = 1/4.
Figure 7 shows the phase space covered by all five-dimensional black holes with a single horizon.

Two kinds of black rings (thin and fat) and one MP black hole, the three of them with the same
values of (M,J1, J2), exist in small spandrels near the corners of the MP phase-space square. It
is curious that, once black rings are included, the available phase space for five-dimensional black
holes resembles more closely that of six-dimensional MP black holes, Figure 2(b).

j1

j2

j1

j2

Figure 7: The phase space (j1, j2) covered by doubly-spinning MP black holes and black rings, obtained
by replicating Figure 6 taking ±j1 ↔ ±j2. The square |j1|+ |j2| ≤ 1 corresponds to MP black holes (see
Figure 2(a)). The light-gray zones contain thin black rings only, and the medium-gray zone contains MP
black holes only. At each point in the dark-gray spandrels near the corners of the square there exist one
thin and one fat black ring, and one MP black hole.

[78] contains sectional plots of the surface aH(j1, j2) for black rings at constant j2, for j1 > j2 ≥
0, from which it is possible to obtain an idea of the shape of the surface. In the complete range of
j1 and j2 the phase space of five-dimensional black holes (with connected event horizons) consists
of the ‘dome’ of MP black holes (Figure 4 replicated on all four quadrants), with ‘romanesque
vaults’ of black rings protruding from its corners, and additional substructure in the region of
nonuniqueness – our knowledge of architecture is insufficient to describe it in words.

It is also interesting to study other properties of black rings, such as temperature and horizon
angular velocities, expressions for which can be found in [78]. It is curious to notice that even if
the two angular momenta can never be equal, the two angular velocities Ω1 and Ω2 have equal
values, for a given mass, when

λ =
√

2ν −
√
ν(1 + ν), (65)

which lies in the allowed range (60). We can easily understand why this is possible: Ω1 becomes
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arbitrarily small for thin rings, even if j1 is large, so it can be made equal to any given Ω2.
On the other hand, the temperature of the black ring – which for thin rings with a single spin is

bounded below and diverges as the ring becomes infinitely long and thin (at fixed mass) – decreases
to zero when the second spin is taken to the extremal limit, so there exist ‘cold’ thin black rings.

Some consequences of these features to properties of multiple-ring solutions will be discussed
in Section 5.3.

5.2 Stationary axisymmetric solutions with d−3 rotational symmetries

A sector of five-dimensional vacuum general relativity in which a complete classification of black-
hole solutions may soon be achieved is the class of stationary solutions with two angular Killing
vectors. Integration of the three Killing directions yields a two-dimensional nonlinear sigma model
that is completely integrable. Solutions can be characterized in terms of their rod structure along
multiple directions, introduced in [82] and extended in [127]. It has been proven that these data
(whose relation to physical parameters is unfortunately not quite direct), in addition to the total
mass and angular momenta, uniquely characterize asymptotically-flat solutions [139].

Since most of the analysis is applicable to any number of dimensions, we will keep d arbitrary,
although only in d = 4, 5 can the solutions be globally asymptotically flat. So, henceforth, we
assume that the spacetime admits d − 2 commuting, non-null, Killing vectors ξ(a) = ∂/∂xa, a =
0, . . . , d − 3 (we assume, although this is not necessary, that the zero-th vector is asymptotically
timelike and all other vectors are asymptotically spacelike). Then it is possible to prove that, under
natural suitable conditions, the two-dimensional spaces orthogonal to all three Killing vectors are
integrable [82]. In this case the metrics admit the form

ds2 = gab(r, z) dxadxb + e2ν(r,z)
(
dr2 + dz2

)
. (66)

Without loss of generality we can choose coordinates so that

det gab = −r2 . (67)

For this class of geometries, the Einstein equations divide into two groups, one for the matrix g,

∂rU + ∂zV = 0 , (68)

with
U = r(∂rg)g−1 , V = r(∂zg)g−1 , (69)

and a second group of equations for ν,

∂rν = − 1
2r

+
1
8r

Tr(U2 − V 2) , ∂zν =
1
4r

Tr(UV ) . (70)

The equations for ν satisfy the integrability condition ∂r∂zν = ∂z∂rν as a consequence of Equa-
tion (68). Therefore, once gab(r, z) is determined, the function ν(r, z) is determined by a line
integral, up to an integration constant that can be absorbed by rescaling the coordinates.

Equations (68) and (69) are the equations for the principal chiral field model, a nonlinear sigma
model with group GL(d − 2,R), which is a completely integrable system. In the present case, it
is also subject to the constraint (67). This introduces additional features, some of which will be
discussed below.

In order to understand the structure of the solutions of this system, it is convenient to first
analyze a simple particular case [82].
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5.2.1 Weyl solutions

Consider the simplest situation in which the Killing vectors are mutually orthogonal. In this case
the solutions admit the diagonal form6

ds2 = −e2U0dt2 +
d−3∑
a=1

e2Ua(dxa)2 + e2ν(dr2 + dz2) . (71)

Equations (68) require that Ua(r, z), a = 0, . . . , d − 3, be axisymmetric solutions of the Laplace
equation (

∂2
r +

1
r
∂r + ∂2

z

)
Ua = 0 , (72)

in the auxiliary three-dimensional flat space

ds2 = dz2 + dr2 + r2dφ2 , (73)

while equations (70) for ν(r, z) become

∂rν = − 1
2r

+
r

2

d−3∑
a=0

[
(∂rUa)− (∂zUa)2

]
, (74)

∂zν = r

d−3∑
i=0

∂rUa∂zUa . (75)

The constraint (67) implies that only d− 3 of the Ua are independent, since they must satisfy

d−3∑
a=0

Ua = log r . (76)

Thus we see that solutions are fully determined once the boundary conditions for the Ui are
specified at infinity and at the z-axis. Note that log r is the solution that corresponds to an infinite
rod of zero thickness and linear mass density 1/2 along the axis r = 0. The solutions are in fact
characterized by the ‘rod’ sources of Ui along the axis, which have to add up to an infinite rod (76).
The potential for a semi-infinite rod along [ak,+∞) with linear density % is

U = % logµk , (77)

where
µk =

√
r2 + (z − ak)2 − (z − ak) . (78)

If the rod instead extends along (−∞, ak] then

U = % log µ̄k , (79)

where

µ̄k = −
√
r2 + (z − ak)2 − (z − ak) = − r

2

µk
. (80)

Given the linearity of equations (72), one can immediately construct the potential for a finite rod
of density % along [ak−1, ak] as

U = % log
(
µk−1

µk

)
. (81)

6An equivalent system, but with a cosmological interpretation under a Wick rotation of the coordinates (t, r, z)→
(x, t, z̃), is discussed in [86], along with some simple solution-generating techniques.
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The functions Ui for any choice of rods are sums of these. Integration of Equation (74) is then a
straightforward, if tedious, matter; see appendix G in [82]. [165] has applied the inverse scattering
method (to be reviewed below) to provide explicit diagonal solutions with an arbitrary number of
rods.

At a rod source for Ui, the orbits of the corresponding Killing vector vanish: if it is an angular
Killing vector ∂φi , then the corresponding one-cycles shrink to zero size, and the periodicity of φi
must be chosen appropriately in order to avoid conical singularities; if it is instead the timelike
Killing ∂t, then it becomes null there. In both cases, a necessary (but not sufficient) condition for
regularity at the rod is that the linear density be

% =
1
2
. (82)

Otherwise when r → 0 at the rod, the curvature diverges. If all rods are of density 1/2, then given
the constraint (76), at any given point on the axis there will be one cycle of zero (or null) length
with all others having finite size. This phenomenon of some cycles smoothly shrinking to zero with
other cycles blowing up to finite size as one moves along the axis (essentially discovered by Weyl in
1917 [247]), is referred to in string-theoretical contexts as ‘bubbling’. When it is ∂t that becomes
null, the rod corresponds to a horizon.

The rod structures for the four and five-dimensional Schwarzschild and Tangherlini solutions
are depicted in Figure 8. The Rindler space of uniformly-accelerated observers is recovered as the
horizon rod becomes semi-infinite, a2 →∞. [82] gives a number of ‘rules of thumb’ for interpreting
rod diagrams.

(b)

2a 1

a 1 a 2

(a)

a

Figure 8: Rod structures for the (a) 4D Schwarzschild and (b) 5D Tangherlini black holes. From top to
bottom, the lines represent the sources for the time, φ and ψ (in 5D) potentials Ut, Uφ, Uψ.

5.2.2 General axisymmetric class

In the general case where the Killing vectors are not orthogonal to each other, the simple con-
struction in terms of solutions of the linear Laplace equation does not apply. Nevertheless, the
equations can still be completely integrated, and the characterization of solutions in terms of rod
structure can be generalized.

5.2.2.1 Rod structure and regularity Let us begin by extending the characterization of
rods [127]. In general, a rod is an interval along the z-axis, where the action of a Killing vector v
has fixed points (for a spacelike vector) or it becomes null (for a timelike vector). In both cases
|v|2 → 0 at the rod. In general, v will be a linear combination v = vaξ(a) in a given Killing
basis ξ(a), a = 0, . . . , d − 3; usually, this basis is chosen so that it becomes a coordinate basis of
orthogonal vectors at asymptotic infinity. In the orthogonal case of the previous section 5.2.1 one
could assign a basis vector (and only one, for rod density 1/2) ξ(a) to each rod, but this is not
possible, in general, if the vectors are not orthogonal. For instance, at a rod corresponding to a
rotating horizon, the Killing vector that vanishes is typically of the form ∂t + Ωa∂φa .
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More precisely, the condition (67) implies that the matrix g(r = 0, z) must have at least one
zero eigenvalue. It can be shown that regularity of the solution (analogous to the requirement of
density 1/2 in the orthogonal case) requires that only one eigenvalue is zero at any given interval
on the axis [127]. Each such interval is called a rod, and, for each rod z ∈ [a, b], we assign a
direction vector v such that

g(0, z)v = 0 for z ∈ [a, b] . (83)

At isolated points on the axis the kernel of g(r = 0, z) is spanned by two vectors instead of only
one: this will happen at the points where two intervals with different eigenvectors meet. The
rod structure of the solution consists of the specification of intervals a1 < a2 < · · · < an, plus
the n + 1 directions v(k) ∈ ker(g(0, z)) for each rod [ak−1, ak], k = 1, ..., n + 1 (with a0 = −∞,
an+1 = +∞) [127]. The vector v is defined up to an arbitrary normalization constant.

The rod is referred to as timelike or spacelike according to the character of the rescaled norm
gab(r, z)vavb/r2 at the rod r → 0, z ∈ [ak−1, ak]. For a timelike rod normalized such that the
generator of asymptotic time translations enters with coefficient equal to one, the rest of the
coefficients correspond to the angular velocities of the horizon (if this satisfies all other regularity
requirements).

For a spacelike rod, the following two regularity requirements are important. First, given a
rod-direction vector

v =
∂

∂ψ
(84)

with norm
|v|2 = gij(r, z)vivj (85)

the length L = |v|∆ψ of its circular orbits at constant r, z, vanishes near the rod like ∼ r. Since
the proper radius of these circles approaches eν(0,z)dr, a conical singularity will be present at the
rod unless these orbits are periodically identified with period

∆ψ = 2πeν(0,z)
(
∂|v|
∂r

(0, z)
)−1

. (86)

When several rods are present, it may be impossible to satisfy simultaneously all the periodicity
conditions. The physical interpretation is that the forces among objects in the configuration cannot
be balanced and as a result, conical singularities appear. If the geometry admits a Wick rotation to
Euclidean time, then Equation (86) gives the temperature TH = 2π/∆ψ of the horizon associated
with the rod.

Second, the presence of time components on a spacelike rod creates causal pathologies. Consider
a vector ζ that is timelike in some region of spacetime, and whose norm does not vanish at a given
spacelike rod [a, b]. If the direction vector v associated with this rod is such that

v · ζ 6= 0 at r = 0, z ∈ [a, b] , (87)

then making the orbits of v periodic introduces closed timelike curves; periodicity ∆ψ along orbits
of v requires that the orbits of ζ be identified as well with periods equal to an integer fraction
of (v · ζ)∆ψ. Then, closed timelike curves will appear wherever ζ is timelike. These are usually
regarded as pathological if they occur outside the horizon, so such time components on spacelike
rods must be avoided.

Further analysis of Equations (68), (70) and their source terms can be found in [130].

5.2.2.2 The method of Belinsky and Zakharov As shown by Belinsky and Zakharov (BZ),
the system of nonlinear equations (67) and (68) is completely integrable [11, 10]. It admits a
Lax pair of linear equations (spectral equations) whose compatibility conditions coincide with the
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original nonlinear system. This allows one to generate an infinite number of solutions, starting
from known ones, following a purely algebraic procedure. Since, as we have seen, we can very
easily generate diagonal solutions, this method allows us to construct a vast class of axisymmetric
solutions. It seems likely, but to our knowledge has not been proven, that all axisymmetric solutions
can be generated in this way.

The spectral versions of Equations (67) and (68) are

D1Ψ =
rV − λU

λ2 + r2
Ψ , D2Ψ =

rU + λV

λ2 + r2
Ψ , (88)

where λ is the (in general complex) spectral parameter, independent of r and z, and D1 and D2

are two commuting differential operators,

D1 = ∂z −
2λ2

λ2 + r2
∂λ , D2 = ∂r +

2λr
λ2 + r2

∂λ . (89)

The function Ψ(λ, r, z) is a (d − 2) × (d − 2) matrix such that Ψ(0, r, z) = g(r, z), where g is a
solution of Equation (68). Compatibility of Equations (88) then implies Equations (68) and (69).

Since Equations (88) are linear, we can construct new solutions by ‘dressing’ a ‘seed’ solution
g0. The seed defines matrices U0 and V0 through Equations (69). Equations (88) can then be
solved to determine Ψ0. Then, we ‘dress’ this solution using a matrix χ = χ(λ, r, z) to find a new
solution of the form

Ψ = χΨ0 . (90)

Introducing Equation (90) into Equation (88) we find a system of equations for χ. The simplest
and most interesting solutions are the solitonic ones, for which the matrix χ(λ, r, z) can be written
in terms of simple poles

χ = 1 +
n∑
k=1

Rk
λ− µ̃k

. (91)

The residue matrices Rk and the ‘pole-position’ functions µ̃k depend only on r and z. For a
dressing function of this form, it is fairly straightforward to determine the functions µ̃k and the
matrices Rk. The pole positions are

µ̃k =
{
µk for a soliton,
µ̄k for an antisoliton, (92)

where µk, µ̄k were introduced in Equations (78) and (80). In principle the parameters ak may
be complex and must appear in conjugate pairs, if the metric is to be real. However, in all the
examples that we consider, the ak are real; complex poles appear to lead to naked singularities, for
instance, in the Kerr solution they occur when the extremality bound on the angular momentum
is violated.

The solution for the matrices Rk, where k labels the solitons, can be constructed by first
introducing a set of d− 2-dimensional vectors m(k) using the seed as

m(k)
a = m

(k)
0b

[
Ψ−1

0 (µ̃k, r, z)
]
ba
. (93)

The constant vectorsm(k)
0 introduced here are the crucial new data determining the rod orientations

in the new solution. Now defining the symmetric matrix

Γkl =
m

(k)
a (g0)abm

(l)
b

r2 + µ̃kµ̃l
, (94)
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the Rk are

(Rk)ab = m(k)
a

n∑
l=1

(Γ−1)lkm
(l)
c (g0)cb

µ̃l
. (95)

All the information about the solitons that are added to the solution is contained in the soliton
positions ak and the soliton-orientation vectors m(k)

0 . This is all we need to determine the dressing
matrix in Equation (91), and then the new metric g(r, z) = Ψ(0, r, z) = χ(0, r, z)Ψ0(0, r, z),

gab = (g0)ab −
n∑

k,l=1

(g0)acm
(k)
c (Γ−1)kl m

(l)
d (g0)db

µ̃kµ̃l
. (96)

There is, however, one problem that turns out to be particularly vexing in d > 4: the new
metric g in Equation (96) does not satisfy, in general, the constraint (67); the introduction of the
n solitons gives a determinant for the new metric

det g = (−1)nr2n
(

n∏
k=1

µ̃ −2
k

)
det g0 . (97)

A determinant of a new physical solution g(phys) must satisfy constraint (67), but g in Equation (97)
does not. This problem can be expediently resolved by simply multiplying the metric obtained in
Equation (96) by an overall factor

g(phys) = ±
(

r2

±detg

) 1
d−2

g (98)

(we may ignore here the choice of ± signs). Now, observe that the problem that Equation (98)
solves is that of making the rod densities at each point along the axis to add up to a total density of
1/2. However, recall that regularity required that individual rod densities, and not just their sums,
be exactly equal to 1/2. This is a problem for Equation (98) whenever d > 4; since Equation (97)
contains only solitons and antisolitons with regular densities ±1/2 (with −1/2 allowed only at
intermediate steps), the fractional power in Equation (98) introduces rods with fractional densities
1/(d− 2), which in d > 4 will always result in curvature singularities at the rod.

A possible way out of this problem is to restrict oneself to transformations that act only on a
2×2 block of the seed g0 [165]. In this case it is possible to apply the above renormalization to only
this part of the metric – effectively, the same as in four dimensions – and thus obtain a solution
with the correct, physical rod densities. However, it is clear that, if we start from diagonal seeds,
this method cannot deal with solutions with off-diagonal terms in more than one 2× 2 block, e.g.,
with a single rotation. It cannot be applied to obtain solutions with rotation in several planes.
Still, [7] applies this method to obtain solutions with arbitrary number of rods, with rotation in a
single plane.

Fortunately, a clever and very practical way out of this problem has been proposed by Pomer-
ansky [211], that can deal with the general case in any number of dimensions. The key idea is the
observation that Equation (97) is independent of the ‘realignment’ vectors m(k)

0b . One may then
start from a solution with physical rod densities, ‘remove’ a number of solitons from it (i.e., add
solitons or antisolitons with negative densities −1/2), and then re-add these same solitons, but now
with different vectors m(k)

0b , so the rods affected by these solitons acquire, in general, new direc-
tions. If the original seed solution satisfied the determinant constraint (67), then by construction
so will the metric obtained after re-adding the solitons (including, in particular, the sign). And
more importantly, if the densities of the initial rods are all ±1/2 and negative densities do not
appear in the end result, the final metric will only contain regular 1/2 densities.
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In the simplest form of this method, one starts from a diagonal, hence static, solution (g0, e2ν0)
and then removes some solitons or antisolitons with ‘trivial’ vectors aligned with one of the Killing
basis vectors m(k)

0 = ξ(a), i.e., m(k)
0b = δab (recall that in the diagonal case this alignment of rods

is indeed possible). Removing a soliton or antisoliton µ̃k at z = ak aligned with the direction a
amounts to changing

(g′0)aa = − µ̃
2
k

r2
(g0)aa , (99)

while leaving unchanged all other metric components (g′0)bb = (g0)bb with b 6= a. We now take
this new metric g′0 as the seed to which, following the BZ method, we re-add the same solitons
and antisolitons, but with more general vectors m(k)

0 =
∑
b Cbξ(b). Note that there is always the

freedom to re-scale each of these vectors by a constant. Finally, the two-dimensional conformal
factor e2ν for the new solution is obtained from the seed as

e2ν = e2ν0
det Γ
det Γ0

, (100)

where the matrices Γ0 and Γ are obtained from Equation (94) using g0 and g respectively.
If the vectors m(k)

0a for the re-added solitons mix the time and spatial Killing directions, then
this procedure may yield a stationary (rotating) version of the initial static solution. The method
requires the determination of the function Ψ0(λ, r, z) that solves Equation (88) for the seed. This is
straightforward to determine for diagonal seeds (see the examples below), so for these the method
is completely algebraic. Although even a two-soliton transformation of a multiple-rod metric can
easily result in long expressions for the metric coefficients, the method can be readily implemented
in a computer program for symbolic manipulation. The procedure can also be applied, although
it becomes quite more complicated, to nondiagonal seeds. In this case, the function Ψ0(λ, r, z) for
the nondiagonal seed is most simply determined if this solution itself is constructed starting from
a diagonal seed. The doubly-spinning black ring of [212] was obtained in this manner.

5.2.2.3 BZ construction of the Kerr, Myers–Perry and black-ring solutions We sketch
here the method to obtain all known black-hole solutions with connected horizons in four and five
dimensions. These solutions illustrate how to add rotation to S2, S3 and S1 × S2 components of
multiple-black-hole horizons.

The simplest case, which demonstrates one of the basic tools for adding rotation in more
complicated cases, is the Kerr solution – in fact, one generates the Kerr–Taub-NUT solution, and
then sets the nut charge to zero. Begin from the Schwarzschild solution, generated, e.g., using the
techniques available for Weyl solutions [82], and whose rod structure is depicted in Figure 8. The
seed metric is

g0 = diag
{
−µ1

µ2
, r2

µ2

µ1

}
, (101)

with a1 < a2. Then, remove an antisoliton at z = a1, with vector m(1)
0 = (1, 0), and a soliton at

z = a2 with the same vector. Following rule (99) we obtain the matrix

g′0 = diag
{
−µ2

µ1
, r2

µ2

µ1

}
. (102)

It is now convenient (but not necessary) to re-scale the metric by a factor µ1/µ2. This yields the
new metric

g̃′0 = diag
{
−1, r2

}
. (103)

This is nothing but flat space; what we have done here is undo the generation of the Schwarzschild
metric out of Minkowski space. But now the idea is to retrace our previous steps, after re-adding
the solitons with new vectors m(1,2)

0 .
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So, following the method above, add an antisoliton at z = a1 and a soliton at z = a2, with
respective constant vectors m(1)

0 = (1, A1) and m(2)
0 = (1, A2). For this step, we need to construct

the matrix Γ in Equation (94), which in turn requires the matrix

Ψ̃0(λ, r, z) = diag
{
−1, r2 − 2zλ− λ2

}
(104)

that solves the spectral Equations (88) for g̃′0. Equations (93), (94), and (96) then give a new
metric g̃. But we still have to undo the rescaling we did to get g̃′0 from g′0. That is,

g =
µ2

µ1
g̃ . (105)

By construction, g is correctly normalized, i.e., it satisfies Equation (67). Finally, the function e2ν

is obtained using Equation (100), which is straightforward since we obtained Γ when the solitons
were re-added, and Γ0 = Γ(A1 = A2 = 0). The new solution contains two more parameters than
the Schwarzschild seed: these correspond to the rotation and nut parameters. The latter can be
set to zero once the parameters are correctly identified. For details about how the Boyer-Lindquist
form of the Kerr solution is recovered, see [10].

The Myers–Perry black hole with two angular momenta is obtained in a very similar way [211]
starting from the five-dimensional Schwarzschild–Tangherlini solution, whose rod structure is
shown in Figure 8. We immediately see that

g0 = diag
{
−µ1

µ2
, µ2,

r2

µ1

}
. (106)

Now remove an antisoliton at z = a1 and a soliton at z = a2, both with vectors (1, 0, 0), to find

g′0 = diag
{
−µ2

µ1
, µ2,

r2

µ1

}
. (107)

An overall rescaling by µ1/µ2 simplifies the metric to

g̃′0 = diag
{
−1, µ1,

r2

µ2

}
= diag {−1, µ1,−µ̄2} . (108)

This is the metric that we dress with solitons applying the BZ method. Observe that it does not
satisfy Equation (67) and so it is not a physical metric, but this is not a problem. The associated
Ψ̃0 is

Ψ̃0(λ, r, z) = diag {−1, µ1 − λ,−µ̄2 + λ} . (109)

Now add the antisoliton at z = a1 and the soliton at z = a2, with vectors m(1)
0 = (1, 0, B1)

and m
(2)
0 = (1, A2, 0) (more general vectors give singular solutions). A final rescaling of the

metric by µ2/µ1 yields a physically-normalized solution. The two new parameters that we have
added are associated with the two angular momenta. The MP solution with a single spin can be
obtained through a one-soliton transformation, which is not possible for Kerr. See [211] for the
transformation to the coordinates used in Section 4.2.

The black ring with rotation along the S1 requires a more complicated seed, but, on the other
hand, it requires only a one-soliton transformation [77] (the first systematic derivations of this
solution used a two-soliton transformation [148, 240]). The seed is described in Figure 9. The
static black ring of [82] (which necessarily contains a conical singularity) is recovered for a1 = a2.
However, one needs to introduce a ‘phantom’ soliton point at a1 and a negative density rod, in
order to eventually obtain the rotating black ring. Thus, we see that the initial solution need not
satisfy any regularity requirements. To obtain the rotating black ring, we remove an antisoliton
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(     )1 a 2 a 3 a 4 a 2 a 3 a 4a 1

(a) (b)

a

Figure 9: Rod structures for (a) the seed used to generate (b) the rotating black ring. The seed metric
is diagonal, and the dotted rod has negative density −1/2. In the final solution the parameters can be
adjusted so that the metric at z = a1 on the axis is completely smooth. The (upper) horizon rod in
the final solution has mixed direction (1, 0,Ωψ), while the other rods are aligned purely along the φ or ψ
directions.

at z = a1 with direction (1, 0, 0), and re-add it with vector m(1)
0 = (1, 0, B1). At the end of the

process one must adjust the parameters, including B1 and the rod positions, to remove a possible
singularity at the phantom point a1.

The doubly-spinning ring has resisted all attempts at deriving it directly from a diagonal, static
seed. Instead, [212] obtained it in a two-step process. Rotation of the S2 of the ring is similar to
the rotation of the Kerr solution. In fact, the black-ring solutions with rotation only along the S2

can be obtained by applying to the static black ring the same kind of two-soliton transformations
that yielded Kerr from a Schwarzschild seed (101) [239]. Hence, if we begin from the black ring
rotating along the S1 and perform similar soliton and antisoliton transformations at the endpoints
of the horizon rod, we can expect to find a doubly-spinning ring. The main technical difficulty is
in constructing the function Ψ0(λ, r, z) for the single-spin black-ring solution (50). However, if we
construct this solution via a one-soliton transformation as we have just explained, this function is
directly obtained from Equation (90). In this manner, solution (57) was derived.

This method has also been applied to construct solutions with disconnected components of
the horizon, which we shall discuss next. The previous examples provide several ‘rules of thumb’
for constructing such solutions. However, there is no precise recipe for the most efficient way of
generating the sought solution. Quite often, unexpected pathologies show up, of both local and
global type, so a careful analysis of the solutions generated through this method is always necessary.

Finally, observe that there are certain arbitrary choices in this method; it is possible to choose
different solitons and antisolitons, with different orientations, and still get essentially the same final
physical solution. Also, the intermediate rescaling, and the form for Ψ̃0, admit different choices.
All this may lead to different-looking forms of the final solution, some of them possibly simpler
than others. Occasionally, spurious singularities may be introduced through bad choices.

5.2.2.4 Other methods In four dimensions there exists another technique, akin to the Bäcklund
transformation that adds solitons to a seed solution, to integrate the equations for the stationary
axisymmetric class of vacuum solutions [203, 137, 29]. [192, 149] have extended this to higher
dimensions. Unfortunately, though this method can produce simpler expressions than the BZ
technique, it cannot deal with more than two off-diagonal terms, and hence, no more than a single
angular momentum. [192] applied this method to derive a black ring with rotation in the S2 (but
not along the S1). The same authors used this technique to provide the first systematic derivation
(i.e., through explicit integration of Einstein’s equations, instead of guesswork) of the black ring
with rotation along S1 [148]. The connection between the Bäcklund transformation method and
the BZ technique has been studied in [238], where it is argued that all the solutions obtained by
a two-soliton Bäcklund transformation on an arbitrary diagonal seed are contained among those
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that the BZ method generates from the same seed. This is not too surprising in view of similar,
and more general, results in four dimensions [53, 54]. It may be interesting to investigate the
application of related but more efficient, axisymmetric solution-generating methods [226, 189] to
higher dimensions.

[114] develops a different algebraic method to obtain stationary axisymmetric solutions in five
dimensions from a given seed. An SO(2, 1) subgroup of the “hidden” SL(3,R) symmetry of
solutions with at least one spatial Killing vector (the presence of a second one is assumed later) is
identified that preserves the asymptotic boundary conditions, and whose action on a static solution
generates a one-parameter family of stationary solutions with angular momentum, e.g., one can
obtain the Myers–Perry solution from a Schwarzschild–Tangherlini seed. It is conjectured that
all vacuum stationary axisymmetric solutions can be obtained by repeated application of these
transformations on static seeds.

5.3 Multiple-black-hole solutions

In d = 4 it is believed that there are no stationary multiple-black-hole solutions of vacuum gravity.
However, such solutions do exist in d = 5. ‘Black Saturn’ solutions, in which a central MP-type of
black hole is surrounded by a concentric rotating black ring, have been constructed in [77]. They
exhibit a number of interesting features, such as rotational dragging of one black object by the
other, as well as both co- and counter-rotation. For instance, we may start from a static seed and
act with the kind of one-soliton BZ transformation that turns on the rotation of the black ring.
This gives angular momentum (measured by a Komar integral on the horizon) to the black ring
but not to the central black hole. However, the horizon rod of this black hole is reoriented and
acquires a nonzero angular velocity: the black hole is dragged along by the black-ring rotation.
It is also possible (this needs an additional one-soliton transformation that turns on the rotation
of the MP black hole) to have a central black hole with a static horizon that nevertheless has
nonvanishing angular momentum; the ‘proper’ inner rotation of the black hole is cancelled at its
horizon by the black-ring drag force.

The explicit solutions are rather complicated, but an intuitive discussion of their properties is
presented in [73]. The existence of black Saturns is hardly surprising; since black rings can have
arbitrarily large radius, it is clear that we can put a small black hole at the center of a very long
black ring, and the interaction between the two objects will be negligible. In fact, since a black
ring can be made arbitrarily thin and light for any fixed value of its angular momentum, for any
nonzero values of the total mass and angular momentum, we can obtain a configuration with larger
total area than any MP black hole or black ring; put almost all the mass in a central, almost-static
black hole, and the angular momentum in a very thin and long black ring. Such configurations can
be argued to attain the maximal area (i.e., entropy) for given values of M and J . Observe also
that for fixed total (M,J) we can vary, say, the mass and spin of the black ring, while adjusting
the mass and spin of the central black hole to add up to the total M and J . These configurations,
then, exhibit doubly-continuous nonuniqueness.

We can similarly consider multiple-ring solutions. Di-rings, with two concentric black rings
rotating on the same plane, were first constructed in [150]; [85] re-derived them using the BZ
approach. Each new ring adds two parameters to the continuous degeneracy of solutions with
given total M and J .

Note that the surface gravities (i.e., temperatures) and angular velocities of disconnected com-
ponents of the horizon are in general different. Equality of these ‘intensive parameters’ is a neces-
sary condition for thermal equilibrium – and presumably also for mergers in phase space to solutions
with connected horizon components; see Section 6.2. So these multiple-black-hole configurations
cannot, in general, exist in thermal equilibrium (this is besides the problems of constructing a
Hartle–Hawking state when ergoregions are present [157]). The curves for solutions, where all
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disconnected components of the horizon have the same surface gravities and angular velocities, are
presented in Figure 10 (see [73]). All continuous degeneracies are removed, and black Saturns are
always subdominant in total horizon area. It is expected that no multiple-ring solutions exist in
this class.

1& ' ' ' ' ' ''27
�������������
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Figure 10: Curves aH(j) for phases of five-dimensional black holes with a single angular momentum: MP
black hole (black), black ring (dark gray), black Saturn (light gray). We only include those black Saturns,
where the central black hole and the black ring have equal surface gravities and angular velocities. The
three curves meet tangentially at a naked singularity at j = 1, aH = 0. The cusp of the black-ring curve
occurs at j =

p
27/32 ≈ 0.9186, aH = 1. The cusp of the black-Saturn curve is at j ≈ 0.9245, with area

aH ≈ 0.81.

It is also possible to have two black rings lying and rotating on orthogonal, independent planes.
Such bicycling black rings have been constructed using the BZ method [152, 78], and provide a
way of obtaining configurations with arbitrarily large values of both angular momenta for fixed
mass – which cannot be achieved simultaneously for both spins, either by the MP black holes or by
doubly-spinning black rings. The solutions in [152, 78] are obtained by applying to each of the two
rings the kind of transformations that generate the singly-spinning black ring. Thus each black
ring possesses angular momentum only on its plane, along the S1, but not in the orthogonal plane,
on the S2 – nevertheless, they drag each other so that the two horizon angular velocities are both
nonzero on each of the two horizons. The solutions contain four free parameters, corresponding to,
e.g., the masses of each of the rings and their two angular momenta. It is clear that a more general,
six-parameter solution must exist in which each black ring has both angular momenta turned on.

It can be argued, extending the arguments in [73], that multiple-black-hole solutions allow
one to cover the entire (j1, j2) phase plane of five-dimensional solutions. It would be interesting
to determine for which parameter values these multiple black holes have the same surface grav-
ity and angular velocities on all disconnected components of the horizon. With this constraint,
multiple-black-hole solutions still allow one to cover a larger region of the (j1, j2) plane than already
covered by solutions with a connected horizon;see Figure 7. For instance, it can be argued that
some bicycling black rings (within the six-parameter family mentioned above for which the four
angular velocities of the entire system can be varied independently) should satisfy these ‘thermal
equilibrium’ conditions; as we have seen, a doubly-spinning black ring can have Ω1 = Ω2. Thus,
if we consider two identical doubly-spinning thin black rings, one on each of the two planes, then
we can make them have S1 -angular velocity equal to the S2-angular velocity of the other ring in
the orthogonal plane. These solutions then lie along the lines |j1| = |j2|, reaching arbitrarily large
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|j1,2|, which is not covered by the single-black-hole phases in Figure 7. Clearly, there will also exist
configurations extending continuously away from this line.

Black Saturns with a single black ring that satisfy ‘thermal equilibrium’ conditions should also
exist. In fact, the possibility of varying the temperature of the ring by tuning the rotation in the
S2 might allow one to cover portions of the (j1, j2) plane beyond Figure 7. If so, this would be
unlike the situation with a single rotation, where thermal-equilibrium Saturns lie within the range
of j of black rings, Figure 10.

The Weyl ansatz of Section 5.2.1 enables one to easily generate solutions in d = 5 with multiple
black holes of horizon topology S3, which are asymptotically flat [82, 231]. However, all these
solutions possess conical singularities reflecting the attraction between the different black holes. It
seems unlikely that the extension to include off-diagonal metric components (rotation and twists)
could eliminate these singularities and yield balanced solutions.

5.4 Stability

The linearized perturbations of the black-ring metric (50) have not yielded to analytical study.
The apparent absence of a Killing tensor prevents the separation of variables even for massless
scalar-field perturbations. In addition, the problem of decoupling the equations to find a master
equation for linearized gravitational perturbations, already present for the Myers–Perry solutions,
is, if anything, exacerbated for black rings.

Studies of the classical stability of black rings have, therefore, been mostly heuristic. Already the
original paper [83] pointed out that very thin black rings locally look like boosted black strings (this
was made precise in [71]), which were expected to suffer from GL-type instabilities. The instability
of boosted black strings was indeed confirmed in [144]. Thus, thin black rings are expected to be
unstable to the formation of ripples along their S1 direction. This issue was examined in further
detail in [76], which found that thin black rings seem to be able to accommodate unstable GL
modes down to values j ∼ O(1). Thus, it is conceivable that a large fraction of black rings in
the thin branch, and possibly all of this branch, suffer from this instability. The ripples rotate
with the black ring and then should emit gravitational radiation. However, the timescale for this
emission is much longer than the timescale of the fastest GL mode, so the pinchdown created by
this instability will dominate the evolution, at least initially. The final fate of this instability of
black rings depends on the endpoint of the GL instability, but it is conceivable, and compatible
with an increment of the total area, that the black-ring fragments separate into smaller black holes
that then fly away.

Another kind of instability was discussed in [76]. By considering off-shell deformations of the
black ring (namely, allowing for conical singularities), it is possible to compute an effective potential
for radial deformations of the black ring. Fat black rings sit at maxima of this potential, while
thin black rings sit at minima. Thus, fat black rings are expected to be unstable to variations
of their radius, and presumably collapse to form MP black holes. The analysis in [76] is in fact
consistent with a previous, more abstract analysis of local stability in [2]. This is based on the
‘turning-point’ method of Poincaré, which studies equilibrium curves for phases near bifurcation
points. For the case of black rings, one focuses on the cusp, where the two branches meet. One
then assumes that these curves correspond to extrema of some potential, e.g., an entropy, that
can be defined everywhere on the plane (j, aH). The cusp then corresponds to an inflection point
of this potential at which a branch of maxima and a branch of minima meet. By continuity, the
branch with the higher entropy will be the most stable branch, and the one with lower entropy will
be unstable. Thus, for black rings an unstable mode is added when going from the upper (thin) to
the lower (fat) branch. This is precisely as found in [76] from the mechanical potential for radial
deformations.

Thus, a large fraction of all single-spin neutral black rings are expected to be classically unstable,
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and it remains an open problem whether a window of stability exists for thin black rings with
j ∼ O(1). The stability, however, can improve greatly with the addition of charges and dipoles.

Doubly-spinning black rings are expected to suffer from similar instabilities. Insofar as a fat
ring branch that meets at a cusp with a thin ring branch exists, the fat rings are expected to be
unstable. Very thin rings are also expected to be unstable to GL-perturbations that form ripples.
The angular momentum on the S2 may be redistributed nonuniformly along the ring, with the
larger blobs concentrating more spin. In addition, although it has been suggested that super-
radiant ergoregion instabilities associated to rotation of the S2 might exist [68], a proper account
of the asymptotic behavior of super-radiant modes needs to be made before concluding that the
instability is actually present.

Much of what we can say about the classical stability of black Saturns and multiple rings follows
from what we have said above for each of its components, e.g., if their rings are thin enough, they
are expected to be GL-unstable. We know essentially nothing about what happens when the
gravitational interaction among the black objects involved is strong. For instance, we do not know
if the GL instability is still present when a thin black ring lassoes at very close range a much larger,
central, MP black hole.

Massive geodesics on the plane of a black ring (see [143]) show that a particle at the center of
the S1 is unstable to migrating away towards the black ring. This suggests that a black Saturn
with a small black hole at the center of a larger black ring should be unstable. One possibility for
a different instability of black Saturns appears from the analysis of counter-rotating configurations
in [77]. For large enough counter-rotation, the Komar-mass of the central black hole vanishes and
then becomes negative. By itself, this does not imply any pathology, as long as the total ADM
mass is positive and the horizon remains regular, which it does. However, it suggests that the
counter-rotation in this regime becomes so extreme that the black hole might tend to be expelled
off the plane of rotation.

Clearly, the classical stability of all, old and new, rotating black-hole solutions of five-dimensional
general relativity remains largely an open problem, where much work remains to be done.
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6 Vacuum Solutions in More Than Five Dimensions

With no available techniques to construct asymptotically-flat exact solutions beyond those found
by Myers and Perry, the situation in d ≥ 6 is much less developed than in d = 5. Recall that
the symmetry requirements for the class of solutions (66) are incompatible with the asymptotic
symmetries of globally flat space in d > 5; metrics of type (66) necessarily involve directions
with nonflat asymptotics (e.g., infinitely-extended black strings and branes) and/or asymptotic
compact Kaluza–Klein circles. In order to preserve asymptotic flatness one would instead ask for
rotational symmetry around ‘axes’ that are hyperplanes of a codimension larger than two, but the
integrability of the resulting equations [34, 35] remains essentially an unsolved problem.

However, despite the paucity of exact solutions, there are strong indications that the variety
of black holes that populate general relativity in d ≥ 6 is vastly larger than in d = 4, 5. A first
indication came from the conjecture in [81] of the existence of black holes with spherical horizon
topology but with axially-symmetric ‘ripples’ (or ‘pinches’). The plausible existence of black rings
in any d ≥ 5 was argued in [144, 76]. More recently, [80] has constructed approximate solutions
for black rings in any d ≥ 5 and then exploited the conjecture of [81] to try to draw a phase
diagram with connections and mergers between the different expected phases. In the following we
summarize these results.

6.1 Approximate solutions from curved thin branes

In the absence of exact techniques, [80] resorts to approximate constructions, in particular to the
method of matched asymptotic expansions previously used in the context of black holes localized in
Kaluza–Klein circles in [126, 115, 156, 116]7. The basic idea is to find two widely separated scales in
the problem, call them R1 and R2, with R2 � R1, and then try to solve the equations in two limits;
first, as a perturbative expansion for small R2, and then in an expansion in 1/R1. The former
solves the equations in the far region r � R2 in which the boundary condition, e.g., asymptotic
flatness, fixes the integration constants. The second expansion is valid in the near region r � R1.
In order to fix the integration constants in this case, one matches the two expansions in the overlap
region R2 � r � R1 in which both approximations are valid. The process can then be iterated to
higher orders in the expansion; see [115] for an explanation of the systematics involved.

In order to construct a black ring with horizon topology S1 × Sd−3, we take the scales R1, R2

to be the radii of the S1 and Sd−3, respectively8. To implement the above procedure, we take
R2 = r0, the horizon radius of the Sd−3 of a straight boosted black string, and R1 = R the large
circle radius of a very thin circular string. Thus, in effect, to first order in the expansion what
one does is: (i) find the solution within the linearized approximation, i.e., for small r0/r, around
a Minkowski background for an infinitely-thin circular string with momentum along the circle; (ii)
perturb a straight boosted black string so as to bend it into an arc of very large radius 1/R. Step
(ii) not only requires matching to the previous solution in order to provide boundary conditions
for the homogeneous differential equations; one also needs to check that the perturbations can be
made compatible with regularity of the horizon.

It is worth noting that the form of the solution thus found exhibits a considerable increase in
complexity when going from d = 5, where an exact solution is available, to d > 5; simple linear
functions of r in d = 5 change to hypergeometric functions in d > 5. We take this as an indication
that exact closed analytical forms for these solutions may not exist in d > 5.

We will not dwell here on the details of the perturbative construction of the solution (see [80] for
this), but instead we shall emphasize that adopting the view that a black object is approximated

7The classical effective field theory of [49, 168] is an alternative to matched asymptotic expansions, which pre-
sumably should be useful as well in the context discussed in this section.

8The Sd−3 is not round for known solutions, but one can define an effective scale R2 as the radius of a round
Sd−3 with the same area.
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by a certain very thin black brane curved into a given shape can easily yield nontrivial information
about new kinds of black holes. Eventually, of course, the assumption that the horizon remains
regular after curving needs to be checked.

Consider then a stationary black brane, possibly with some momentum along its worldvolume,
with horizon topology Rp+1 × Sq, with q = d− p− 2. When viewed at distances much larger than
the size r0 of the Sq, we can approximate the metric of the black-brane spacetime by the gravita-
tional field created by an ‘equivalent source’ with distributional energy tensor T νµ ∝ rq−1

0 δ(q+1)(r),
with nonzero components only along directions tangent to the worldvolume, and where r = 0
corresponds to the location of the brane. Now we want to put this same source on a curved, com-
pact p-dimensional spatial surface in a given background spacetime (e.g., Minkowski, but possibly
(anti-)de Sitter or others, too). In principle we can obtain the mass M and angular momenta Ji of
the new object by integrating T tt and T it over the entire spatial section of the brane worldvolume.
Moreover, the total area AH is similarly obtained by replacing the volume of Rp with the volume of
the new surface. Thus, it appears that we can easily obtain the relation AH(M,Ji) in this manner.

There is, however, the problem that having changed the embedding geometry of the brane, it
is not guaranteed that the brane will remain stationary. Moreover, AH will be a function not only
of (M,Ji), but will also depend explicitly on the geometrical parameters of the surface. However,
we would expect that in a situation of equilibrium, some of these geometrical parameters would be
fixed dynamically by the mechanical parameters (M,Ji) of the brane. For instance, take a boosted
string and curve it into a circular ring so that the linear velocity turns into angular rotation. If
we fix the mass and the radius, then the ring will not be in equilibrium for every value of the
boost, i.e., of the angular momentum; so, there must exist a fixed relation R = f(M,J). This is
reflected in the fact that, in the new situation, the stress-energy tensor is in general not conserved,
∇µTµν 6= 0; additional stresses would be required to keep the brane in place. An efficient way of
imposing the brane equations of motion is, in fact, to demand conservation of the stress-energy
tensor. In the absence of external forces, the classical equations of motion of the brane derived in
this way are [28]

Kρ
µνT

µν = 0 , (110)

where Kρ
µν is the second fundamental tensor, characterizing the extrinsic curvature of the embed-

ding surface spanned by the brane worldvolume. For a string on a circle of radius R in flat space,
parameterized by a coordinate z ∼ z + 2πR, this equation becomes

Tzz
R

= 0 . (111)

In d = 5, this can be seen to correspond to the condition of the absence of conical singularities
in solution (50), in the limit of a very thin black ring [71]. [80] shows that this condition is also
required in d ≥ 6 in order to avoid curvature singularities on the plane of the ring.

In general, Equation (110) constrains the allowed values of the parameters of a black brane
that can be put on a given surface. [80] easily derives, for any d ≥ 5, that the radius R of thin
rotating black rings of given M and J is fixed to

R =
d− 2√
d− 3

J

M
; (112)

so large R corresponds to large spin for fixed mass. The horizon area of these thin black rings goes
like

AH(M,J) ∝ J−
1

d−4 M
d−2
d−4 . (113)

This is to be compared to the value for ultraspinning MP black holes in d ≥ 6 (cf. Equations (40),
(41) as ν → 0),

AH(M,J) ∝ J−
2

d−5 M
d−2
d−5 . (114)
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This shows that in the ultraspinning regime the rotating black ring has larger area than the MP
black hole.

6.2 Phase diagram

Using the dimensionless area and spin variables (21), Equation (113) allows one to compute the
asymptotic form of the curve aH(j) in the phase diagram at large j for black rings. However,
when j is of order one, the approximations in the matched asymptotic expansion break down, and
the gravitational interaction of the ring with itself becomes important. At present we have no
analytical tools to deal with this regime for generic solutions. In most cases, numerical analysis
may be needed to obtain precise information.

Nevertheless, [80] contains advanced heuristic arguments, which propose a completion of the
curves that is qualitatively consistent with all the information available at present. A basic ingre-
dient is the observation in [81], discussed in Section 4.1, that in the ultraspinning regime in d ≥ 6,
MP black holes approach the geometry of a black membrane ≈ R2 × Sd−4 spread out along the
plane of rotation.

We have already discussed how using this analogy, [81] argues that ultraspinning MP black
holes should exhibit a Gregory–Laflamme-type of instability. Since the threshold mode of the GL
instability gives rise to a new branch of static nonuniform black strings and branes [117, 120, 248],
[81] argues that it is natural to conjecture the existence of new branches of axisymmetric ‘lumpy’
(or ‘pinched’) black holes, branching off from the MP solutions along the stationary axisymmetric
zero-mode perturbation of the GL-like instability.

(iv)

r
0

r
0

L

L

a

(i)

(ii)

(iii)

Figure 11: Correspondence between phases of black membranes wrapped on a two-torus of side L (left)
and quickly-rotating MP black holes with rotation parameter a ∼ L ≥ r0 (right: must be rotated along
a vertical axis): (i) uniform black membrane and MP black hole; (ii) nonuniform black membrane and
pinched black hole; (iii) pinched-off membrane and black hole; (iv) localized black string and black ring
(reproduced from [80]).
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[80] develops further this analogy, and draws a correspondence between the phases of black
membranes and the phases of higher-dimensional black holes, illustrated in Figure 11. Although
the analogy has several limitations, it allows one to propose a phase diagram in d ≥ 6 of the form
depicted in Figure 12, which should be compared to the much simpler diagram in five dimensions,
Figure 10. Observe the presence of an infinite number of black holes with spherical topology,
connected via merger transitions to MP black holes, black rings, and black Saturns. Of all multiple-
black-hole configurations, the diagram only includes those phases in which all components of the
horizon have the same surface gravity and angular velocity; presumably, these are the only ones
that can merge to a phase with connected horizon. Even within this class of solutions, the diagram
is not expected to contain all possible phases with a single angular momentum; blackfolds with
other topologies must likely be included as well. The extension to phases with several angular
momenta also remains to be done.
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Figure 12: Proposal of [80] for the phase curves aH(j) of thermal equilibrium phases in d ≥ 6. The solid
lines and figures have significant arguments in their favor, while the dashed lines and figures might not exist
and admit conceivable, but more complicated, alternatives. Some features have been drawn arbitrarily;
at any given bifurcation, and in any dimension, smooth connections are possible instead of swallowtails
with cusps; also, the bifurcation into two black-Saturn phases may happen before, after, or right at the
merger with the pinched black hole. Mergers to di-rings or multiple-ring configurations that extend to
asymptotically large j seem unlikely. If thermal equilibrium is not imposed, the whole semi-infinite strip
0 < aH < aH(j = 0), 0 ≤ j <∞ is covered, and multiple rings are possible.

Indirect evidence for the existence of black holes with pinched horizons is provided by the results
of [180], which finds ‘pinched plasma-ball’ solutions of fluid dynamics that are CFT duals of pinched
black holes in six-dimensional AdS space. The approximations involved in the construction require
that the horizon size of the dual black holes be larger than the AdS curvature radius, and thus do
not admit a limit to flat space. Nevertheless, their existence provides an example, if indirect, that
pinched horizons make an appearance in d = 6 (and not in d = 5).
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6.3 Stability

The situation in d ≥ 6 is very similar to what we described for d = 5 in Section 5.4; most of what
we know is deduced by heuristic analogies and approximate methods. The following prototypic
instabilities can be easily identified:

• GL-type instabilities in ultraspinning regimes. Both MP black holes and black rings
approach, in this regime, string or membrane-like configurations that are expected to be
unstable to growing nonuniformities along the ‘long’ directions on the horizon. Such insta-
bilities give rise, in the cases where the nonuniformities can remain stationary, to zero modes
that branch off into new solutions with broken symmetry.

• Turning-point instabilities. Given the phase diagram with different curves aH(j) in it, we
expect that near a point where different phases meet, the branch with lesser area should have
one more unstable mode than those with greater area. This happens along black-ring curves
at the turning points where j reaches a minimum. The instability is presumably related to
radial deformations of the ring. It also happens at mergers between phases.

We end this section emphasizing that, presumably, new concepts and tools are required for the
characterization of black holes in d ≥ 6, let alone for their explicit construction.

The general problem of the dynamical linearized stability of MP black holes, in particular in the
case with a single rotation, becomes especially acute for the determination of possible black-hole
phases in d ≥ 6. The arguments in favor of an ultraspinning instability seem difficult to evade, so
a most pressing problem is to locate the point (i.e., the value of j) at which this instability appears
as a stationary mode, and then perturb the solution along this mode to determine the direction in
which the new branch of solutions evolves.
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7 Solutions with a Gauge Field

7.1 Introduction

Black holes with nontrivial gauge fields play an important role in string theory, not least because
the types of charge that they carry help identify their microscopic constituents (e.g., branes). In
this section we shall review briefly such solutions for d ≥ 5. We shall concentrate exclusively on
solutions of maximal supergravity theories arising as consistent toroidal reductions of d = 10, 11
supergravity.

The bosonic sector of maximal supergravity theories contains massless scalars taking values in
some coset space G/H where G is noncompact and H is compact. Since the scalars are massless,
their asymptotic values (for an asymptotically-flat solution) are arbitrary, i.e., they are moduli.
G is a global symmetry of the supergravity theory (broken to a discrete U-duality symmetry in
string/M-theory). By acting with G we can choose the moduli to be anything convenient. Given
a particular choice for the moduli, the global symmetry group is broken to H. See, e.g., [210] for
a review of this.

The only type of conserved gauge charge that an asymptotically flat solution can carry is electric
charge with respect to a 2-form field strength (or magnetic charge with respect to a d − 2 form
field strength, but this can always be dualized into a 2-form). The group H acts nontrivially on
the charges of a solution. Hence, the strategy in looking for black-hole solutions is to identify a
“seed” solution with a small number of parameters, from which a solution with the most general
charge assignments can be obtained by acting with H. For example, dimensional reduction of
d = 11 supergravity on T 6 gives the maximal N = 4, d = 5 supergravity, which has 27 Abelian
vectors and 42 scalars parameterizing the coset E6(6)/USp(8). It turns out that the a solution
with 27 independent charges can be obtained by acting with USp(8) on a seed solution with just
3 charges [58].

7.2 Topologically-spherical black holes

7.2.1 Nonextremal solutions

The construction of stationary, charged, topologically-spherical, black-hole solutions (“charged
Myers–Perry”) in maximal supergravity theories was described in [58]. It turns out that the seed
solutions are the same as for toroidal compactifications of heterotic string theory. The latter seed
solutions were constructed in [63] for d = 5 and [64, 184] for 6 ≤ d ≤ 9. In addition to their mass
and angular momenta, they are parameterized by three electric charges in d = 5 and two electric
charges for 6 ≤ d ≤ 9. For d = 10 (type IIA theory), the solution describing a rotating black hole
charged with respect to the Ramond-Ramond 2-form field strength (i.e., D0-brane charge) can be
obtained from the general rotating brane solution given in [55].

In the limit of vanishing angular momenta, all of these solutions reduce to d > 4 generalizations
of the Reissner–Nordström solution. This static case is the only case for which linearized stability
has been investigated. The spherical symmetry of static solutions permits a scalar/vector/tensor
decomposition of perturbations. For Reissner–Nordström solutions of d > 4 Einstein–Maxwell
theory, decoupled equations governing each type have been obtained [164]. These have been used to
prove analytically the stability of tensor and vector perturbations for d ≥ 5 and scalar perturbations
for d = 5 [164]. Numerical studies have revealed that scalar perturbations are also stable for
6 ≤ d ≤ 11 [169].
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7.2.2 Supersymmetric solutions: the Breckenridge-Myers-Peet-Vafa (BMPV) black
hole

Black holes saturating a Bogomolnyi-Prasad-Sommerfield (BPS) inequality play an important role
in string theory. The canonical example is the first black-hole entropy calculation [229], in which
the BPS condition provided the justification for relating the Bekenstein-Hawking entropy of a
classical black-hole solution to the statistical entropy of a microscopic brane configuration.

The only known asymptotically-flat BPS black-hole solutions occur for d = 4, 5. For d = 5, one
can obtain BPS black-hole solutions as a limit of the nonextremal charged rotating solutions just
discussed. Starting from the six-parameter seed solution of [63] one can obtain a four-parameter
BPS black hole: the BMPV black hole [17, 242]. The solution has equal angular momenta J1 =
J2 = J and the four parameters are J and the three electric charges. The mass is fixed by the BPS
relation. Note that one loses two parameters in the BPS limit; this is because the BPS limit and
the extremal limit are distinct for rotating black holes - a BPS black hole is necessarily extremal,
but the converse is untrue. As for the Myers–Perry solution, the equality of the angular momenta
gives rise to a non-Abelian isometry group R × U(1) × SU(2). Classical properties of the BMPV
solution have been discussed in detail in [102, 106].

7.3 Black rings with gauge fields

7.3.1 Dipole rings

Black holes can only carry electric charge with respect to a two-form. However, higher-rank p-forms
may also be excited by a black hole, even though there is no net charge associated with them. This
occurs naturally for black rings. Consider a black string in d dimensions. A string carries electric
charge associated with a three-form field strength H. The electric charge is proportional to the
integral of ?H over a (d− 3)-sphere that links the string. Now consider a black ring with topology
S1 × Sd−3 formed by bending the string into a loop and giving it angular momentum around the
S1. This would be asymptotically flat and, hence, the charge associated with H would be zero.
Nevertheless, H would be nonzero. Its strength can be measured by the flux of ?H through a Sd−3

linking the ring, which is no longer a conserved quantity but rather a nonconserved electric dipole.
Such a ring would have three parameters, but would only have two conserved charges (mass and
angular momentum), hence it would exhibit continuous nonuniqueness.

Exact solutions describing such “dipole rings” have been constructed in d = 5 [79]. In d = 5,
one can dualize a 3-form H to a two-form, so these solutions carry magnetic dipoles with respect
to two-form field strengths. The dipole rings of [79] are solutions of N = 1, d = 5 supergravity
coupled to two vector multiplets, which is a theory with U(1)3 gauge group that can be obtained
by consistent truncation of the maximal d = 5 supergravity theory. These rings are characterized
by their mass M , angular momentum J1 around the S1 of the horizon, and three dipoles qi. The
angular momentum J2 on the S2 of the horizon vanishes. They have the same R×U(1)2 symmetry
as vacuum black rings. These solutions are seed solutions for the construction of solutions of
maximal d = 5 supergravity with 27 independent dipoles obtained by acting with USp(8) as
described above. One would expect the existence of more general dipole-ring solutions with two
independent nonzero angular momenta, but these are yet to be discovered.

7.3.2 Charged black rings, supersymmetric black rings

Black rings can also carry conserved electric charges with respect to a 2-form field strength (the
first regular example was found in [70], which can be regarded as having two charges and one
dipole in a U(1)3 supergravity theory; see also [71]). Hence there is the possibility that they can
saturate a BPS inequality. The first example of a supersymmetric black-ring solution was obtained
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for minimal d = 5 supergravity in [74] using a canonical form for supersymmetric solutions of
this theory [101]. This was then generalized to a supersymmetric black-ring solution of the U(1)3

supergravity in [12, 75, 100]. The latter solution has 7 independent parameters, which can be taken
to be the 3 charges, 3 dipoles and J1. The mass is fixed by the BPS relation and J2 is determined
by the charges and dipoles. See [84] for more detailed discussion of these solutions.

The most general, stationary, black-ring solution of the U(1)3 supergravity theory is expected to
have nine parameters, since one would expect the three charges, three dipoles, two angular momenta
and the mass to be independent. This solution has not yet been constructed. Note that the general
non-BPS solution should have two more parameters than the general BPS solution, just as for
topologically-spherical rotating black holes. The most general, known, nonextremal solution [72]
has seven parameters, and was obtained by applying solution-generating transformations to the
dipole ring solutions of [79]. This solution does not have a regular BPS limit, and there is no limit
in which it reduces to a vacuum black ring with two angular momenta.

It has been argued that a nine parameter black-ring solution could not be a seed solution for the
most general black-ring solution of maximal d = 5 supergravity [181]. By acting with USp(8), one
can construct a solution with 27 independent charges from a seed with 3 independent charges or one
can construct a solution with 27 independent dipoles from a seed with three independent dipoles.
However, one cannot do both at once. If one wants to construct a solution with 27 independent
charges and 27 independent dipoles from a seed solution with three independent charges, then this
seed must have 15 independent dipoles, and hence (including the mass and angular momenta) 21
parameters in total. The seed solution for the most general supersymmetric black ring in maximal
d = 5 supergravity is expected to have 19 parameters [181].

7.4 Solution-generating techniques

[16] develops solution-generating techniques in minimal d = 5 supergravity, based on U-duality
properties of the latter. By applying one such transformation to the neutral doubly-spinning black
ring of Section 5.1.2, they obtain a new charged ring solution of five-dimensional supergravity.
However, this solution suffers from the same problem of Dirac–Misner singularities that [71] de-
scribed when a neutral single-spin ring seed is used. It appears that the problem could be solved,
like in [72], by including an additional parameter that is then tuned to cancel the pathologies.
It also seems possible that, like in [71], the neutral doubly-spinning black ring is a good seed for
black rings with two charges, one dipole, and two independent angular momenta in the U(1)3

supergravity theory.

Besides the solution-generating techniques based on string theory and supergravity (sequences
of boosts and dualities) there have been a number of analyses of the Einstein–Maxwell(-dilaton)
equations leading to other techniques for generating stationary solutions. [146] studies general
properties of the Einstein–Maxwell equations in d-dimensions with d−3 commuting Killing-vector
fields. [233] shows how four-dimensional, vacuum, stationary, axisymmetric solutions can be used
to obtain static, axisymmetric solutions of five-dimensional dilaton gravity coupled to a two-form
gauge field. Also, within the class of five-dimensional stationary solutions of the Einstein–Maxwell(-
dilaton) equations with two rotational symmetries, solution-generating techniques have been de-
veloped in [175] and [251, 253]. Note that many of these papers do not take into account the
Chern–Simons term present in d = 5 supergravity. This term is relevant when both electric and
magnetic components of the gauge field are present. Thus, it can be ignored for electrically-charged
static solutions, which do not give rise to magnetic dipoles. It does not play a role, either, for the
dipole rings of [79], which has allowed a systematic derivation of these solutions [252, 254].
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7.5 Multiple-black-hole solutions

The inclusion of electric charge makes it considerably easier to construct multiple-black-hole solu-
tions than in the vacuum case discussed above. In d = 4, there exist well-known static solutions
describing multiple extremal Reissner–Nordström black holes held in equilibrium by a cancellation
of electric repulsion and gravitational attraction [131]. Similar static solutions can be constructed
in d > 4 [198]. However, although the d = 4 solutions have smooth horizons [131], the d > 4
solutions have horizons of low differentiability [246, 22].

In d = 4, 5, multiple-black-hole solutions can be supersymmetric. Supersymmetry makes it easy
to write down stationary solutions corresponding to multiple BMPV black holes [102]. However,
the regularity of these solutions has not been investigated. Presumably they are no smoother than
the static solutions just mentioned. Although electromagnetic and gravitational forces cancel, one
might expect spin-spin interactions to play a role in these solutions, perhaps leading to even lower
smoothness, unless the spins are aligned. Note that, in general, superposition of these black holes
breaks all symmetries of a single central BMPV solution except for time-translation invariance.

Supersymmetric solutions describing stationary superpositions of multiple concentric black
rings have also been constructed [99, 100]. The rings have a common center, and can either
lie in the same plane, or in orthogonal planes. The superposition does not break any symmetries.
This may be the reason that these solutions have smooth horizons.

Turning to nonextremal solutions, one would certainly expect generalizations of the solutions
of section 5.3 with nontrivial gauge fields. A solution describing a Myers–Perry black hole with a
concentric dipole ring is presented in [255].
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8 General Results and Open Problems

8.1 Introduction

In four dimensions, the black-hole uniqueness theorem states that there is at most one stationary,
asymptotically-flat, vacuum black-hole solution with given mass and angular momentum: the Kerr
black hole. The coexistence of Myers–Perry black holes and black rings shows explicitly that black-
hole uniqueness is violated in five dimensions. By now there is strong evidence that this is even more
dramatically true in more than five dimensions. However, even if higher-dimensional black holes
are not uniquely characterized by their conserved charges, we can still hope to classify them. A
major goal of research in higher-dimensional general relativity is to solve the classification problem:
determine all stationary, asymptotically-flat black-hole solutions of the higher-dimensional vacuum
Einstein equation (or Einstein equation coupled to appropriate matter). We are still a long way
from this goal, but partial progress has been made, as we shall review below.

8.2 Black-hole topology

Logically, the first step in the proof of the d = 4 black-hole uniqueness theorem is Hawking’s black-
hole topology theorem [132], which states that (a spatial cross-section of) the event horizon must be
topologically S2. The strongest version of this theorem makes use of topological censorship. Loosely,
this is the statement that, in an asymptotically-flat and globally-hyperbolic spacetime obeying the
null-energy condition, every causal curve beginning and ending at infinity can be homotopically
deformed to infinity. This can be used to prove the topology theorem for stationary [48], and even
nonstationary [153, 95], black holes.

The existence of black rings demonstrates that topologically nonspherical horizons are possible
for d > 4. But there are still restrictions on the topology of the event horizon. It has been
shown [98, 96] that a stationary, asymptotically-flat, black-hole spacetime, obeying the dominant
energy condition, must have a horizon that is “positive Yamabe”, i.e., it must admit a metric of
positive Ricci scalar. This restricts the allowed topologies. After d = 4, the strongest restriction is
for d = 5, in which case the topology must be a connected sum of spherical spaces (3-spheres with
identifications) and S1 × S2’s.

Another topological restriction arises from cobordism theory. Consider surrounding the black
hole with a large sphere. Let Σ denote a spacelike hypersurface that runs from this sphere down to
the event horizon, which it intersects in some compact surface H. Then Σ is a cobordism between
H and a sphere. The existence of such a cobordism imposes topological restrictions on H. These
have been discussed in [136]. The results are much less restrictive than those just mentioned.

It may be that horizon topology is not very useful for classifying black holes in d ≥ 6. As
we discussed in the introduction 1, it is the combination of extended horizons with the novel
possibilities for rotation that give higher-dimensional black holes much of their richness. For a
black ring with horizon topology S1×S2, the two factors differ in that the S1, being contractible,
needs rotation to be stabilized, whereas the S2 is already a minimal surface. In d ≥ 6 we can
envisage even more complicated situations arising from the bending into different surfaces of the
worldvolume directions of a variety of black p-branes. Not only horizon topology, but also, and
more importantly, extrinsic geometry and dynamical considerations seem to be relevant to the
existence of these black holes.

8.3 Uniqueness of static black holes

In d = 4 dimensions, the Schwarzschild solution is the unique, static, asymptotically-flat, vacuum
black-hole solution. The strongest version of this theorem allows for a possibly-disconnected event
horizon, and the proof uses the positive energy theorem [19]. This proof can be extended to
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d > 4-dimensions to establish uniqueness of the d > 4-dimensional Schwarzschild solution amongst
static vacuum solutions [110]. The method can also be generalized to prove a uniqueness theorem
for static, asymptotically-flat, black-hole solutions of d > 4-dimensional Einstein–Maxwell-dilaton
theory; such black holes are uniquely characterized by their mass and charge and are described by
generalized Reissner–Nordström solutions [109].

These theorems assume that there are no degenerate components of the horizon. This as-
sumption can be eliminated for d = 4 vacuum gravity [44, 46]. In Einstein–Maxwell theory, one
can show that the only solutions with degenerate horizons are the Majumdar–Papapetrou multi-
Reissner–Nordström solutions [47]. These results have been generalized to d > 4 Einstein–Maxwell
theory [218, 220].

In conclusion, the classification problem for static black holes has been solved, at least for the
class of theories mentioned.

It must be noted, though, that the assumption of staticity is stronger than requiring vanishing
total angular momentum. The existence of black Saturns (Section 5.3) shows that there exists an
infinite number of solutions (with disconnected event horizons) characterized by a given mass and
vanishing angular momentum.

8.4 Stationary black holes

In d = 4, the uniqueness theorem for stationary black holes relies on Hawking’s result that a
stationary black hole must be axisymmetric [132]. This result has been generalized to higher
dimensions [138]. More precisely, it can be shown that a stationary, nonextremal, asymptotically-
flat, rotating, black-hole solution of d > 4 dimensional Einstein–Maxwell theory must admit a
spacelike Killing vector field that generates rotations. Here “rotating” means that the Killing
field that generates time translations is not null on the event horizon, i.e., the angular velocity is
nonvanishing. However, it can be shown that a nonrotating black hole must be static for Einstein–
Maxwell theory in d = 4 [230] and d > 4 [219], so this assumption can be eliminated. The result
of [138] also applies in the presence of a cosmological constant (e.g., asymptotically anti-de Sitter
black holes).

This theorem guarantees the existence of a single rotational symmetry. However, the known
higher-dimensional black-hole solutions (i.e., Myers–Perry and black rings) admit multiple rota-
tional symmetries; in d dimensions there are b(d − 1)/2c rotational Killing fields. Is there some
underlying reason that this must be true, or is this simply a reflection of the fact that we are only
able to find solutions with a lot of symmetry?

If there do exist solutions with less symmetry then they must be nonstatic (because of the
uniqueness theorem for d > 4 static black holes). One could look for evidence that such solu-
tions exist by considering perturbations of known solutions [216]. For example, the existence of
nonuniform black strings was first conjectured on the evidence that uniform strings exhibit a static
zeromode that breaks translational symmetry. If a Myers–Perry black hole had a stationary zero-
mode that breaks some of its rotational symmetry then that would be evidence in favor of the
existence of a new branch of solutions with less symmetry [216]. Alternatively, bifurcations could
occur without breaking any rotational symmetry. As we have discussed, [80, 81] have conjectured
that such bifurcations will happen in d ≥ 6; see Figure 12. Either case could lead to nonuniqueness
within solutions of spherical topology.

The formalism of [151] allows one to show that the only regular stationary perturbations of a
Schwarzschild black hole lead into the MP family of black holes [162]. Thus, the MP solutions are
the only stationary black holes that have a regular static limit.

The issue of how much symmetry a general stationary black hole must possess is probably the
main impediment to progress with the classification problem. At present, the only uniqueness
results for stationary higher-dimensional black holes assume the existence of multiple rotational
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symmetries. These results are for d = 5; if one assumes the existence of two rotational symme-
tries then it can be shown that the Myers–Perry solution is the unique, stationary, nonextremal,
asymptotically-flat, vacuum black-hole solution of spherical topology [194]. More generally, it has
been shown that stationary, nonextremal, asymptotically-flat, vacuum black-hole solutions with
two rotational symmetries are uniquely characterized by their mass, angular momenta, and rod
structure (see Section 5.2.2.1) [139]. The remaining step in a full classification of all d = 5 station-
ary vacuum black holes with two rotational symmetries is to prove that the only rod structures
giving rise to regular black-hole solutions are those associated with the known (Myers–Perry and
black ring) solutions.

The situation in d ≥ 6 is much further away from a complete classification, even for the class
of solutions with the maximal number of rotational symmetries. For instance, the tools to classify
the (yet to be found) infinite number of families of solutions with ‘pinched horizons’ proposed in
[80, 81] are still to be developed.

It is clear that the notion of black-hole uniqueness that holds in four dimensions, namely that
conserved charges serve to fully specify a black hole, does not admit any simple extension to higher
dimensions. This leaves us with two open questions: (a) what is the simplest and most convenient
set of parameters that fully specify a black hole; (b) how many black-hole solutions with given
conserved charges are relevant in a given physical situation.

Concerning the first question, we note that while the rod structure may provide the additional
data to determine five-dimensional vacuum black holes, one may still desire a characterization in
terms of physical parameters. In other words, since the dimensionless angular momenta ja are
insufficient to specify the solutions, an adequate physical parameterization of the phase space of
higher-dimensional black holes is still missing. [225, 241] have studied whether higher multipole
moments may serve this purpose, but the results appear to be inconclusive.

The second question is more vague, as it hinges not only on the answer to the previous question,
but also on the specification of the problem one is studying. It has been speculated that the
conserved charges may still suffice to select a unique classical stationary configuration, if supplied
with additional conditions, such as the specification of horizon topology or requiring classical
stability [166]. In five dimensions we already know that horizon topology alone is not enough,
since there are both thin and fat black rings with the same j. We have seen that, very likely,
an even larger nonuniqueness occurs in all d ≥ 6. Classical dynamical stability to linearized
perturbations, which is not at all an issue in the four-dimensional classification, is presumably a
much more restrictive condition, but even in five dimensions it is unclear whether it always picks
out only one solution for a given (j1, j2). One must also bear in mind that the classical instability
of a black hole does not per se rule it out as a physically relevant solution; the time-scale of the
instability must be compared to the time scale of the situation at hand. Some classical instabilities
(e.g., ergoregion instabilities [25]) may be very slow.

It seems possible, although so far we are nowhere near having any compelling argument, that
the requirement of classical, linearized stability, plus, possibly, horizon topology, suffices to fully
specify a unique vacuum black-hole solution with given conserved charges. However, in the presence
of gauge fields, this seems less likely, since dipoles not only introduce larger degeneracies but also
tend to enhance the classical stability of the solutions.

8.5 Supersymmetric black holes

As mentioned earlier, the study of BPS black holes is of special importance in string theory and
it is natural to ask whether one can classify BPS black holes. Asymptotically-flat BPS black-hole
solutions are known only for d = 4, 5.

In addition to rendering microscopic computations tractable, the additional ingredient of su-
persymmetry makes the classification of black holes easier. A supersymmetric solution admits a
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globally-defined super-covariantly constant spinor (see, e.g., [107]). This is such a strong constraint
that it is often possible to determine the general solution with this property. This was first done
for minimal d = 4, N = 2 supergravity, whose bosonic sector is Einstein–Maxwell theory. It can be
shown [237] that any supersymmetric solution of this theory must be either a pp-wave or a member
of the well-known Israel-Wilson-Perjes family of solutions (see, e.g., [228]). The only black-hole
solutions in the IWP family are believed to be the multi-Reissner–Nordström solutions [131], and
this can be proved subject to one assumption9 [45]. Hence, this is a uniqueness theorem for
supersymmetric black-hole solutions of minimal d = 4, N = 2 supergravity.

This success has been partially extended to minimal d = 5 supergravity. It can be shown that
any supersymmetric black hole must have near-horizon geometry locally isometric to either (i) the
near-horizon geometry of the BMPV black hole, (ii) AdS3 × S2, or (iii) flat space [216]. Case (iii)
would give a black hole with T 3 horizon, which seems unlikely in view of the black-hole topology
theorem discussed above (although this does not cover supersymmetric black holes, since they are
necessarily extremal). An explicit form for supersymmetric solutions of this theory is known [101]
and can be exploited, together with an additional assumption10, to show that the only black hole
of type (i) is the BMPV black hole itself. The supersymmetric black ring of [74] belongs to class
(ii). The remaining step required to complete the classification would be to prove that this is the
only solution in this class. These results can be extended to minimal d = 5 supergravity coupled
to vector multiplets [123].

These results show that much more is known about d = 5 supersymmetric black holes than
about more general stationary d = 5 black holes. Note that no assumptions about the topology of
the horizon, or the number of rotational symmetries are required to obtain these results; they are
outputs, not inputs. One might interpret this as weak evidence that, for general d = 5 black holes,
topologies other than S3 and S1 × S2 cannot occur and that the assumption of two rotational
symmetries is reasonable. However, one should be cautious in generalizing from BPS to non-BPS
black holes, since it is known that many properties of the former (e.g., stability) do not always
generalize to the latter.

8.6 Algebraic classification

In d = 4 dimensions, spacetimes can be classified according to the algebraic type of the Weyl
tensor. Associated with the Weyl tensor are four “principal null vectors” [244]. In general these
are distinct, but two or more of them coincide in an algebraically special spacetime. For example,
the Kerr-Newman spacetime is type D, which means that it has two pairs of identical principal
null vectors.

Given that known d = 4 black-hole solutions are algebraically special, it is natural to investigate
whether the same is true in d > 4 dimensions. Before doing this, it is necessary to classify possible
algebraic types of the Weyl tensor in higher dimensions. This can be done using a spinorial
approach for the special case of d = 5 [65]. The formalism for all dimensions d ≥ 4 has been
developed in [50] (and reviewed in [51]). It is based on “aligned null directions”, which generalize
the concept of principal null vectors in d = 4. A general d > 4 spacetime admits no aligned null
directions. The Weyl tensor is said to be algebraically special if one or more aligned null directions
exist.

The algebraic types of some higher-dimensional black-hole solutions have been determined.
The Myers–Perry black hole belongs to the higher-dimensional generalization of the d = 4 type
D class [66, 213, 215]. The black ring is also known to be algebraically special, although not as

9Supersymmetric solutions admit a globally defined Killing vector field that is timelike or null. The assumption
is that it is non-null everywhere outside the horizon.

10The same assumption as for the d = 4, N = 2 case just discussed.
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special as the Myers–Perry black hole [213, 215]. Further analysis of the Weyl tensor and principal
null congruences in higher dimensions can be found in [214].

In d = 4 dimensions, interesting new solutions (e.g., the spinning C-metric) were discovered
by solving the Einstein equations to determine all solutions of type D [159]. Perhaps the same
strategy would be fruitful in higher dimensions. A particular class of spacetimes, namely Robinson-
Trautman, admitting a hypersurface-orthogonal, nonshearing and expanding geodesic null congru-
ence, has been studied in [209]. However, unlike in four dimensions, this class does not contain the
analogue of the C-metric.

8.7 Laws of black-hole mechanics

The laws of black-hole mechanics are generally valid in any number of dimensions. The only novelty
arises in the first law due to new possibilities afforded by novel black holes. A nontrivial extension
is to include dipoles charges that are independent of the conserved charges. An explicit calculation
in [79] shows that black rings with a dipole satisfy a form of the first law with an additional ‘work’
term φdq, where q is the dipole charge and φ its respective potential. The appearance of the dipole
here was surprising, since the most general derivation of the first law seems to allow only conserved
charges into it. However, [52] shows that a new surface term enters due to the impossibility of
globally defining the dipole potential φ in such a way that it is simultaneously regular at the
rotation axis and at the horizon. Then one finds

dM =
κ

8π
AH + ΩHdJ + ΦdQ+ φdq, (115)

where Q and Φ are the conserved charge and its potential, respectively (see also [6]).
The next extension is not truly specific to d > 4, but it refers to a situation for which there are

no known four-dimensional examples: stationary multiple-black-hole solutions with nondegenerate
horizons. As we have seen, there are plenty of these in d ≥ 5. In this case, the first law can be
easily shown to take the form [73]

dM =
∑
i

(
κ(i)

8π
dA(i)

H + Ω(i)
j dJ

(i)
j + Φ(i)dQ(i)

)
. (116)

Here the index i labels the different disconnected components of the event horizon and j their
independent angular momenta. The Komar angular momentum J

(i)
j and the charge Q(i) are

computed as integrals on a surface that encloses a single component of the horizon, generated by
the vector ∂t + Ω(i)

j ∂φj . The potential Φ(i) is the difference between the potential at infinity and
the potential on the i-th component of the horizon; in general we cannot choose a globally defined
gauge potential that simultaneously vanishes on all horizon components. Presumably the result
can be extended to include dipoles but the possible subtleties have not been dealt with yet. A
Smarr relation also exists that relates the total ADM mass to the sums of the different ‘heat’ and
‘work’ terms on each horizon component [73].

8.8 Hawking radiation and black-hole thermodynamics

The extension of Hawking’s original calculation to most of the black holes that we have discussed
in this review presents several difficulties, but we regard this as mostly a technical issue. In our
opinion, there is no physically reasonable objection to the expectation that Hawking radiation is
essentially unmodified in higher dimensions; a black hole emits radiation that, up to grey-body
corrections, has a Planckian spectrum of temperature T = κ/2π and chemical potentials Ω, Φ, etc.

Some of the technical difficulties relate to the problem of wave propagation in the black-hole
background; this can only be dealt with analytically for Myers–Perry black holes, since only in this
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case have the variables been separated (and then only for scalars and vectors in the general rotating
case). There is in fact a considerable body of literature on the problem of radiation from MP black
holes, largely motivated by their possible detection in scenarios with large extra dimensions. As
mentioned in Section 2, this is outside the scope of this paper and we refer to [30, 155] for reviews.

There are also peculiarities with wave propagation that depend on the parity of the number of
dimensions [206, 24], but these are unlikely to modify in any essential way the Planckian spectrum
of radiation. This is, in fact, confirmed by detailed microscopic derivations of Hawking radiation
in five dimensions based on string theory [188]. Other approaches to Hawking radiation that do
not require one to analyze wave propagation have been applied to black rings [193], confirming the
expected results. An early result was the analysis of vacuum polarization in higher-dimensional
black holes in [92]. More recently, [204] claims that the evolution of a five-dimensional rotating
black hole emitting scalar Hawking radiation leads, for arbitrary initial values of the two rotation
parameters a and b, to a fixed asymptotic value of a/M2 = b/M2 = const 6= 0.

The spectrum of radiation from a multiple-black-hole configuration will contain several com-
ponents with parameters (T (i),Ω(i),Φ(i), . . . ), so it will not really be a thermal distribution unless
all the black holes have equal intensive parameters. This is, of course, the conventional condition
for thermal equilibrium.

The Euclidean formulation of black-hole thermodynamics remains largely the same as in four
dimensions. For rotating solutions, it is more convenient not to continue analytically the angular
velocities and instead to work with complex sections that have real actions. In fact, black rings
do not admit nonsingular real Euclidean sections [76]. Multiple-black-hole configurations with
disconnected components of the horizon with different surface gravities, angular velocities, and
electric potentials clearly do not admit regular Euclidean sections. Still, the Euclidean periodicity
of the horizon generator formally yields the horizon temperature in the usual fashion.

8.9 Apparent and isolated horizons and critical phenomena

A number of other interesting studies of higher-dimensional black holes have been made. The prop-
erties of higher-dimensional apparent horizons have been analyzed in [223], which provides simple
criteria to determine them. The isoperimetric inequalities and the hoop conjecture, concerning
bounds on the sizes of apparent horizons through the mass they enclose, involve new features in
higher dimensions. For instance, the four-dimensional hoop conjecture posits that a necessary and
sufficient condition for the formation of a black hole is that a mass M gets compacted into a region
whose circumference in every direction is C ≤ 4πGM [236]. A generalization of this conjecture to
d > 4 using a hoop of spatial dimension 1, in the form C ≤ #(GM)1/(d−3), is unfeasible; the exis-
tence of black objects whose horizons have arbitrary extent in some directions (e.g., black strings,
black rings, and ultraspinning black holes) shows that this condition is not necessary. It seems
possible, however, that plausible, necessary, and sufficient conditions exist using the area of hoops
of spatial codimension d − 3 in the form Cd−3 ≤ #GM , although black rings may require hoops
with nonspherical topology [145, 8]. There is also some evidence that the isoperimetric inequali-
ties, which bound the spatial area of the apparent horizon by the mass that it encloses [208], may
be extended in the form A ≤ #(GM)

d−2
d−3 [145, 8]. See [257, 256, 224] for further work on these

subjects.
The study of possible topologies for black-hole event horizons may be helped by the study

of possible apparent horizons in initial data sets. [222] shows that it is possible to construct
time-symmetric initial-data sets for black holes with apparent-horizon topology with the form
of a product of spheres. Time symmetry, however, implies that these apparent horizons cannot
correspond to rotating black holes and it is likely that their evolution in time leads to collapse into
a spherical horizon.

The formalism of isolated horizons and the laws of black-hole mechanics for them, have been
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extended to higher dimensions in [182, 170], and then to five-dimensional Einstein–Maxwell theory
with the Chern–Simons term [183] and anti-de Sitter asymptotics [5].

Finally, the critical phenomena in the collapse of a massless scalar at the onset of black-hole
formation, discovered by Choptuik [41], have been studied in [227].
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9 Solutions with a Cosmological Constant

9.1 Motivation

The motivation for considering higher-dimensional black holes with a cosmological constant arises
from the AdS/CFT correspondence [1]. This is an equivalence between string theory on spacetimes
asymptotic to AdSd × X, where X is a compact manifold, and a conformal field theory (CFT)
defined on the Einstein universe R × Sd−2, which is the conformal boundary of AdSd. The best
understood example is the case of type IIB string theory on spacetimes asymptotic to AdS5 × S5,
which is dual to N = 4 SU(N) super-Yang-Mills theory on R×S3. Type IIB string theory can be
replaced by IIB supergravity in the limit of large N and strong ’t Hooft coupling in the Yang-Mills
theory.

Most studies of black holes in the AdS/CFT correspondence involve dimensional reduction on
X to obtain a d-dimensional gauged supergravity theory with a negative cosmological constant.
For example, one can reduce type IIB supergravity on S5 to obtain d = 5, N = 4 SO(6) gauged
supergravity. One then seeks asymptotically anti-de Sitter black-hole solutions of the gauged su-
pergravity theory. This is certainly easier than trying to find solutions in ten or eleven dimensions.
However, one should bear in mind that there may exist asymptotically AdSd ×X black-hole solu-
tions that cannot be dimensionally reduced to d dimensions. Such solutions would not be discovered
using gauged supergravity.

In this section we shall discuss asymptotically AdSd black-hole solutions of the d = 4, 5, 6, 7
gauged supergravity theories arising from the reduction of d = 10 or d = 11 supergravity on spheres.
The emphasis will be on classical properties of the solutions rather than their implications for CFT.
In AdS, linearized supergravity perturbations can be classified as normalizable or non-normalizable
according to how they behave near infinity [1]. By “asymptotically AdS” we mean that we are
restricting ourselves to considering solutions that approach a normalizable deformation of global
AdS near infinity. A non-normalizable perturbation would correspond to a deformation of the
CFT, for instance, making it nonconformal. Black-hole solutions with such asymptotics have been
constructed, but space prevents us from considering them here.

9.2 Schwarzschild-AdS

The simplest example of an asymptotically AdS black hole is the Schwarzschild-AdS solution [172,
250]:

ds2 = −U(r)dt2 + U(r)−1dr2 + r2dΩ2
d−2 , U(r) = 1− µ

rd−3
+
r2

`2
, (117)

where µ is proportional to the mass, and ` is the radius of curvature of the AdS ground state11.
The solution has a regular horizon for any µ > 0. Definitions of mass and angular momentum
for asymptotically AdS spacetimes have been given in d = 4 [4] and d ≥ 4 [3]. The mass of
Schwarzschild-AdS relative to the AdS ground state is [250]

M =
(d− 2)Ωd−2µ

16πG
. (118)

For d = 4, the stability of Schwarzschild-AdS against linearized gravitational perturbations has
been proven in [163]. For d > 4, spherical symmetry enables one to decompose linearized gravi-
tational perturbations into scalar/vector/tensor types. The equations governing each type can be
reduced to ODEs of Schrödinger form, and the stability of vector and tensor perturbations can

11The “topological black holes” with U(r) = k − µ
rd−3 + r2

`2
, k = 0,−1 and toroidal or hyperbolic horizons [15]

are excluded from our review by their asymptotics.
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be established [151]. Stability with respect to scalar gravitational perturbations has not yet been
established.

It is expected that the Schwarzschild-AdS black hole is the unique, static, asymptotically AdS,
black-hole solution of vacuum gravity with a negative cosmological constant, but this has not been
proven.

The thermodynamics of Schwarzschild-AdS were discussed by Hawking and Page for d = 4 [134]
and Witten for d > 4 [250]. Let r+ denote the horizon radius of the solution. For a small black hole,
r+ � `, the thermodynamic properties are qualitatively similar to those of an asymptotically-flat
Schwarzschild black hole, i.e., the temperature decreases with increasing r+ so the heat capacity
of the hole is negative (as r+ is a monotonic function of µ). However, there is an intermediate
value of r+ ∼ ` at which the temperature reaches a global minimum Tmin and then becomes an
increasing function of r+. Hence the heat capacity of large black holes is positive. This implies
that the black hole can reach a stable equilibrium with its own radiation (which is confined near
the hole by the gravitational potential ∼ r2/`2 at large r). Note that for T > Tmin there are two
black-hole solutions with the same temperature: a large one with positive specific heat and a small
one with negative specific heat.

These properties lead to an interesting phase structure for gravity in AdS [134]. At low tem-
perature, T < Tmin, there is no black-hole solution and the preferred phase is thermal radiation in
AdS. At T ∼ Tmin, black holes exists but have greater free energy than thermal radiation. How-
ever, there is a critical temperature THP > Tmin beyond which the large black hole has lower free
energy than thermal radiation and the small black hole. The interpretation is that the canonical
ensemble for gravity in AdS exhibits a (first-order) phase transition at T = Tmin.

In the AdS/CFT context, this Hawking–Page phase transition is interpreted as the gravita-
tional description of a thermal phase transition of the (strongly coupled) CFT on the Einstein
universe [249, 250].

When oxidized, to ten or eleven dimensions, the radius r+ of a small Schwarzschild-AdS black
hole will be much less than the radius of curvature (∼ `) of the internal space X. This suggests
that the black hole will suffer from a classical Gregory–Laflamme-type instability. The probable
endpoint of the instability would be a small black hole localized on X, and therefore would not
admit a description in gauged supergravity. Since the radius of curvature of X is typically ` and
the black hole is much smaller than `, the geometry near the hole should be well approximated by
the ten or eleven-dimensional Schwarzschild solution (see e.g., [141]). However, an exact solution
of this form is not known.

9.3 Stationary vacuum solutions

If we consider pure gravity with a negative cosmological constant then the most general known
family of asymptotically-AdS black-hole solutions is the generalization of the Kerr–Myers–Perry
solutions to include a cosmological constant. It seems likely that black rings would exist in
asymptotically-AdS spacetimes, but no exact solutions are known.12

The d = 4 Kerr-AdS solution was constructed long ago [27]. It can be parameterized by its mass
M and angular momentum J , which have been calculated (using the definitions of [4]) in [113].
The region of the (M,J) plane covered by these black holes is shown in Figure 13. Note that,
in AdS, angular momentum is a central charge [108]. Hence regular vacuum solutions exhibit a
nontrivial lower bound on their mass: M ≥ |J |/`. The Kerr-AdS solution never saturates this
bound.

The Myers–Perry-AdS solution was obtained in [133] for d = 5 and for d > 5 with rotation
in a single plane. The general d > 5 solution was obtained in [111, 112]. They have horizons

12Note that topological censorship can be used to exclude the existence of topologically nonspherical black holes
in AdS4 [97].
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Figure 13: GM/` against G|J |/`2 for d = 4 Kerr-AdS black holes. The thick curve corresponds to
extremal black holes. Black-hole solutions lie on, or above, this curve (which was determined using results
in [20]). The thin line is the BPS bound M = |J |/`.

of spherical topology. There is some confusion in the literature concerning the conserved charges
carried by these solutions. A careful discussion can be found in [113]. The solutions are uniquely
specified by their mass and angular momenta. For d = 5, the region of (M,J1, J2)-space covered
by the Myers–Perry-AdS solution is shown in Figure 14.
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Figure 14: GM/`2 (vertical) against G|Ji|/`3 for d = 5 Myers–Perry-AdS black holes. Nonextremal
black holes fill the region above the surface. The surface corresponds to extremal black holes, except
when one of the angular momenta vanishes (in which case there is not a regular horizon, just as in the
asymptotically-flat case). This “extremal surface” lies inside the square-based pyramid (with vertex at the
origin) defined by the BPS relation M = |J1|/`+ |J2|/`, so none of the black holes are BPS.

Kerr–Myers–Perry-AdS solutions have the same symmetries as their asymptotically-flat cousins,
and exhibit similar enhancement of symmetry in special cases. The integrability of the geodesic
equation and separability of the Klein–Gordon equation also extends to this case [207, 173, 90].

These solutions reduce to the Schwarzschild-AdS solution in the limit of zero angular momen-
tum. It has been shown that the only regular stationary perturbations of the Schwarzschild-AdS
solution are those that correspond to taking infinitesimal angular momenta in these rotating so-
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lutions [162]. Hence, if other stationary vacuum black-hole solutions exist (e.g., black rings) then
they are not continuously connected to the Schwarzschild-AdS solution.

These solutions exhibit an important qualitative difference from their asymptotically-flat cousins.
Consider the Killing field tangent to the null-geodesic generators of the horizon:

V =
∂

∂t
+ Ωi

∂

∂φi
. (119)

In asymptotically-flat spacetime, this Killing field is spacelike far from the black hole, which implies
that it is impossible for matter to co-rotate rigidly with the hole (i.e., to move on orbits of V ).
However, in AdS, if Ωi` ≤ 1 then V is timelike everywhere outside the horizon. This implies that
rigid co-rotation is possible; the Killing field V defines a co-rotating reference frame. Consequently,
there exists a Hartle–Hawking state describing thermal equilibrium of the black hole with co-
rotating thermal radiation [133].

The dual CFT interpretation is of CFT matter in thermal equilibrium rotating around the
Einstein universe [133]. There is an interesting phase structure, generalizing that found for
Schwarzschild-AdS [133, 13, 20, 135]. For sufficiently large black holes, one can study the dual
CFT using a fluid mechanics approximation, which gives quantitative agreement with black-hole
thermodynamics [14].

What happens if Ωi` > 1? Such black holes are believed to be classically unstable. It was
observed in [135] that rotating black holes in AdS may suffer from a super-radiant instability, in
which energy and angular momentum are extracted from the black hole by super-radiant modes.
However, it was proven that this cannot occur if Ωi` ≤ 1. But if Ωi` > 1 then an instability may
be present. This makes sense from a dual CFT perspective; configurations with Ωi` > 1 would
correspond to CFT matter rotating faster than light in the Einstein universe [133]. The existence
of an instability was first demonstrated for small d = 4 Kerr-AdS black holes in [23]. A general
analysis of odd-dimensional black holes with equal angular momenta reveals that the threshold
of instability is at Ωi` = 1 [177], i.e., precisely where the stability argument of [135] fails. The
endpoint of this classical bulk instability is not known.

In d = 4, Figure 13 reveals (using Ω = dM/dJ) that all extremal Kerr-AdS black holes have
Ω` > 1 and are, therefore, expected to be unstable. We have checked that d = 5 extremal Myers–
Perry-AdS black holes also have Ωi` > 1 and so they too should be classically unstable. However,
the instability should be very slow when the black-hole size is much smaller than the AdS radius `,
and one expects it to disappear as `→∞: it takes an increasingly long time for the super-radiant
modes to bounce back off the AdS boundary.

Finally, we should mention a subtlety concerning the use of the term “stationary” in asymp-
totically AdS spacetimes [177]. Consider the AdS5 metric

ds2 = −
(

1 +
r2

`2

)
dt2 +

(
1 +

r2

`2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2 + cos2 θ dψ2

)
. (120)

This admits several types of globally-timelike Killing fields. For example, there is the “usual”
generator of time translations k = ∂/∂t, which has unbounded norm, but there is also the “rotating”
Killing field V = ∂/∂t+`−1∂/∂φ+`−1∂/∂ψ, which has constant norm. On the conformal boundary,
k is timelike and V is null. Hence, from a boundary perspective, particles following orbits of V
are rotating at the speed of light. These two different types of timelike Killing vector field allow
one to define two distinct notions of stationarity for asymptotically-AdS spacetimes. So far, all
known black hole solutions are stationary with respect to both definitions because they admit
global Killing fields analogous to ∂/∂φ, ∂/∂ψ. However, it is conceivable that there exist AdS
black holes (with less symmetry than known solutions) that are stationary only with respect to
the second definition, i.e., they admit a Killing field that behaves asymptotically like V but not
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one behaving asymptotically like k. From a boundary CFT perspective, such black holes would
rotate at the speed of light.

9.4 Gauged supergravity theories

In order to discuss charged anti-de Sitter black holes we will need to specify which gauged super-
gravity theories we are interested in. The best-understood examples arise from the dimensional
reduction of d = 10 or d = 11 dimensional supergravity theories on spheres to give theories with
maximal supersymmetry and non-Abelian gauge groups. However, most work on constructing
explicit black hole solutions has dealt with consistent truncations of these theories, with reduced
supersymmetry, in which the non-Abelian gauge group is replaced by its maximal Abelian sub-
group. Indeed, there is no known black-hole solution with a nontrivial non-Abelian gauge field
obeying normalizable boundary conditions.

There is a consistent dimensional reduction of d = 11 supergravity on S7 to give d = 4, N = 8,
SO(8) gauged supergravity [67]. This non-Abelian theory can be consistently truncated to give
d = 4, N = 2, U(1)4 gauged supergravity, whose bosonic sector is Einstein gravity coupled to
four Maxwell fields and three complex scalars [55]. The scalar potential is negative at its global
maximum. The AdS4 ground state of the theory has the scalars taking constant values at this
maximum. One can truncate this theory further by taking the scalars to sit at the top of their
potential, and setting the Maxwell fields equal to each other. This gives minimal d = 4, N = 2
gauged supergravity, whose bosonic sector is Einstein–Maxwell theory with a cosmological constant.
The embedding of minimal d = 4, N = 2 gauged supergravity theories into d = 11 supergravity
can be given explicitly [31], and is much simpler than the embedding of the non-Abelian N = 8
theory.

The d = 11 supergravity theory can also be dimensionally reduced on S4 to give d = 7, N = 2,
SO(5) gauged supergravity [201, 202].

The d = 10 massive IIA supergravity can be dimensionally reduced on S4 to give d = 6 N = 2
SU(2) gauged supergravity [59]. This theory has half-maximal supersymmetry.

It is believed that the d = 10 type IIB supergravity theory can be consistently reduced on S5

to give d = 5, N = 4, SO(6) gauged supergravity, although this has been established only for a
subsector of the full theory [62]. This theory can be truncated further to give d = 5, N = 1, U(1)3

gauged supergravity with three vectors and two scalars. Again, setting the scalars to constants
and making the vectors equal gives the minimal d = 5 gauged supergravity, whose bosonic sector is
Einstein–Maxwell theory with a negative cosmological constant and a Chern–Simons coupling. The
explicit embeddings of these Abelian theories into d = 10 type IIB supergravity are known [31, 55].

It is sometimes possible to obtain a given lower-dimensional supergravity theory from several
different compactifications of a higher-dimensional theory. For example, minimal d = 5 gauged
supergravity can be obtained by compactifying type IIB supergravity on any Sasaki-Einstein space
Y p,q [18]. More generally, if there is a supersymmetric solution of type IIB supergravity that is
a warped product of AdS5 with some compact manifold X5, then type IIB supergravity can be
dimensionally reduced on X5 to give minimal d = 5 gauged supergravity [104]. An analogous
statement holds for compactifications of d = 11 supergravity to give minimal N = 2, d = 4 gauged
supergravity or minimal d = 5 gauged supergravity [103, 104].

9.5 Static charged solutions

The d = 4 Reissner–Nordström-AdS black hole is a solution of minimal N = 2 gauged supergravity.
It is parameterized by its mass M and electric and magnetic charges Q,P . This solution is stable
against linearized perturbations within this (Einstein–Maxwell) theory [164]. Compared with its
asymptotically-flat counterpart, perhaps the most surprising feature of this solution is that it never
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saturates a BPS bound. If the mass of the black hole is lowered, it will eventually become extremal,
but the extremal solution is not BPS. If one imposes the BPS condition on the solution, then one
obtains a naked singularity rather than a black hole [221, 185].

Static, spherically-symmetric, charged, black-hole solutions of the N = 2, d = 4, U(1)4 gauged
supergravity theory were obtained in [69]. The solutions carry only electric charges and are pa-
rameterized by their mass M and electric charges Qi. Alternatively they can be dualized to give
purely magnetic solutions. Once again, they never saturate a BPS bound. One would expect the
existence of dyonic solutions of this theory, but such solutions have not been constructed.

Static, spherically-symmetric, charged, black-hole solutions of d = 5, U(1)3 gauged supergravity
were obtained in [9]. They are parameterized by their mass M and electric charges Qi. If the
charges are set equal to each other then one recovers the d = 5 Reissner–Nordström solution of
minimal d = 5 gauged supergravity. The solutions never saturate a BPS bound.

A static, spherically-symmetric, charged black-hole solution of d = 6, SU(2) gauged super-
gravity was given in [59]. Only a single Abelian component of the gauge field is excited, and the
solution is parameterized by its charge and mass.

Static, spherically-symmetric, charged, black-hole solutions of d = 7, SO(5) gauged supergrav-
ity are known [55]. They can be embedded into a truncated version of the full theory in which
there are two Abelian vectors and two scalars. They are parameterized by their mass and electric
charges.

Electrically-charged, asymptotically-AdS, black-hole solutions exhibit a Hawking–Page like
phase transition in the bulk, which entails a corresponding phase transition for the dual CFT
at finite temperature in the presence of chemical potentials for the R-charge. This has been stud-
ied in [31, 56, 57, 32].

These black holes exhibit an interesting instability [121, 122]. This is best understood for a black
hole so large (compared to the AdS radius) that the curvature of its horizon can be neglected, i.e.,
it can be approximated by a black brane. The dual CFT interpretation is as a finite temperature
configuration in flat space with finite charge density. For certain regions of parameter space, it
turns out that the entropy increases if the charge density becomes nonuniform (with the total
charge and energy held fixed). Hence, the thermal CFT state exhibits an instability. Using the
AdS/CFT dictionary, this maps to a classical instability in the bulk in which the horizon becomes
translationally nonuniform, i.e., a Gregory–Laflamme instability. The remarkable feature of this
argument is that it reveals that a classical Gregory–Laflamme instability should be present precisely
when the black brane becomes locally thermodynamically unstable. Here, local thermodynamic
stability means having an entropy, which is concave down as a function of the energy and other
conserved charges (if the only conserved charge is the energy, then this is equivalent to positivity
of the heat capacity). The Gubser–Mitra (or “correlated stability”) conjecture asserts that this
correspondence should apply to any black brane, not just asymptotically-AdS solutions. See [128]
for more discussion of this correspondence.

For finite-radius black holes, the argument is not so clear cut because the dual CFT lives in
the Einstein universe rather than flat spacetime, so finite size effects will affect the CFT argument
and the Gubser–Mitra conjecture does not apply. Nevertheless, it should be a good approximation
for sufficiently large black holes and hence there will be a certain range of parameters for which
large charged black holes are classically unstable.13

9.6 Stationary charged solutions

The most general, known, stationary, black-hole solution of minimal d = 4, N = 2 gauged super-
gravity is the Kerr-Newman-AdS solution, which is uniquely parameterized by its mass M , angular

13Note that this does not disagree with the stability result of [164] for d = 4 Reissner–Nordström-AdS since the
instability involves scalar fields and hence cannot be seen within minimal N = 2 gauged supergravity.
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momentum J and electric and magnetic charges (Q,P ). The thermodynamic properties of this so-
lution, and implications for the dual CFT were investigated in [20]. An important property of this
solution is that it can preserve some supersymmetry. This occurs for a one-parameter subfamily
specified by the electric charge: M = M(Q), J(Q), P = 0 [171, 21]. Hence supersymmetric black
holes can exist in AdS but they exhibit an important qualitative difference from the asymptotically
flat case; they must rotate.

Charged rotating black-hole solutions of more general d = 4 gauged supergravity theories, e.g.,
N = 2, U(1)4 gauged supergravity, should also exist. Electrically charged, rotating solutions of
the U(1)4 theory, with the four charges set pairwise equal, were constructed in [36].

Charged, rotating black-hole solutions of d = 7, SO(5) gauged supergravity have been con-
structed by truncating to a U(1)2 theory [40, 43]. In this theory, one expects the existence of a
topologically-spherical black-hole solution parameterized by its mass, three angular momenta, and
two electric charges. This general solution is not yet known. However, solutions with three equal
angular momenta but unequal charges have been constructed [40], as have solutions with equal
charges but unequal angular momenta [43]. Both types of solution admit BPS limits.

Charged, rotating black-hole solutions of d = 6 gauged supergravity have not yet been con-
structed.

The construction of charged rotating black-hole solutions of d = 5 gauged supergravity has
attracted more attention [125, 124, 60, 61, 37, 38, 178, 39, 191]. The most general known black-
hole solution of the minimal theory is that of [38]. This solution is parameterized by the conserved
charges of the theory, i.e., the massM , electric chargeQ and two angular momenta J1, J2. Intuition
based on results proved for asymptotically-flat solutions suggests that, for this theory, this is the
most general topologically-spherical stationary black hole with two rotational symmetries. In the
BPS limit, these solutions reduce to a two-parameter family of supersymmetric black holes. In
other words, one loses two parameters in the BPS limit (just as for nonstatic asymptotically-flat
black holes in d = 5, e.g., the BMPV black hole or BPS black rings).

Analogous solutions of d = 5, U(1)3 gauged supergravity are expected to be parameterized by
the six conserved quantities M , J1, J2, Q1, Q2, Q3. However, a six-parameter solution is not yet
known. The most general known solutions are the four-parameter BPS solution of [178], and the
five-parameter nonextremal solution of [191], which has two of the charges Qi equal. The former is
expected to be the general BPS limit of the yet to be discovered six-parameter black-hole solution
(as one expects to lose two parameters in the BPS limit). The latter solution should be obtained
from the general six-parameter solution by setting two of the charges equal.

Supersymmetric AdS black holes have Ωi` = 1, which implies that they rotate at the speed of
light with respect to the conformal boundary [125]. More precisely, the co-rotating Killing field
becomes null on the conformal boundary. Hence, the CFT interpretation of these black holes
involves matter rotating at the speed of light in the Einstein universe. The main motivation for
studying supersymmetric AdS black holes is the expectation that it should be possible to perform
a microscopic CFT calculation of their entropy. The idea is to count states in weakly coupled CFT
and then extrapolate to strong coupling. In doing this, one has to count only states in short BPS
multiplets that do not combine into long multiplets as the coupling is increased. One way of trying
to do this is to work with an index that receives vanishing contributions from states in multiplets
that can combine into long multiplets. Unfortunately, such indices do not give agreement with
black-hole entropy [160]. This is not a contradiction; although certain multiplets may have the
right quantum numbers to combine into a long multiplet, the dynamics of the theory may prevent
this from occurring, so the index undercounts BPS states.

The fact that these supersymmetric black holes have only four independent parameters is
puzzling from the CFT perspective, since BPS states in the CFT carry five independent charges.
Maybe there are more general black-hole solutions. It seems unlikely that one could generalize the
solutions of [178] to include an extra parameter since then one would also have an extra parameter,
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in the corresponding non-BPS solutions, which would therefore form a seven parameter family in a
theory with only six conserved charges. This seems unlikely for topologically-spherical black holes.
But we know that black rings can carry nonconserved charges, so maybe this points to the existence
of supersymmetric AdS black rings. However, it has been shown that such solutions do not exist
in minimal d = 5 gauged supergravity [179]. The proof involves classifying supersymmetric near-
horizon geometries (with two rotational symmetries), and showing that S1×S2 topology horizons
always suffer from a conical singularity, except in the limit in which the cosmological constant
vanishes. Analogous results for the U(1)3 theory have also been obtained [176]. So if AdS black
rings exist then they cannot be “balanced” in the BPS limit.

Maybe the resolution of the puzzle involves 10d black holes with no 5D interpretation, or 5D
black holes involving non-Abelian gauge fields, or 5D black holes with only one rotational symmetry.
Alternatively, perhaps we already know all the BPS black-hole solutions and the puzzle arises from
a lack of understanding of the CFT. For example, maybe, at strong coupling, only a four charge
subspace of BPS CFT states carries enough entropy to correspond to a macroscopic black hole.
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[57] Cvetič, M., and Gubser, S.S., “Thermodynamic stability and phases of general spinning
branes”, J. High Energy Phys., 1999(07), 010, (1999). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hep-th/9903132. 9.5
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[103] Gauntlett, J.P., Ó Colgáin, E., and Varela, O., “Properties of some conformal field theories
with M-theory duals”, J. High Energy Phys., 2007(02), 049, (2007). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hep-th/0611219. 9.4

[104] Gauntlett, J.P., and Varela, O., “Consistent Kaluza-Klein Reductions for General Supersym-
metric AdS Solutions”, (2007). URL (cited on 14 February 2008):
http://arXiv.org/abs/arXiv:0707.2315. 9.4

[105] Gibbons, G., and Hartnoll, S.A., “A gravitational instability in higher dimensions”, Phys.
Rev. D, 66, 064024, (2002). Related online version (cited on 14 February 2008):
http://arXiv.org/abs/hep-th/0206202. 3.3

[106] Gibbons, G.W., and Herdeiro, C.A.R., “Supersymmetric rotating black holes and causality
violation”, Class. Quantum Grav., 16, 3619, (1999). Related online version (cited on 14
February 2008):
http://arXiv.org/abs/hep-th/9906098. 7.2.2

[107] Gibbons, G.W., and Hull, C.M., “A Bogomolny bound for general relativity and solitons in
N = 2 supergravity”, Phys. Lett. B, 109, 190–194, (1982). 8.5

[108] Gibbons, G.W., Hull, C.M., and Warner, N.P., “The stability of gauged supergravity”, Nucl.
Phys. B, 218, 173–190, (1983). 9.3

[109] Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and non-uniqueness of static black
holes in higher dimensions”, Phys. Rev. Lett., 89, 041101, (2002). Related online version
(cited on 14 February 2008):
http://arXiv.org/abs/hep-th/0206049. 8.3

[110] Gibbons, G.W., Ida, D., and Shiromizu, T., “Uniqueness and non-uniqueness of static vac-
uum black holes in higher dimensions”, Prog. Theor. Phys. Suppl., 148, 284, (2003). Related
online version (cited on 14 February 2008):
http://arXiv.org/abs/gr-qc/0203004. 8.3
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