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Abstract

Event and apparent horizons are key diagnostics for the presence and properties of black
holes. In this article I review numerical algorithms and codes for finding event and apparent
horizons in numerically-computed spacetimes, focusing on calculations done using the 3+ 1
ADM formalism. The event horizon of an asymptotically-flat spacetime is the boundary
between those events from which a future-pointing null geodesic can reach future null infinity
and those events from which no such geodesic exists. The event horizon is a (continuous) null
surface in spacetime. The event horizon is defined nonlocally in time: it is a global property
of the entire spacetime and must be found in a separate post-processing phase after all (or at
least the nonstationary part) of spacetime has been numerically computed.

There are three basic algorithms for finding event horizons, based on integrating null
geodesics forwards in time, integrating null geodesics backwards in time, and integrating null
surfaces backwards in time. The last of these is generally the most efficient and accurate.

In contrast to an event horizon, an apparent horizon is defined locally in time in a spacelike
slice and depends only on data in that slice, so it can be (and usually is) found during the
numerical computation of a spacetime. A marginally outer trapped surface (MOTS) in a slice
is a smooth closed 2-surface whose future-pointing outgoing null geodesics have zero expansion
Θ. An apparent horizon is then defined as a MOTS not contained in any other MOTS. The
MOTS condition is a nonlinear elliptic partial differential equation (PDE) for the surface
shape, containing the ADM 3-metric, its spatial derivatives, and the extrinsic curvature as
coefficients. Most “apparent horizon” finders actually find MOTSs.

There are a large number of apparent horizon finding algorithms, with differing trade-offs
between speed, robustness, accuracy, and ease of programming. In axisymmetry, shooting
algorithms work well and are fairly easy to program. In slices with no continuous symmetries,
spectral integral-iteration algorithms and elliptic-PDE algorithms are fast and accurate, but
require good initial guesses to converge. In many cases, Schnetter’s “pretracking” algorithm
can greatly improve an elliptic-PDE algorithm’s robustness. Flow algorithms are generally
quite slow but can be very robust in their convergence. Minimization methods are slow and
relatively inaccurate in the context of a finite differencing simulation, but in a spectral code
they can be relatively faster and more robust.
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Event and Apparent Horizon Finders for 3+ 1 Numerical Relativity 5

Part I

Introduction
Systems with strong gravitational fields, particularly systems which may contain event horizons
and/or apparent horizons, are a major focus of numerical relativity. The usual output of a numer-
ical relativity simulation is some (approximate, discrete) representation of the spacetime geometry
(the 4-metric and possibly its derivatives) and any matter fields, but not any explicit information
about the existence, precise location, or other properties of any event/apparent horizons. To gain
this information, we must explicitly find the horizons from the numerically-computed spacetime
geometry. The subject of this review is numerical algorithms and codes for doing this, focusing on
calculations done using the 3 +1 ADM formalism [14, 163]. Baumgarte and Shapiro [27, Section 6]
have also recently reviewed event and apparent horizon finding algorithms. The scope of this re-
view is limited to the finding of event/apparent horizons and omits any but the briefest mention
of the many uses of this information in gaining physical understanding of numerically-computed
spacetimes.

In this review I distinguish between a numerical algorithm (an abstract description of a math-
ematical computation; also often known as a “method” or “scheme”), and a computer code (a
“horizon finder”, a specific piece of computer software which implements a horizon finding algo-
rithm or algorithms). My main focus is on the algorithms, but I also mention specific codes where
they are freely available to other researchers.

In this review I have tried to cover all the major horizon finding algorithms and codes, and
to accurately credit the earliest publication of important ideas. However, in a field as large and
active as numerical relativity, it is not unlikely that I have overlooked and/or misdescribed some
important research. I apologise to anyone whose work I’ve slighted, and I ask readers to help make
this a truly “living” review by sending me corrections, updates, and/or pointers to additional work
(either their own or others) that I should discuss in future revisions of this review.

The general outline of this review is as follows: In the remainder of Part I, I define notation and
terminology (Section 1), discuss how 2-surfaces should be parameterized (Section 2), and outline
some of the software-engineering issues that arise in modern numerical relativity codes (Section 3).
I then discuss numerical algorithms and codes for finding event horizons (Part II) and apparent
horizons (Part III). Finally, in the appendices I briefly outline some of the excellent numerical
algorithms/codes available for two standard problems in numerical analysis, the solution of a
single nonlinear algebraic equation (Appendix A) and the time integration of a system of ordinary
differential equations (Appendix B).
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6 Jonathan Thornburg

1 Notation and Terminology

Except as noted below, I generally follow the sign and notation conventions of Wald [160]. I
assume that all spacetimes are globally hyperbolic, and for event-horizon finding I further assume
asymptotic flatness; in this latter context J + is future null infinity. I use the Penrose abstract-
index notation, with summation over all repeated indices. 4-indices abc range over all spacetime
coordinates {xa}, and 3-indices ijk range over the spatial coordinates {xi} in a spacelike slice
t = constant. The spacetime coordinates are thus xa = (t, xi).

Indices uvw range over generic angular coordinates (θ, φ) on S2 or on a horizon surface. Note
that these coordinates are conceptually distinct from the 3-dimensional spatial coordinates xi.
Depending on the context, (θ, φ) may or may not have the usual polar-spherical topology. Indices
ijk label angular grid points on S2 or on a horizon surface. These are 2-dimensional indices: a
single such index uniquely specifies an angular grid point. δij is the Kronecker delta on the space
of these indices or, equivalently, on surface grid points.

For any indices p and q, ∂p and ∂pq are the coordinate partial derivatives ∂/∂xp and ∂2/∂xp∂xq

respectively; for any coordinates µ and ν, ∂u and ∂µν are the coordinate partial derivatives ∂/∂µ
and ∂2/∂µ∂ν respectively. ∆ is the flat-space angular Laplacian operator on S2, while ∆x refers
to a finite-difference grid spacing in some variable x.

gab is the spacetime 4-metric, and gab the inverse spacetime 4-metric; these are used to raise
and lower 4-indices. Γc

ab are the 4-Christoffel symbols. Lv is the Lie derivative along the 4-vector
field va.

I use the 3 +1 “ADM” formalism first introduced by Arnowitt, Deser, and Misner [14]; York [163]
gives a general overview of this formalism as it is used in numerical relativity. gij is the 3-metric
defined in a slice, and gij is the inverse 3-metric; these are used to raise and lower 3-indices. ∇i is
the associated 3-covariant derivative operator, and Γk

ij are the 3-Christoffel symbols. α and βi are
the 3 +1 lapse function and shift vector respectively, so the spacetime line element is

ds2 = gab dxa dxb (1)
= −(α2 − βiβ

i) dt2 + 2βi dxi dt + gij dxi dxj . (2)

As is common in 3+ 1 numerical relativity, I follow the sign convention of Misner, Thorne, and
Wheeler [112] and York [163] in defining the extrinsic curvature of the slice as Kij = − 1

2Lngij =
−∇inj , where na is the future-pointing unit normal to the slice. (In contrast, Wald [160] omits
the minus signs from this definition.) K ≡ Ki

i is the trace of the extrinsic curvature Kij . mADM

is the ADM mass of an asymptotically flat slice.
I often write a differential operator as F = F (y, ∂uy, ∂uvy; gij , ∂kgij ,Kij), where the “;” notation

means that F is a (generally nonlinear) algebraic function of the variable y and its 1st and 2nd
angular derivatives, and that F also depends on the coefficients gij , ∂kgij , and Kij at the apparent
horizon position.

There are three common types of spacetimes/slices where numerical event or apparent horizon
finding is of interest: spherically-symmetric spacetimes/slices, axisymmetric spacetimes/slices, and
spacetimes/slices with no continuous spatial symmetries (no spacelike Killing vectors). I refer to
the latter as “fully generic” spacetimes/slices.

In this review I use the abbreviations “ODE” for ordinary differential equation, “PDE” for par-
tial differential equation, “CE surface” for constant-expansion surface, and “MOTS” for marginally
outer trapped surface. Names in Small Capitals refer to horizon finders and other computer
software.

When discussing iterative numerical algorithms, it is often convenient to use the concept of
an algorithm’s “radius of convergence”. Suppose the solution space within which the algorithm
is iterating is S. Then given some norm ‖ · ‖ on S, the algorithm’s radius of convergence about
a solution s ∈ S is defined as the smallest r > 0 such that the algorithm will converge to the
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Event and Apparent Horizon Finders for 3+ 1 Numerical Relativity 7

correct solution s for any initial guess g with ‖g− s‖ ≤ r. We only rarely know the exact radius of
convergence of an algorithm, but practical experience often provides a rough estimate1.

1An algorithm’s actual “convergence region” (the set of all initial guesses for which the algorithm converges to
the correct solution) may even be fractal in shape. For example, the Julia set is the convergence region of Newton’s
method on a simple nonlinear algebraic equation.
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8 Jonathan Thornburg

2 2-Surface Parameterizations

2.1 Level-set-function parameterizations

The most general way to parameterize a 2-surface in a slice is to define a scalar “level-set function”
F on some neighborhood of the surface, with the surface itself then being defined as the level set

F = 0 on the surface. (3)

Assuming the surface to be orientable, it is conventional to choose F so that F > 0 (F < 0)
outside (inside) the surface. The choice of level-set function for a given surface is non-unique, but
in general this is not a problem.

This parameterization is valid for any surface topology including time-dependent topologies.
The 2-surface itself can then be found by a standard isosurface-finding algorithm such as the
marching-cubes algorithm [105]. (This algorithm is widely used in computer graphics and is im-
plemented in a number of widely-available software libraries.)

2.2 Strahlkörper parameterizations

Most apparent horizon finders, and some event-horizon finders, assume that each connected com-
ponent of the apparent (event) horizon has S2 topology. With the exception of toroidal event
horizons (discussed in Section 4), this is generally a reasonable assumption.

To parameterize an S2 surface’s shape, it is common to further assume that we are given
(or can compute) some “local coordinate origin” point inside the surface such that the surface’s 3-
coordinate shape relative to that point is a “Strahlkörper” (literally “ray body”, or more commonly
“star-shaped region”), defined by Minkowski [138, Page 108] as

a region in n-D Euclidean space containing the origin and whose surface, as seen from
the origin, exhibits only one point in any direction.

The Strahlkörper assumption is a significant restriction on the horizon’s coordinate shape (and
the choice of the local coordinate origin). For example, it rules out the coordinate shape and local
coordinate origin illustrated in Figure 1: a horizon with such a coordinate shape about the local
coordinate origin could not be found by any horizon finder which assumes a Strahlkörper surface
parameterization.

Figure 1: This figure shows a cross-section of a coordinate shape (the thick curve) which is not a
Strahlkörper about the local coordinate origin shown (the large dot). The dashed line shows a ray
from the local coordinate origin, which intersects the surface in more than one point.

For event-horizon finding, algorithms and codes are now available which allow an arbitrary
horizon topology with no Strahlkörper assumption (see the discussion in Section 5.3.3 for details).
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Event and Apparent Horizon Finders for 3+ 1 Numerical Relativity 9

For apparent horizon finding, the flow algorithms discussed in Section 8.7 theoretically allow any
surface shape, although many implementations still make the Strahlkörper assumption. Removing
this assumption for other apparent horizon finding algorithms might be a fruitful area for further
research.

Given the Strahlkörper assumption, the surface can be explicitly parameterized as

r = h(θ, φ), (4)

where r is the Euclidean distance from the local coordinate origin to a surface point, (θ, φ) are
generic angular coordinates on the horizon surface (or equivalently on S2), and the “horizon shape
function” h : S2 → <+ is a positive real-valued function on the domain of angular coordinates
defining the surface shape. Given the choice of local coordinate origin, there is clearly a one-to-one
mapping between Strahlkörper 2-surfaces and horizon shape functions.

There are two common ways to discretize a horizon shape function:

Spectral representation
Here we expand the horizon shape function h in an infinite series in some (typically orthonor-
mal) set of basis functions such as spherical harmonics Y`m or symmetric trace-free tensors2,

h(θ, φ) =
∑
`,m

a`mY`m(θ, φ). (5)

This series can then be truncated at some finite order `max, and the Ncoeff = `max(`max+1)
coefficients {a`m} used to represent (discretely approximate) the horizon shape. For reason-
able accuracy, `max is typically on the order of 8 to 12.

Finite difference representation
Here we choose some finite grid of angular coordinates {(θk, φk)}, k = 1, 2, 3, . . . , Nang

on S2 (or equivalently on the surface)3, and represent (discretely approximate) the surface
shape by the Nang values

{h(θk, φk)} k = 1, 2, 3, . . . , Nang. (6)

For reasonable accuracy, Nang is typically on the order of a few thousand.

It is sometimes useful to explicitly construct a level-set function describing a given Strahlkörper.
A common choice here is

F ≡ r − h(θ, φ). (7)

2.3 Finite-element parameterizations

Another way to parameterize a 2-surface is via finite elements where the surface is modelled as a
triangulated mesh, i.e. as a set of interlinked “vertices” (points in the slice, represented by their
spatial coordinates {xi}), “edges” (represented by ordered pairs of vertices), and faces. Typically
only triangular faces are used (represented as oriented triples of vertices).

A key benefit of this representation is that it allows an arbitrary topology for the surface.
However, determining the actual surface topology (e.g. testing for whether or not the surface
self-intersects) is somewhat complicated.

This representation is similar to that of Regge calculus [128, 72]4, and can similarly be expected
to show 2nd order convergence with the surface resolution.

2For convenience of exposition I use spherical harmonics here, but there are no essential differences if other basis
sets are used.

3I discuss the choice of this angular grid in more detail in Section 8.5.1.
4There has been some controversy over whether, and if so how quickly, Regge calculus converges to the continuum
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10 Jonathan Thornburg

3 Software-Engineering Issues

Historically, numerical relativists wrote their own codes from scratch. As these became more
complex, many researchers changed to working on “group codes” with multiple contributors.

3.1 Software libraries and toolkits

More recently, particularly in work on fully generic spacetimes, where all three spatial dimensions
must be treated numerically, there has been a strong trend towards the use of higher-level software
libraries and modular “computational toolkits” such as Cactus [74] (http://www.cactuscode.
org). These have a substantial learning overhead, but can allow researchers to work much more
productively by focusing more on numerical relativity instead of computer-science and software-
engineering issues such as parameter-file parsing, parallelization, I/O, etc.

A particularly important area for such software infrastructure is mesh refinement5. This is
essential to much current numerical-relativity research but is moderately difficult to implement
even in only one spatial dimension, and much harder in multiple spatial dimensions. There are
now a number of software libraries providing multi-dimensional mesh-refinement infrastructure
(sometimes combined with parallelization), such as those listed in Table 1. The Cactus toolkit
can be used in either unigrid or mesh-refinement modes, the latter using a “mesh-refinement driver”
such as PAGH or Carpet [134, 131] (http://www.carpetcode.org).

In this review I point out event and apparent horizon finders which have been written in
particular frameworks and comment on whether they work with mesh refinement.

Program Reference(s) Web page
programAMRD/PAMR none http://laplace.physics.ubc.ca/Group/Software.html

Carpet [134] http://www.carpetcode.org

DAGH/GrACE [117] http://www.caip.rutgers.edu/∼parashar/DAGH/

ParaMesh [106] http://ct.gsfc.nasa.gov/paramesh/Users manual/amr.html

SAMRAI [86, 87] http://www.llnl.gov/CASC/SAMRAI/

Table 1: This table lists some software toolkits for multi-dimensional mesh refinement. All these
toolkits also provide parallelization.

3.2 Code reuse and sharing

Another important issue is that of code reuse and sharing. It is common for codes to be shared
within a research group but relatively uncommon for them to be shared between different (compet-
ing) research groups. Even apart from concerns about competitive advantage, without a modular
structure and clear documentation it is difficult to reuse another group’s code. The use of a
common computational toolkit can greatly simplify such reuse.

If such reuse can be accomplished, it becomes much easier for other researchers to build on
existing work rather than having to “reinvent the wheel”. As well as the obvious ease of reusing
existing code that (hopefully!) already works and has been thoroughly debugged and tested, there is

Einstein equations. (See, for example, the debate between Brewin [40] and Miller [110], and the explicit convergence
demonstration of Gentle and Miller [73].) However, Brewin and Gentle [41] seem to have resolved this: Regge
calculus does, in fact, converge to the continuum solution, and this convergence is generically 2nd order in the
resolution.

5See, for example, Choptuik [48], Pretorius [127], Schnetter et al. [134], and Pretorius and Choptuik [126] for
general surveys of the uses of, and methods for, mesh refinement in numerical relativity.
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another – less obvious – benefit of code sharing: It greatly eases the replication of past work, which
is essential as a foundation for new development. That is, without access to another researcher’s
code, it can be surprisingly difficult to replicate her results because the success or failure of a
numerical algorithm frequently depends on subtle implementation details not described in even
the most complete of published papers.

Event and apparent horizon finders are excellent candidates for software reuse: Many numerical-
relativity researchers can benefit from using them, and they have a relatively simple interface to an
underlying numerical-relativity simulation. Even if a standard computational toolkit is not used,
this relatively simple interface makes it fairly easy to port an event or apparent horizon finder to
a different code.

Table 2 lists event and apparent horizon finders which are freely available to any researcher.

Toolkit/Program References Algorithm Type
Cactus/EHFinder [60] Integrate null surfaces backwards in time

(Section 5.3)
cvs -d :pserver:cvs anon@cvs.aei.mpg.de:/numrelcvs checkout AEIThorns/EHFinder

Cactus/AHFinder [4] Minimization (Section 8.3) and fast flow
(Section 8.7)

cvs -d :pserver:cvs anon@cvs.cactuscode.org:/cactusdevcvs checkout CactusEinstein/AHFinder

Cactus/AHFinderDirect [156] Elliptic-PDE (Section 8.5)
cvs -d :pserver:cvs anon@cvs.aei.mpg.de:/numrelcvs checkout AEIThorns/AHFinderDirect

[133, 135] Modified by Schnetter [133, 135]
to support pretracking
(Section 8.6)

cvs -d :pserver:cvs anon@cvs.aei.mpg.de:/numrelcvs -r Erik checkout AEIThorns/AHFinderDirect

Cactus/TGRapparentHorizon2D [132, 133] Elliptic-PDE (Section 8.5)
cvs -d :pserver:cvs anon@cvs.cactuscode.org:/arrangements checkout TAT Archive/TGRapparentHorizon2D

Lorene/AH finder [104] spectral integral-iteration algorithm
(Section 8.4.2)

http://www.lorene.obspm.fr/

Table 2: This table lists event and apparent horizon finders which are freely available to any
researcher, along with the cvs repositories or web pages from which they may be obtained.

3.3 Using multiple event/apparent horizon finders

It is useful to have multiple event or apparent horizon finders available: Their strengths and
weaknesses may complement each other, and the extent of agreement or disagreement between their
results can help to estimate the numerical accuracy. For example, Figure 11 shows a comparison
between the irreducible masses of apparent horizons in a binary black hole coalescence simulation
(Alcubierre et al. [5, Figure 4b]), as computed by two different apparent horizon finders in the
Cactus toolkit, AHFinder and AHFinderDirect. In this case the two agree to within about
2% for the individual horizons and 0.5% for the common horizon.
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Part II

Finding Event Horizons

4 Introduction

The black hole region of an asymptotically-flat spacetime is defined [81, 82] as the set of events
from which no future-pointing null geodesic can reach future null infinity (J +). The event horizon
is defined as the boundary of the black hole region. The event horizon is a null surface in spacetime
with (in the words of Hawking and Ellis [82, Page 319]) “a number of nice properties” for studying
the causal stucture of spacetime.

The event horizon is a global property of an entire spacetime and is defined nonlocally in time:
The event horizon in a slice is defined in terms of (and cannot be computed without knowing) the
full future development of that slice.

In practice, to find an event horizon in a numerically-computed spacetime, we typically in-
strument a numerical evolution code to write out data files of the 4-metric. After the evolution
(or at least the strong-field region) has reached an approximately-stationary final state, we then
compute a numerical approximation to the event horizon in a separate post-processing pass, using
the 4-metric data files as inputs.

As a null surface, the event horizon is necessarily continuous. In theory it need not be anywhere
differentiable6, but in practice this behavior rarely occurs7: The event horizon is generally smooth
except for possibly a finite set of “cusps” where new generators join the surface; the surface normal
has a jump discontinuity across each cusp. (The classic example of such a cusp is the “inseam” of
the “pair of pants” event horizon illustrated in Figures 4 and 5.)

A black hole is defined as a connected component of the black hole region in a 3 +1 slice.
The boundary of a black hole (the event horizon) in a slice is a 2-dimensional set of events.
Usually this has 2-sphere (S2) topology. However, numerically simulating rotating dust collapse,
Abrahams et al. [1] found that in some cases the event horizon in a slice may be toroidal in
topology. Lehner et al. [99], and Husa and Winicour [91] have used null (characteristic) algorithms
to give a general analysis of the event horizon’s topology in black hole collisions; they find that
there is generically a (possibly brief) toroidal phase before the final 2-spherical state is reached.
Lehner et al. [100] later calculated movies showing this behavior for several asymmetric black hole
collisions.

6Chruściel and Galloway [49] showed that if a “cloud of sand” falls into a large black hole, each “sand grain”
generates a non-differentiable caustic in the event horizon.

7This is a statement about the types of spacetimes usually studied by numerical relativists, not a statement
about the mathematical properties of the event horizon itself.
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5 Algorithms and Codes for Finding Event Horizons

There are three basic event-horizon finding algorithms:

• Integrate null geodesics forwards in time (Section 5.1).

• Integrate null geodesics backwards in time (Section 5.2).

• Integrate null surfaces backwards in time (Section 5.3).

I describe these in detail in the following.

5.1 Integrating null geodesics forwards in time

The first generation of event-horizon finders were based directly on Hawking’s original definition
of an event horizon: an event P is within the black hole region of spacetime if and only if there is
no future-pointing “escape route” null geodesic from P to J +; the event horizon is the boundary
of the black hole region.

That is, as described by Hughes et al. [88], we numerically integrate the null geodesic equation

d2xa

dλ2
+ Γa

bc

dxb

dλ

dxc

dλ
= 0 (8)

(where λ is an affine parameter) forwards in time from a set of starting events and check which
events have “escaping” geodesics. For analytical or semi-analytical studies like that of Bishop [31],
this is an excellent algorithm.

For numerical work it is straightforward to rewrite the null geodesic equation (8) as a coupled
system of two first-order equations, giving the time evolution of photon positions and 3-momenta
in terms of the 3 + 1 geometry variables α, βi, gij , and their spatial derivatives. These can then be
time-integrated by standard numerical algorithms8. However, in practice several factors complicate
this algorithm.

We typically only know the 3+ 1 geometry variables on a discrete lattice of spacetime grid
points, and we only know the 3 + 1 geometry variables themselves, not their spatial derivatives.
Therefore we must numerically differentiate the field variables, then interpolate the field variables
and their spacetime derivatives to each integration point along each null geodesic. This is straight-
forward to implement9, but the numerical differentiation tends to amplify any numerical noise that
may be present in the field variables.

Another complicating factor is that the numerical computations generally only span a finite
region of spacetime, so it is not entirely obvious whether or not a given geodesic will eventually
reach J +. However, if the final numerically-generated slice contains an apparent horizon, we can
use this as an approximation: Any geodesic which is inside this apparent horizon will definitely
not reach J +, while any other geodesic may be assumed to eventually reach J + if its momentum
is directed away from the apparent horizon. If the final slice (or at least its strong-field region)
is approximately stationary, the error from this approximation should be small. I discuss this
stationarity assumption further in Section 5.3.1.

8I briefly review ODE integration algorithms and codes in Appendix B.
9In practice the differentiation can usefully be combined with the interpolation; I outline how this can be done

in Section 7.5.
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5.1.1 Spherically-symmetric spacetimes

In spherical symmetry this algorithm works well and has been used by a number of researchers.
For example, Shapiro and Teukolsky [141, 142, 143, 144] used it to study event horizons in a variety
of dynamical evolutions of spherically symmetric collapse systems. Figure 2 shows an example of
the event and apparent horizons in one of these simulations.

Figure 2: This figure shows part of a simulation of the spherically symmetric collapse of a model
stellar core (a Γ = 5

3 polytrope) to a black hole. The event horizon (shown by the dashed line) was
computed using the “integrate null geodesics forwards” algorithm described in Section 5.1; solid
lines show outgoing null geodesics. The apparent horizon (the boundary of the trapped region, shown
shaded) was computed using the zero-finding algorithm discussed in Section 8.1. The dotted lines
show the world lines of Lagrangian matter tracers and are labeled by the fraction of baryons interior
to them. Figure reprinted with permission from [142]. c© 1980 by the American Astronomical
Society.

5.1.2 Non-spherically-symmetric spacetimes

In a non-spherically-symmetric spacetime, several factors make this algorithm very inefficient:

• Many trial events must be tried to accurately resolve the event horizon’s shape. (Hughes et al.
[88] describe a 2-stage adaptive numerical algorithm for choosing the trial events so as to
accurately locate the event horizon as efficiently as possible.)
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• At each trial event we must try many different trial-geodesic starting directions to see if any of
the geodesics escape to J + (or our numerical approximation to it). Hughes et al. [88] report
needing only 48 geodesics per trial event in several nonrotating axisymmetric spacetimes,
but about 750 geodesics per trial event in rotating axisymmetric spacetimes, with up to 3000
geodesics per trial event in some regions of the spacetimes.

• Finally, each individual geodesic integration requires many (short) time steps for an accurate
integration, particularly in the strong-field region near the event horizon.

Because of these limitations, for non-spherically-symmetric spacetimes the “integrate null geodesics
forwards” algorithm has generally been supplanted by the more efficient algorithms I describe in
the following.

5.2 Integrating null geodesics backwards in time

It is well-known that future-pointing outgoing null geodesics near the event horizon tend to di-
verge exponentially in time away from the event horizon. Figure 3 illustrates this behavior for
Schwarzschild spacetime, but the behavior is actually quite generic.

Anninos et al. [7] and Libson et al. [103] observed that while this instability is a problem for
the “integrate null geodesics forwards in time” algorithm (it forces that algorithm to take quite
short time steps when integrating the geodesics), we can turn it to our advantage by integrating
the geodesics backwards in time: The geodesics will now converge on to the horizon10.

This event-horizon finding algorithm thus integrates a large number of such (future-pointing
outgoing) null geodesics backwards in time, starting on the final numerically-generated slice. As
the backwards integration proceeds, even geodesics which started far from the event horizon will
quickly converge to it. This can be seen, for example, in Figures 2 and 3.

Unfortunately, this convergence property holds only for outgoing geodesics. In spherical sym-
metry the distinction between outgoing and ingoing geodesics is trivial but, as described by Lib-
son et al. [103],

[. . . ] for the general 3D case, when the two tangential directions of the EH are also
considered, the situation becomes more complicated. Here normal and tangential are
meant in the 3D spatial, not spacetime, sense. Whether or not a trajectory can even-
tually be “attracted” to the EH, and how long it takes for it to become “attracted,”
depends on the photon’s starting direction of motion. We note that even for a photon
which is already exactly on the EH at a certain instant, if its velocity at that point has
some component tangential to the EH surface as generated by, say, numerical inaccu-
racy in integration, the photon will move outside of the EH when traced backward in
time. For a small tangential velocity, the photon will eventually return to the EH [. . .
but] the position to which it returns will not be the original position.

This kind of tangential drifting is undesirable not just because it introduces inaccuracy
in the location of the EH, but more importantly, because it can lead to spurious dynam-
ics of the “EH” thus found. Neighboring generators may cross, leading to numerically
artificial caustic points [. . . ].

Libson et al. [103] also observed:

Another consequence of the second order nature of the geodesic equation is that not
just the positions but also the directions must be specified in starting the backward

10This convergence is only true in a global sense: locally the event horizon has no special geometric properties,
and the Riemann tensor components which govern geodesic convergence/divergence may have either sign.
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Figure 3: This figure shows a number of light cones and future-pointing outgoing null geodesics
in a neighborhood of the event horizon in Schwarzschild spacetime, plotted in ingoing Eddington–
Finkelstein coordinates (t, r). (These coordinates are defined by the conditions that t + r is an
ingoing null coordinate, while r is an areal radial coordinate.) Note that for clarity the horizontal
scale is expanded relative to the vertical scale, so the light cones open by more than ±45◦. All
the geodesics start out close together near the event horizon; they diverge away from each other
exponentially in time (here with an e-folding time of 4 m near the horizon). Equivalently, they
converge towards each other if integrated backwards in time (downwards on the page).
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integration. Neighboring photons must have their starting direction well correlated in
order to avoid tangential drifting across one another.

Libson et al. [103] give examples of the numerical difficulties that can result from these diffi-
culties and conclude that this event-horizon finding algorithm

[. . . ] is still quite demanding in finding an accurate history of the EH, although the
difficulties are much milder than those arising from the instability of integrating forward
in time.

Because of these difficulties, this algorithm has generally been supplanted by the “backwards
surface” algorithm I describe next.

5.3 Integrating null surfaces backwards in time

Anninos et al. [7], Libson et al. [103], and Walker [162] introduced the important concept of
explicitly (numerically) finding the event horizon as a null surface in spacetime. They observed
that if we parameterize the event horizon with any level-set function F satisfying the basic level-set
definition (3), then the condition for the surface F = 0 to be null is just

gab ∂aF ∂bF = 0. (9)

Applying a 3 + 1 decomposition to this then gives a quadratic equation which can be solved to find
the time evolution of the level-set function,

∂tF =
−gti∂iF +

√
(gti∂iF )2 − gttgij ∂if ∂jf

gtt
. (10)

Alternatively, assuming the event horizon in each slice to be a Strahlkörper in the manner of
Section 2.2, we can define a suitable level-set function F by Equation (7). Substituting this defi-
nition into Equation (10) then gives an explicit evolution equation for the horizon shape function,

∂th =
−gtr + gru∂uh +

√
(gtr − gtu∂uh)2 − gtt (grr − 2gru∂uh + guv ∂uh ∂vh)

gtt
. (11)

Surfaces near the event horizon share the same “attraction” property discussed in Section 5.2
for geodesics near the event horizon. Thus by integrating either surface representation (10) or (11)
backwards in time, we can refine an initial guess into a very accurate approximation to the event
horizon.

In contrast to the null geodesic equation (8), neither Equation (10) nor Equation (11) contain
any derivatives of the 4-metric (or equivalently the 3 +1 geometry variables). This makes it much
easier to integrate these latter equations accurately11. This formulation of the event-horizon finding
problem also completely eliminates the tangential-drifting problem discussed in Section 5.2, since
the level-set function only parameterizes motion normal to the surface.

5.3.1 Error bounds: Integrating a pair of surfaces

For a practical algorithm, it is useful to integrate a pair of trial null surfaces backwards: an “inner-
bound” one which starts (and thus always remains) inside the event horizon and an “outer-bound”
one which starts (and thus always remains) outside the event horizon. If the final slice contains

11Diener [60] describes how the algorithm can be enhanced to also determine (integrate) individual null generators
of the event horizon. This requires interpolating the 4-metric to the generator positions but (still) not taking any
derivatives of the 4-metric.
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an apparent horizon then any 2-surface inside this can serve as our inner-bound surface. However,
choosing an outer-bound surface is more difficult.

It is this desire for a reliable outer bound on the event horizon position that motivates our
requirement (Section 4) for the final slice (or at least its strong-field region) to be approximately
stationary: In the absence of time-dependent equations of state or external perturbations enter-
ing the system, this requirement ensures that, for example, any surface substantially outside the
apparent horizon can serve as an outer-bound surface.

Assuming we have an inner- and an outer-bound surface on the final slice, the spacing between
these two surfaces after some period of backwards integration then gives an error bound for the
computed event horizon position. Equivalently, a necessary (and, if there are no other numerical
problems, sufficient) condition for the event-horizon finding algorithm to be accurate is that the
backwards integration must have proceeded far enough for the spacing between the two trial
surfaces to be “small”. For a reasonable definition of “small”, this typically takes at least 15mADM

of backwards integration, with 20 mADM or more providing much higher accuracy.
In some cases it is difficult to obtain a long enough span of numerical data for this backwards

integration. For example, in some simulations of binary black hole collisions, the evolution becomes
unstable and crashes soon after a common apparent horizon forms. This means that we cannot
compute an accurate event horizon for the most interesting region of the spacetime, that which is
close to the black-hole merger. There is no good solution to this problem except for the obvious
one of developing a stable (or less-unstable) simulation that can be continued for a longer time.

5.3.2 Explicit Strahlkörper surface representation

The initial implementations of the “integrate null surface backwards” algorithm by Anninos et al. [7],
Libson et al. [103], and Walker [162] were based on the explicit Strahlkörper surface integration
formula (11), further restricted to axisymmetry12.

For a single black hole the coordinate choice is straightforward. For the two-black-hole case,
the authors used topologically cylindrical coordinates (ρ, z, φ), where the two black holes collide
along the axisymmetry (z) axis. Based on the symmetry of the problem, they then assumed that
the event horizon shape could be written in the form

ρ = h(z) (12)

in each t = constant slice.
This spacetime’s event horizon has the now-classic “pair of pants” shape, with a non-differen-

tiable cusp along the “inseam” (the z axis ρ = 0) where new generators join the surface. The
authors tried two ways of treating this cusp numerically:

• Since the cusp’s location is known a priori, it can be treated as a special case in the angular
finite differencing, using one-sided numerical derivatives as necessary.

• Alternatively, in 1994 Thorne suggested calculating the union of the event horizon and all
its null generators (including those which have not yet joined the surface)13. This “surface”
has a complicated topology (it self-intersects along the cusp), but it is smooth everywhere.
This is illustrated by Figure 4, which shows a cross-section of this surface in a single slice,
for a head-on binary black hole collision. For comparison, Figure 5 shows a perspective view
of part of the event horizon and some of its generators, for a similar head-on binary black
hole collision.

12Walker [162] mentions an implementation for fully generic slices but only presents results for the axisymmetric
case.

13See [7, 103, 162].
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Figure 4: This figure shows a view of the numerically-computed event horizon in a single slice,
together with the locus of the event horizon’s generators that have not yet joined the event horizon
in this slice, for a head-on binary black hole collision. Notice how the event horizon is non-
differentiable at the cusp where the new generators join it. Figure reprinted with permission
from [103]. c© 1996 by the American Physical Society.
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Figure 5: This figure shows a perspective view of the numerically-computed event horizon, to-
gether with some of its generators, for the head-on binary black hole collision discussed in detail
by Matzner et al. [108]. Figure courtesy of Edward Seidel.
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Caveny et al. [44, 46] implemented the “integrate null surfaces backwards” algorithm for fully
generic numerically-computed spacetimes using the explicit Strahlkörper surface integration for-
mula (11). To handle moving black holes, they recentered each black hole’s Strahlkörper parame-
terization (4) on the black hole’s coordinate centroid at each time step.

For single-black-hole test cases (Kerr spacetime in various coordinates), they report typical ac-
curacies of a few percent in determining the event horizon position and area. For binary-black-hole
test cases (Kastor–Traschen extremal-charge black hole coalescence with a cosmological constant),
they detect black hole coalescence (which appears as a bifurcation in the backwards time integra-
tion) by the “necking off” of the surface. Figure 6 shows an example of their results.
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-0.1
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Figure 6: This figure shows the cross-section of the numerically-computed event horizon in each of
five different slices, for the head-on collision of two extremal Kastor–Traschen black holes. Figure
reprinted with permission from [46]. c© 2003 by the American Physical Society.

5.3.3 Level-set parameterization

Caveny et al. [44, 45] and Diener [60] (independently) implemented the “integrate null surfaces
backwards” algorithm for fully generic numerically-computed spacetimes, using the level-set func-
tion integration formula (10). Here the level-set function F is initialized on the final slice of the
evolution and evolved backwards in time using Equation (10) on (conceptually) the entire numerical
grid. (In practice, only a smaller box containing the event horizon need be evolved.)

This surface parameterization has the advantage that the event-horizon topology and (non-)
smoothness are completely unconstrained, allowing the numerical study of configurations such as
toroidal event horizons (discussed in Section 4). It is also convenient that the level-set function F
is defined on the same numerical grid as the spacetime geometry, so that no interpolation is needed
for the evolution.
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The major problem with this algorithm is that during the backwards evolution, spatial gradients
in F tend to steepen into a jump discontinuity at the event horizon14, eventually causing numerical
difficulty.

Caveny et al. [44, 45] deal with this problem by adding an artificial viscosity (i.e. diffusion)
term to the level-set function evolution equation, smoothing out the jump discontinuity in F . That
is, instead of Equation (10), they actually evolve F via

∂tF = rhsEq. (10) + ε2∇2F, (13)

where rhsEq. (10) is the right hand side of Equation (10) and ∇2 is a generic 2nd order linear
(elliptic) spatial differential operator, and ε > 0 is a (small) dissipation constant. This scheme
works, but the numerical viscosity does seem to lead to significant errors (several percent) in their
computed event-horizon positions and areas15, and even failure to converge to the correct solution
for some test cases (e.g. rapidly-spinning Kerr black holes).

Alternatively, Diener [60] developed a technique of periodically reinitializing the level-set func-
tion to approximately the signed distance from the event horizon. To do this, he periodically
evolves

∂λF = − F√
F 2 + 1

(|∇F | − 1) (14)

in an unphysical “pseudo-time” λ until an approximate steady state has been achieved. He reports
that this works well in most circumstances but can significantly distort the computed event horizon
if the F = 0 isosurface (the current approximation to the event horizon) is only a few grid points
thick in any direction, as typically occurs just around the time of a topology change in the isosurface.
He avoids this problem by estimating the minimum thickness of this isosurface and, if it is below
a threshold, deferring the reinitialization.

In various tests on analytical data, Diener [60] found this event-horizon finder, EHFinder, to
be robust and highly accurate, typically locating the event horizon to much less than 1% of the
3-dimensional grid spacing. As an example of results obtained with EHFinder, Figure 7 shows
two views of the numerically-computed event horizon for a spiraling binary black hole collision.
As another example, Figure 8 shows the numerically-computed event and apparent horizons in
the collapse of a rapidly rotating neutron star to a Kerr black hole. (The apparent horizons were
computed using the AHFinderDirect code described in Section 8.5.7.)

EHFinder is implemented as a freely available module (“thorn”) in the Cactus computational
toolkit (see Table 2). It originally worked only with the PUGH unigrid driver, but work is
ongoing [61] to enhance it to work with the Carpet mesh-refinement driver [134, 131].

14Equivalently, Diener [60] observed that the locus of any given nonzero value of the level-set function F is itself
a null surface and tends to move (exponentially) closer and closer to the event horizon as the backwards evolution
proceeds.

15They describe how Richardson extrapolation can be used to improve the accuracy of the solutions from O(ε)
to O(ε2), but it appears that this has not been done for their published results.
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Figure 7: This figure shows two views of the numerically-computed event horizon’s cross-section in
the orbital plane for a spiraling binary black hole collision. The two orbital-plane dimensions are
shown horizontally; time runs upwards. The initial data was constructed to have an approximate
helical Killing vector, corresponding to black holes in approximately circular orbits (the D = 18
case of Grandclément et al. [78]), with a proper separation of the apparent horizons of 6.9 m. (The
growth of the individual event horizons by roughly a factor of 3 in the first part of the evolution
is an artifact of the coordinate choice – the black holes are actually in a quasi-equilibrium state.)
Figure courtesy of Peter Diener.
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Figure 8: This figure shows the polar and equatorial radii of the event horizon (solid lines) and
apparent horizon (dashed lines) in a numerical simulation of the collapse of a rapidly rotating
neutron star to form a Kerr black hole. The dotted line shows the equatorial radius of the stellar
surface. These results are from the D4 simulation of Baiotti et al. [21]. Notice how the event
horizon grows from zero size while the apparent horizon first appears at a finite size and grows in a
spacelike manner. Notice also that both surfaces are flattened due to the rotation. Figure reprinted
with permission from [21]. c© 2005 by the American Physical Society.
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6 Summary of Algorithms/Codes for Finding Event Hori-
zons

In spherical symmetry the “integrate null geodesics forwards” algorithm (Section 5.1) can be
used, although the “integrate null geodesics backwards” and “integrate null surfaces backwards”
algorithms (Sections 5.2 and 5.3 respectively) are more efficient.

In non-spherically-symmetric spacetimes the “integrate null surfaces backwards” algorithm
(Section 5.3) is clearly the best algorithm known: It is efficient, accurate, and fairly easy to imple-
ment. For generic spacetimes, Diener’s event-horizon finder EHFinder [60] is particularly notable
as a freely available implementation of this algorithm as a module (“thorn”) in the widely-used
Cactus computational toolkit (see Table 2).
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Part III

Finding Apparent Horizons

7 Introduction

7.1 Definition

Given a (spacelike) 3 +1 slice, a “trapped surface” is defined as a smooth closed 2-surface in
the slice whose future-pointing outgoing null geodesics have negative expansion Θ. The “trapped
region” in the slice is then defined as the union of all trapped surfaces, and the “apparent horizon”
is defined as the outer boundary of the trapped region.

While mathematically elegant, this definition is not convenient for numerically finding apparent
horizons. Instead, an alternate definition can be used: A MOTS is defined as a smooth (differen-
tiable) closed orientable 2-surface in the slice whose future-pointing outgoing null geodesics have
zero expansion Θ. 16 There may be multiple MOTSs in a slice, either nested within each other or
intersecting17. An apparent horizon is then defined as an outermost MOTS in a slice, i.e. a MOTS
not contained in any other MOTS. Kriele and Hayward [98] have shown that subject to certain
technical conditions, this definition is equivalent to the “outer boundary of the trapped region”
one.

Notice that the apparent horizon is defined locally in time (it can be computed using only
Cauchy data on a spacelike slice), but (because of the requirement that it be closed) non-locally in
space18. Hawking and Ellis [82] discuss the general properties of MOTSs and apparent horizons in
more detail.

Except for flow algorithms (Section 8.7), all numerical “apparent horizon” finding algorithms
and codes actually find MOTSs, and hereinafter I generally follow the common (albeit sloppy)
practice in numerical relativity of blurring the distinction between an MOTS and an apparent
horizon.

7.2 General properties

Given certain technical assumptions (including energy conditions), the existence of any trapped
surface (and hence any apparent horizon) implies that the slice contains a black hole19. (The
converse of this statement is not true: An arbitrary (spacelike) slice through a black hole need
not contain any apparent horizon20.) However, if an apparent horizon does exist, it necessarily
coincides with, or is contained in, an event horizon. In a stationary spacetime the event and
apparent horizons coincide.

16Note that the surface must be smooth everywhere. If this condition were not imposed, then MOTSs would
lose many of their important properties. For example, even a standard t = constant slice of Minkowski spacetime
contains many non-smooth “MOTSs”: The surface of any closed polyhedron in such a slice satisfies all the other
conditions to be an MOTS.

17Andersson and Metzger [6] have shown that MOTSs can only intersect if they are contained within an outer
common MOTS. Szilágyi et al. [151] give a numerical example of such overlapping MOTSs found in a binary black
hole collision.

18As an indication of the importance of the “closed” requirement, Hawking [81] observed that if we consider two
spacelike-separated events in Minkowski spacetime, the intersection of their backwards light cones satisfies all the
conditions of the MOTS definition, except that it is not closed.

19The proof is given by Hawking and Ellis [82, Proposition 9.2.8] and by Wald [160, Propositions 12.2.3 and 12.2.4].
20Wald and Iyer [161] proved this by explicitly constructing a family of angularly anisotropic slices in Schwarzschild

spacetime which approach arbitrarily close to r = 0 yet contain no apparent horizons. However, Schnetter and
Krishnan [136] have recently studied the behavior of apparent horizons in various anisotropic slices in Schwarzschild
and Vaidya spacetimes, finding that the Wald and Iyer behavior seems to be rare.
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It is this relation to the event horizon which makes apparent horizons valuable for numerical
computation: An apparent horizon provides a useful approximation to the event horizon in a slice,
but unlike the event horizon, an apparent horizon is defined locally in time and so can be computed
“on the fly” during a numerical evolution.

Given a family of spacelike 3 +1 slices which foliate part of spacetime, the union of the slices’
apparent horizons (assuming they exist) forms a world-tube21. This world-tube is necessarily either
null or spacelike. If it is null, this world-tube is slicing-independent (choosing a different family
of slices gives the same world-tube, at least so long as each slice still intersects the world-tube in
a surface with 2-sphere topology). However, if the world-tube is spacelike, it is slicing-dependent :
Choosing a different family of slices will in general give a different world-tube22.

7.3 Trapping, isolated, and dynamical horizons

Hayward [83] introduced the important concept of a “trapping horizon” (roughly speaking an
apparent horizon world-tube where the expansion becomes negative if the surface is deformed in the
inward null direction) along with several useful variants. Ashtekar, Beetle, and Fairhurst [16], and
Ashtekar and Krishnan [18] later defined the related concepts of an “isolated horizon”, essentially
an apparent horizon world-tube which is null, and a “dynamical horizon”, essentially an apparent
horizon world-tube which is spacelike.

These world-tubes obey a variety of local and global conservation laws, and have many ap-
plications in analyzing numerically-computed spacetimes. See the references cited above and also
Dreyer et al. [63], Ashtekar and Krishnan [19, 20], Gourgoulhon and Jaramillo [76], Booth [36], and
Schnetter, Krishnan, and Beyer [137] for further discussions, including applications to numerical
relativity.

7.4 Description in terms of the 3 + 1 variables

In terms of the 3 +1 variables, a MOTS (and thus an apparent horizon) satisfies the condition23

Θ ≡ ∇is
i + Kijs

isj −K = 0, (15)

where si is the outward-pointing unit 3-vector normal to the surface24. Assuming the Strahlkörper
surface parameterization (4), Equation (15) can be rewritten in terms of angular 1st and 2nd
derivatives of the horizon shape function h,

Θ ≡ Θ(h, ∂uh, ∂uvh; gij , ∂kgij ,Kij) = 0, (16)

where Θ is a complicated nonlinear algebraic function of the arguments shown. (Shibata [146] and
Thornburg [153, 156] give the Θ(h, ∂uh, ∂uvh) function explicitly.)

21This world-tube is sometimes called “the apparent horizon”, but this is not standard terminology. In this review
I always use the terminology that an MOTS or apparent horizon is a 2-surface contained in a (single) slice.

22Ashtekar and Galloway [17] have recently proved “a number of physically interesting constraints” on this slicing-
dependence.

23The derivation of this condition is given by (for example) York [164], Gundlach [80, Section IIA], and Baumgarte
and Shapiro [27, Section 6.1].

24Notice that in order for the 3-divergence in Equation (15) to be meaningful, si (defined only as a field on the
MOTS) must be smoothly continued off the surface and extended to a field in some 3-dimensional neighborhood of
the surface. The off-surface continuation is non-unique, but it is easy to see that this does not affect the value of Θ
on the surface.
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7.5 Geometry interpolation

Θ depends on the slice geometry variables gij , ∂kgij , and Kij at the horizon position25. In practice
these variables are usually only known on the (3-dimensional) numerical grid of the underlying
numerical-relativity simulation26, so they must be interpolated to the horizon position and, more
generally, to the position of each intermediate-iterate trial shape the apparent horizon finding
algorithm tries in the process of (hopefully) converging to the horizon position.

Moreover, usually the underlying simulation gives only gij and Kij , so gij must be numerically
differentiated to obtain ∂kgij . As discussed by Thornburg [156, Section 6.1], it is somewhat more
efficient to combine the numerical differentiation and interpolation operations, essentially doing
the differentiation inside the interpolator27.

Thornburg [156, Section 6.1] argues that for an elliptic-PDE algorithm (Section 8.5), for best
convergence of the nonlinear elliptic solver the interpolated geometry variables should be smooth
(differentiable) functions of the trial horizon surface position. He argues that that the usual La-
grange polynomial interpolation does not suffice here (in some cases his Newton’s-method iteration
failed to converge) because this interpolation gives results which are only piecewise differentiable28.
He uses Hermite polynomial interpolation to avoid this problem. Cook and Abrahams [51], and
Pfeiffer et al. [124] use bicubic spline interpolation; most other researchers either do not describe
their interpolation scheme or use Lagrange polynomial interpolation.

7.6 Criteria for assessing algorithms

Ideally, an apparent horizon finder should have several attributes:

Robust: The algorithm/code should find an (the) apparent horizon in a wide range of numerically-
computed slices, without requiring extensive tuning of initial guesses, iteration parameters,
etc. This is often relatively easy to achieve for “tracking” the time evolution of an existing
apparent horizon (where the most recent previously-found apparent horizon provides an
excellent initial guess for the new apparent horizon position) but may be difficult for detecting
the appearance of a new (outermost) apparent horizon in an evolution, or for initial-data or
other studies where there is no “previous time step”.

Accurate: The algorithm/code should find an (the) apparent horizon to high accuracy and should
not report spurious “solutions” (“solutions” which are not actually good approximations to
apparent horizons or, at least, to MOTSs).

Efficient: The algorithm/code should be efficient in terms of its memory use and CPU time; in
practice CPU time is generally the major constraint. It is often desirable to find apparent
horizons at each time step (or, at least, at frequent intervals) during a numerical evolution.
For this to be practical the apparent horizon finder must be very fast.

In practice, no apparent horizon finder is perfect in all these dimensions, so trade-offs are
inevitable, particularly when ease of programming is considered.

25Or, in the Huq et al. [89, 90] algorithm described in Section 8.5.2, at the local Cartesian grid point positions.
26If the underlying simulation uses spectral methods then the spectral series can be evaluated anywhere, so

no actual interpolation need be done, although the term “spectral interpolation” is still often used. See Forn-
berg [70], Gottlieb and Orszag [75], and Boyd [37] for general discussions of spectral methods, and (for example)
Ansorg et al. [12, 11, 10, 13], Bonazzola et al. [35, 33, 34], Grandclément et al. [77], Kidder et al. [95, 96, 97], and
Pfeiffer et al. [120, 124, 123, 122] for applications to numerical relativity.

27Conceptually, an interpolator generally works by locally fitting a fitting function (usually a low-degree poly-
nomial) to the data points in a neighborhood of the interpolation point, then evaluating the fitting function at
the interpolation point. By evaluating the derivative of the fitting function, the ∂kgij values can be obtained very
cheaply at the same time as the gij values.

28Thornburg [154, Appendix F] gives a more detailed discussion of the non-smoothness of Lagrange-polynomial
interpolation errors.
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7.7 Local versus global algorithms

Apparent horizon finding algorithms can usefully be divided into two broad classes:

Local algorithms are those whose convergence is only guaranteed in some (functional) neigh-
borhood of a solution. These algorithms require a “good” initial guess in order to find the
apparent horizon. Most apparent horizon finding algorithms are local.

Global algorithms are those which can (in theory, ignoring finite-step-size and other numerical
effects) converge to the apparent horizon independent of any initial guess. Flow algorithms
(Section 8.7) are the only truely global algorithms. Zero-finding in spherical symmetry (Sec-
tion 8.1) and shooting in axisymmetry (Section 8.2) are “almost global” algorithms: They
require only 1-dimensional searches, which (as discussed in Appendix A) can be programmed
to be very robust and efficient. In many cases horizon pretracking (Section 8.6) can semi-
automatically find an initial guess for a local algorithm, essentially making the local algorithm
behave like an “almost global” one.

One might wonder why local algorithms are ever used, given the apparently superior robustness
(guaranteed convergence independent of any initial guess) of global algorithms. There are two basic
reasons:

• In practice, local algorithms are much faster than global ones, particularly when “tracking”
the time evolution of an existing apparent horizon.

• Due to finite-step-size and other numerical effects, in practice even “global” algorithms may
fail to converge to an apparent horizon. (That is, the algorithms may sometimes fail to find
an apparent horizon even when one exists in the slice.)
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8 Algorithms and Codes for Finding Apparent Horizons

Many researchers have studied the apparent horizon finding problem, and there are a large number
of different apparent horizon finding algorithms and codes. Almost all of these require (assume)
that any apparent horizon to be found is a Strahlkörper (Section 2) about some local coordinate
origin; both finite-difference and spectral parameterizations of the Strahlkörper are common.

For slices with continuous symmetries, special algorithms are sometimes used:

Zero-Finding in Spherical Symmetry (Section 8.1)
In spherical symmetry the apparent horizon equation (16) becomes a 1-dimensional nonlinear
algebraic equation, which can be solved by zero-finding.

The Shooting Algorithm in Axisymmetry (Section 8.2)
In axisymmetry the apparent horizon equation (16) becomes a nonlinear 2-point boundary
value ODE, which can be solved by a shooting algorithm.

Alternatively, all the algorithms described below for generic slices are also applicable to ax-
isymmetric slices and can take advantage of the axisymmetry to simplify the implementation and
boost performance.

For fully generic slices, there are several broad categories of apparent horizon finding algorithms
and codes:

Minimization Algorithms (Section 8.3)
These algorithms define a scalar norm on Θ over the space of possible trial surfaces. A general-
purpose scalar-function-minimization routine is then used to search trial-surface-shape space
for a minimum of this norm (which should give Θ = 0).

Spectral Integral-Iteration Algorithms (Section 8.4)
These algorithms expand the (Strahlkörper) apparent horizon shape function in a spherical-
harmonic basis, use the orthogonality of spherical harmonics to write the apparent horizon
equation as a set of integral equations for the spectral coefficients, and solve these equations
using a functional-iteration algorithm.

Elliptic-PDE Algorithms (Section 8.5)
These algorithms write the apparent horizon equation (16) as a nonlinear elliptic (boundary-
value) PDE for the horizon shape and solve this PDE using (typically) standard elliptic-PDE
numerical algorithms.

Horizon Pretracking (Section 8.6)
Horizon pretracking solves a slightly more general problem than apparent horizon finding:
Roughly speaking, the determination of the smallest E ≥ 0 such that the equation Θ = E has
a solution, and the determination of that solution. By monitoring the time evolution of E and
of the surfaces satisfying this condition, we can determine – before it appears – approximately
where (in space) and when (in time) a new MOTS will appear in a dynamic numerically-
evolving spacetime. Horizon pretracking is implemented as a 1-dimensional (binary) search
using a slightly-modified elliptic-PDE apparent horizon finding algorithm as a “subroutine”.

Flow Algorithms (Section 8.7)
These algorithms start with a large 2-surface (larger than any possible apparent horizon in
the slice) and shrink it inwards using an algorithm which ensures that the surface will stop
shrinking when it coincides with the apparent horizon.

I describe the major algorithms and codes in these categories in detail in the following.
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8.1 Zero-finding in spherical symmetry

In a spherically symmetric slice, any apparent horizon must also be spherically symmetric, so the
apparent horizon equation (16) becomes a 1-dimensional nonlinear algebraic equation Θ(h) = 0 for
the horizon radius h. For example, adopting the usual (symmetry-adapted) polar-spherical spatial
coordinates xi = (r, θ, φ), we have [154, Equation (B7)]

Θ ≡ ∂rgθθ

gθθ
√

grr
− 2

Kθθ

gθθ
= 0. (17)

Given the geometry variables grr, gθθ, ∂rgθθ, and Kθθ, this equation may be easily and accurately
solved using one of the zero-finding algorithms discussed in Appendix A29.

Zero-finding has been used by many researchers, including [141, 142, 143, 144, 119, 47, 139,
9, 154, 155]30. For example, the apparent horizons shown in Figure 2 were obtained using this
algorithm. As another example, Figure 9 shows Θ(r) and h at various times in a (different)
spherically symmetric collapse simulation.

8.2 The shooting algorithm in axisymmetry

In an axisymmetric spacetime we can use symmetry-adapted coordinates (θ, φ), so (given the
Strahlkörper assumption) without further loss of generality we can write the horizon shape function
as h = h(θ). The apparent horizon equation (16) then becomes a nonlinear 2-point boundary-value
ODE for the horizon shape function h [146, Equation (1.1)]

Θ ≡ Θ(h, ∂θh, ∂θθh; gij , ∂kgij ,Kij) = 0, (18)

where Θ(h) is a nonlinear 2nd order (ordinary) differential operator in h as shown.
Taking the angular coordinate θ to have the usual polar-spherical topology, local smoothness

of the apparent horizon gives the boundary conditions

∂θh = 0 at θ = 0 and θ = θmax, (19)

where θmax is π/2 if there is “bitant” reflection symmetry across the z = 0 plane, or π otherwise.
As well as the more general algorithms described in the following, this may be solved by a

shooting algorithm31:

1. Guess the value of h at one endpoint, say h(θ=0) ≡ h∗.

2. Use this guessed value of h(θ=0) together with the boundary condition (19) there as initial
data to integrate (“shoot”) the ODE (18) from θ=0 to the other endpoint θ=θmax. This can
be done easily and efficiently using one of the ODE codes described in Appendix B.

3. If the numerically computed solution satisfies the other boundary condition (19) at θ=θmax

to within some tolerance, then the just-computed h(θ) describes the (an) apparent horizon,
and the algorithm is finished.

4. Otherwise, adjust the guessed value h(θ=0) ≡ h∗ and try again. Because there is only a single
parameter (h∗) to be adjusted, this can be done using one of the 1-dimensional zero-finding
algorithms discussed in Appendix A.

29Note that ∂rgθθ is a known coefficient field here, not an unknown; if necessary, it can be obtained by numerically
differentiating gθθ. Therefore, despite the appearance of the derivative, Equation (17) is still an algebraic equation
for the horizon radius h, not a differential equation.

30See also the work of Bizoń, Malec, and Ó Murchadha [32] for an interesting analytical study giving necessary
and sufficient conditions for apparent horizons to form in non-vacuum spherically symmetric spacetimes.

31Ascher, Mattheij, and Russel [15, Chapter 4] give a more detailed discussion of shooting methods.
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Figure 9: This figure shows the apparent horizons (actually MOTSs) for a spherically symmetric
numerical evolution of a black hole accreting a narrow shell of scalar field, the 800.pqw1 evolution
of Thornburg [155]. Part (a) of this figure shows Θ(r) (here labelled H) for a set of equally-spaced
times between t=19 and t=20, while Part (b) shows the corresponding MOTS radius h(t) and the
Misner–Sharp [111], [112, Box 23.1] mass m(h) internal to each MOTS. Notice how two new
MOTSs appear when the local minimum in Θ(r) touches the Θ=0 line, and two existing MOTS
disappear when the local maximum in Θ(r) touches the Θ=0 line.
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This algorithm is fairly efficient and easy to program. By trying a sufficiently wide range of
initial guesses h∗ this algorithm can give a high degree of confidence that all apparent horizons
have been located, although this, of course, increases the cost.

Shooting algorithms of this type have been used by many researchers, for example [159, 66, 2,
29, 30, 145, 3, 4].

8.3 Minimization algorithms

This family of algorithms defines a scalar norm ‖ · ‖ on the expansion Θ over the space of possible
trial surfaces, typically the mean-squared norm

‖Θ‖ ≡
∫

Θ2 dΩ, (20)

where the integral is over all solid angles on a trial surface.
Assuming the horizon surface to be a Strahlkörper and adopting the spectral representation (5)

for the horizon surface, we can view the norm (20) as being defined on the space of spectral
coefficients {a`m}.

This norm clearly has a global minimum ‖Θ‖ = 0 for each solution of the apparent horizon
equation (16). To find the apparent horizon we numerically search the spectral-coefficient space
for this (a) minimum, using a general-purpose “function-minimization” algorithm (code) such as
Powell’s algorithm32.

Evaluating the norm (20) requires a numerical integration over the horizon surface: We choose
some grid of Nang points on the surface, interpolate the slice geometry fields (gij , ∂kgij , and Kij) to
this grid (see Section 7.5), and use numerical quadrature to approximate the integral. In practice
this must be done for many different trial surface shapes (see Section 8.3.2), so it is important that
it be as efficient as possible. Anninos et al. [8] and Baumgarte et al. [26] discuss various ways to
optimize and/or parallelize this calculation.

Unfortunately, minimization algorithms have two serious disadvantages for apparent horizon
finding: They can be susceptible to spurious local minima, and they’re very slow at high angular
resolutions. However, for the (fairly common) case where we want to find a common apparent
horizon as soon as it appears in a binary black-hole (or neutron-star) simulation, minimization
algorithms do have a useful ability to “anticipate” the formation of the common apparent horizon,
in a manner similar to the pretracking algorithms discussed in Section 8.6. I discuss the properties
of minimization algorithms further in the following.

8.3.1 Spurious local minima

While the norm (20) clearly has a single global minimum ‖Θ‖ = 0 for each MOTS Θ = 0, it
typically also has a large number of other local minima with Θ 6= 0, which are “spurious” in the
sense that they do not correspond (even approximately) to MOTSs33. Unfortunately, general-
purpose “function-minimization” routines only locate local minima and, thus, may easily converge
to one of the spurious Θ 6= 0 minima.

What this problem means in practice is that a minimization algorithm needs quite a good
(accurate) initial guess for the horizon shape in order to ensure that the algorithm converges to
the true global minimum Θ = 0 rather than to one of the spurious Θ 6= 0 local minima.

32See, for example, Dennis and Schnabel [59], or Brent [39] for general surveys of general-purposes function-
minimization algorithms and codes.

33There is a simple heuristic argument (see, for example, Press et al. [125, Section 9.6]) that at least some spurious
local minima should be expected. We are trying to solve a system of Nang nonlinear equations, Θi = 0 (one equation
for each horizon-surface grid point). Equivalently, we are trying to find the intersection of the Nang codimension-one
hypersurfaces Θi = 0 in surface-shape space. The problem is that anywhere two or more of these hypersurfaces
approach close to each other, but do not actually intersect, there is a spurious local minimum in ‖Θ‖.
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To view this problem from a different perspective, once the function-minimization algorithm
does converge, we must somehow determine whether the “solution” found is the true one, Θ = 0,
or a spurious one, Θ 6= 0. Due to numerical errors in the geometry interpolation and the evaluation
of the integral (20), ‖Θ‖ will almost never evaluate to exactly zero; rather, we must set a tolerance
level for how large ‖Θ‖ may be. Unfortunately, in practice it is hard to choose this tolerance: If it
is too small, the genuine solution may be falsely rejected, while if it is too large, we may accept a
spurious solution (which may be very different from any of the true solutions).

Anninos et al. [8] and Baumgarte et al. [26] suggest screening out spurious solutions by repeating
the algorithm with varying resolutions of the horizon-surface grid and checking that ‖Θ‖ shows
the proper convergence towards zero. This seems like a good strategy, but it is tricky to automate
and, again, it may be difficult to choose the necessary error tolerances in advance.

When the underlying simulation is a spectral one, Pfeiffer et al. [124, 121] report that in practice,
spurious solutions can be avoided by a combination of two factors:

• The underlying spectral solution can inherently be “interpolated” (evaluated at arbitrary
positions) to very high accuracy.

• Pfeiffer et al. use a large number of quadrature points (typically an order of magnitude
larger than the number of coefficients in the expansion (5)) in numerically evaluating the
integral (20).

8.3.2 Performance

For convenience of exposition, suppose the spectral representation (5) of the horizon-shape function
h uses spherical harmonics Y`m. (Symmetric trace-free tensors or other basis sets do not change
the argument in any important way.) If we keep harmonics up to some maximum degree `max,
the number of coefficients is then Ncoeff = (`max+1)2. `max is set by the desired accuracy (angular
resolution) of the algorithm and is typically on the order of 6 to 12.

To find a minimum in an Ncoeff -dimensional space (here the space of surface-shape coefficients
{a`m}), a general-purpose function-minimization algorithm typically needs on the order of 5N2

coeff

to 10N2
coeff iterations34. Thus the number of iterations grows as `4max.

Each iteration requires an evaluation of the norm (20) for some trial set of surface-shape
coefficients {a`m}, which requires O(Ncoeff) = O(`2max) work to compute the surface positions,
together with O(Nang) work to interpolate the geometry fields to the surface points and compute
the numerical quadrature of the integral (20).

Thus the total work for a single horizon finding is O(`6max + Nang `4max). Fortunately, the
accuracy with which the horizon is found generally improves rapidly with `max, sometimes even
exponentially35. Thus, relatively modest values of `max (typically in the range 8 – 12) generally

34A simple counting argument suffices to show that any general-purpose function-minimization algorithm in n
dimensions must involve at least O(n2) function evaluations (see, for example, Press et al. [125, Section 10.6]):
Suppose the function to be minimized is f : <n → <, and suppose f has a local minimum near some point x0 ∈ <n.
Taylor-expanding f in a neighborhood of x0 gives f(x) = f(x0)+aT (x−x0)+(x−x0)T B(x−x0)+O(‖x−x0‖3), where
a ∈ <n, B ∈ <n×n is symmetric, and vT denotes the transpose of the column vector v ∈ <n.

Neglecting the higher order terms (i.e. approximating f as a quadratic form in x in a neighborhood of x0), and
ignoring f(x0) (which does not affect the position of the minimum), there are a total of N = n+ 1

2
n(n+1) coefficients

in this expression. Changing any of these coefficients may change the position of the minimum, and at each function
evaluation the algorithm “learns” only a single number (the value of f at the selected evaluation point), so the
algorithm must make at least N = O(n2) function evaluations to (implicitly) determine all the coefficients.

Actual functions are not exact quadratic forms, so in practice there are additional O(1) multiplicative factors
in the number of function evaluations. Minimization algorithms may also make additional performance and/or
space-versus-time trade-offs to improve numerical robustness or to avoid explicitly manipulating n × n Jacobian
matrices.

35In the context of an underlying simulation with spectral accuracy, Pfeiffer [122, 121] reports exponential con-
vergence of the horizon finding accuracy with `max.
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suffice for adequate accuracy. Even so, minimization horizon finders tend to be slower than other
methods, particularly if high accuracy is required (large `max and Nang). The one exception is
in axisymmetry, where only spherical harmonics Y`m with m=0 need be considered. In this case
minimization algorithms are much faster, though probably still slower than shooting or elliptic-
PDE algorithms.

8.3.3 Anticipating the formation of a common apparent horizon

Consider the case where we want to find a common apparent horizon as soon as it appears in
a binary black-hole (or neutron-star) simulation. In Section 8.6 I discuss “horizon pretracking”
algorithms which can determine – before it appears – approximately where (in space) and when
(in time) the common apparent horizon will appear.

Minimization algorithms can provide a similar functionality: Before the common apparent
horizon forms, trying to find it via a minimization algorithm will (hopefully) find the (a) surface
which minimizes the error norm ‖Θ‖ (defined by Equation (20)). This surface can be viewed as the
current slice’s closest approximation to a common apparent horizon, and as the evolution proceeds,
it should converge to the actual common apparent horizon.

However, it is not clear whether minimization algorithms used in this way suffer from the
problems discussed in Section 8.6.2. In particular, it is not clear whether, in a realistic binary-
coalescence simulation, the minimum-‖Θ‖ surfaces would remain smooth enough to be represented
accurately with a reasonable `max.

8.3.4 Summary of minimization algorithms/codes

Minimization algorithms are fairly easy to program and have been used by many researchers,
for example [43, 69, 102, 8, 26, 4]. However, at least when the underlying simulation uses finite
differencing, minimization algorithms are susceptible to spurious local minima, have relatively
poor accuracy, and tend to be quite slow. I believe that the other algorithms discussed in the
following sections are generally preferable. If the underlying simulation uses spectral methods,
then minimization algorithms may be (relatively) somewhat more efficient and robust.

Alcubierre’s apparent horizon finder AHFinder [4] includes a minimization algorithm based
on the work of Anninos et al. [8]36. It is implemented as a freely available module (“thorn”) in the
Cactus computational toolkit (see Table 2).

8.4 Spectral integral-iteration algorithms

Nakamura, Kojima, and Oohara [113] developed a functional-iteration spectral algorithm for solv-
ing the apparent horizon equation (16).

This algorithm begins by choosing the usual polar-spherical topology for the angular coordinates
(θ, φ), and rewriting the apparent horizon equation (16) in the form

∆h ≡ ∂θθh +
∂θh

tan θ
+

∂φφh

sin2 θ
= G(∂θφh, ∂φφh, ∂θh, ∂φh; gij ,Kij ,Γk

ij), (21)

where ∆ is the flat-space angular Laplacian operator, and G is a complicated nonlinear algebraic
function of the arguments shown, which remains regular even at θ=0 and θ=π.

Next we expand h in spherical harmonics (5). Because the left hand side of Equation (21) is just
the flat-space angular Laplacian of h, which has the Y`m as orthogonal eigenfunctions, multiplying

36AHFinder also includes a “fast flow” algorithm (Section 8.7).
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both sides of Equation (21) by Y ∗
`m (the complex conjugate of Y`m) and integrating over all solid

angles gives

a`m = − 1
`(`+1)

∫
Y ∗

`mG dΩ (22)

for each ` and m except ` = m = 0.
Based on this, Nakamura, Kojima, and Oohara [113] proposed the following functional-iteration

algorithm for solving Equation (21):

1. Start with some (initial-guess) set of horizon-shape coefficients {a`m}. These determine a
surface shape via Equation (5).

2. Interpolate the geometry variables to this surface shape (see Section 7.5).

3. For each ` and m except ` = m = 0, evaluate the integral (22) by numerical quadrature to
obtain a next-iteration coefficient a`m.

4. Determine a next-iteration coefficient a00 by numerically solving (finding a root of) the
equation ∫

Y ∗
00G dΩ = 0. (23)

This can be done using any of the 1-dimensional zero-finding algorithms discussed in Ap-
pendix A.

5. Iterate until all the coefficients {a`m} converge.

Gundlach [80] observed that the subtraction and inversion of the flat-space angular Laplacian
operator in this algorithm is actually a standard technique for solving nonlinear elliptic PDEs by
spectral methods. I discuss this observation and its implications further in Section 8.7.4.

Nakamura, Kojima, and Oohara [113] report that their algorithm works well, but Nakao (cited
as personal communication in [146]) has argued that it tends to become inefficient (and possibly
inaccurate) for large ` (high angular resolution) because the Y`m fail to be numerically orthogonal
due to the finite resolution of the numerical grid. I know of no other published work addressing
Nakao’s criticism.

8.4.1 Kemball and Bishop’s modifications of the Nakamura–Kojima–Oohara algo-
rithm

Kemball and Bishop [93] investigated the behavior of the Nakamura–Kojima–Oohara algorithm
and found that its (only) major weakness seems to be that the a00-update equation (23) “may
have multiple roots or minima even in the presence of a single marginally outer trapped surface,
and all should be tried for convergence”.

Kemball and Bishop [93] suggested and tested several modifications to improve the algorithm’s
convergence behavior. They verified that (either in its original form or with their modifications)
the algorithm’s rate of convergence (number of iterations to reach a given error level) is roughly
independent of the degree `max of spherical-harmonic expansion used. They also give an analysis
that the algorithm’s cost is O(`4max), and its accuracy ε = O(1/`max), i.e. the cost is O(1/ε4). This
accuracy is surprisingly low: Exponential convergence with `max is typical of spectral algorithms
and would be expected here. I do not know of any published work which addresses this discrepancy.
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8.4.2 Lin and Novak’s variant of the Nakamura–Kojima–Oohara algorithm

Lin and Novak [104] have developed a variant of the Nakamura–Kojima–Oohara algorithm which
avoids the need for a separate search for a00 at each iteration: Write the apparent horizon equa-
tion (16) in the form

∆h− 2h = λΘ + ∆h− 2h, (24)

where ∆ is again the flat-space angular Laplacian operator and where λ is a nonzero scalar function
on the horizon surface. Then choose λ as

λ =
(

det gij

det fij

)1/3 [
gmn(∇̄mF )(∇̄nF )

]1/2
h2, (25)

where fij is the flat metric of polar spherical coordinates, ∇̄ is the associated 3-covariant derivative
operator, and F is the level set function (7).

Lin and Novak [104] showed that all the spherical-harmonic coefficients a`m (including a00) can
then be found by iteratively solving the equation

a`m = − 1
`(`+1) + 2

∫
Y ∗

`mλ(Θ + ∆h− 2h) dΩ. (26)

Lin and Novak [104] find that this algorithm gives robust convergence and is quite fast, particu-
larly at modest accuracy levels. For example, running on a 2 GHz processor, their implementation
takes 3.1, 5.8, 17, 88, and 313 seconds to find the apparent horizon in a test slice to a relative
error (measured in the horizon area) of 9 × 10−4, 5 × 10−5, 6 × 10−7, 9 × 10−10, and 3 × 10−12

respectively37. This implementation is freely available as part of the Lorene toolkit for spectral
computations in numerical relativity (see Table 2).

8.4.3 Summary of spectral integral-iteration algorithms

Despite what appears to be fairly good numerical behavior and reasonable ease of implementation,
the original Nakamura–Kojima–Oohara algorithm has not been widely used apart from later work
by its original developers (see, for example, [115, 114]). Kemball and Bishop [93] have proposed
and tested several modifications to the basic Nakamura–Kojima–Oohara algorithm. Lin and No-
vak [104] have develped a variant of the Nakamura–Kojima–Oohara algorithm which avoids the
need for a separate search for the a00 coefficient at each iteration. Their implementation of this
variant is freely available as part of the Lorene toolkit for spectral computations in numerical
relativity (see Table 2).

8.5 Elliptic-PDE algorithms

The basic concept of elliptic-PDE algorithms is simple: We view the apparent horizon equation (16)
as a nonlinear elliptic PDE for the horizon shape function h on the angular-coordinate space and
solve this equation by standard finite-differencing techniques38, generally using Newton’s method
to solve the resulting set of nonlinear algebraic (finite-difference) equations. Algorithms of this
type have been widely used both in axisymmetry and in fully generic slices.

37For comparison, the elliptic-PDE AHFinderDirect horizon finder (discussed in Section 8.5.6), running on a
roughly similar processor, takes about 1.8 seconds to find the apparent horizon in a similar test slice to a relative
error of 4× 10−4.

38In theory this equation could also be solved by a spectral method on S2, using spectral differentiation to evaluate
the angular derivatives. (See [70, 75, 37, 12, 11, 10, 13, 35, 33, 34, 77, 95, 96, 97, 120, 124, 123, 122] for further
discussion of spectral methods.) This should yield a highly efficient apparent horizon finder. However, I know of no
published work taking this approach.
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8.5.1 Angular coordinates, grid, and boundary conditions

In more detail, elliptic-PDE algorithms assume that the horizon is a Strahlkörper about some
local coordinate origin, and choose an angular coordinate system and a finite-difference grid of
Nang points on S2 in the manner discussed in Section 2.2.

The most common choices are the usual polar-spherical coordinates (θ, φ) and a uniform “lati-
tude/longitude” grid in these coordinates. Since these coordinates are “unwrapped” relative to the
actual S2 trial-horizon-surface topology, the horizon shape function h satisfies periodic boundary
conditions across the artificial grid boundary at φ = 0 and φ = 2π. The north and south poles θ = 0
and θ = π are trickier, but Huq et al. [89, 90], Shibata and Uryū [147], and Schnetter [132, 133]39

“reaching across the pole” boundary conditions for these artificial grid boundaries.
Alternatively, Thornburg [156] avoids the z axis coordinate singularity of polar-spherical coor-

dinates by using an “inflated-cube” system of six angular patches to cover S2. Here each patch’s
nominal grid is surrounded by a “ghost zone” of additional grid points where h is determined
by interpolation from the neighboring patches. The interpatch interpolation thus serves to tie
the patches together, enforcing the continuity and differentiability of h across patch boundaries.
Thornburg reports that this scheme works well but was quite complicated to program.

Overall, the latitude/longitude grid seems to be the superior choice: it works well, is simple to
program, and eases interoperation with other software.

8.5.2 Evaluating the expansion Θ

The next step in the algorithm is to evaluate the expansion Θ given by Equation (16) on the
angular grid given a trial horizon surface shape function h on this same grid (6).

Most researchers compute Θ via 2-dimensional angular finite differencing of Equation (16) on
the trial horizon surface. 2nd order angular finite differencing is most common, but Thornburg [156]
uses 4th order angular finite differencing for increased accuracy.

With a (θ, φ) latitude/longitude grid the Θ(h, ∂uh, ∂uvh) function in Equation (16) is singular
on the z axis (at the north and south poles θ = 0 and θ = π) but can be regularized by applying
L’Hôpital’s rule. Schnetter [132, 133] observes that using a Cartesian basis for all tensors greatly
aids in this regularization.

Huq et al. [89, 90] choose, instead, to use a completely different computation technique for Θ,
based on 3-dimensional Cartesian finite differencing:

1. They observe that the scalar field F defined by Equation (7) can be evaluated at any (3-
dimensional) position in the slice by computing the corresponding (r, θ, φ) using the usual
flat-space formulas, then interpolating h in the 2-dimensional (θ, φ) surface grid.

2. Rewrite the apparent horizon condition (15) in terms of F and its (3-dimensional) Cartesian
derivatives,

Θ ≡ Θ(F, ∂iF, ∂ijF ; gij , ∂kgij ,Kij) = 0. (27)

Huq et al. [89, 90] give the Θ(F, ∂iF, ∂ijF ) function explicitly.

3. For each (latitude/longitude) grid point on the trial horizon surface, define a 3×3×3-point
local Cartesian grid centered at that point. The spacing of this grid should be such as to
allow accurate finite differencing, i.e. in practice it should probably be roughly comparable
to that of the underlying numerical-relativity simulation’s grid.

4. Evaluate F on the local Cartesian grid as described in Step 1 above.

39See [133] for a substantially revised version of [132].
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5. Evaluate the Cartesian derivatives in Equation (27) by centered 2nd order Cartesian finite
differencing of the F values on the local Cartesian grid.

Comparing the different ways of evaluating Θ, 2-dimensional angular finite differencing of
Equation (16) seems to me to be both simpler (easier to program) and likely more efficient than
3-dimensional Cartesian finite differencing of Equation (27).

8.5.3 Solving the nonlinear elliptic PDE

A variety of algorithms are possible for actually solving the nonlinear elliptic PDE (16) (or (27)
for the Huq et al. [89, 90] horizon finder).

The most common choice is to use some variant of Newton’s method. That is, finite differencing
Equation (16) or (27) (as appropriate) gives a system of Nang nonlinear algebraic equations for the
horizon shape function h at the Nang angular grid points; these can be solved by Newton’s method
in Nang dimensions. (As explained by Thornburg [153, Section VIII.C], this is usually equivalent
to applying the Newton–Kantorovich algorithm [37, Appendix C] to the original nonlinear elliptic
PDE (16) or (27).)

Newton’s method converges very quickly once the trial horizon surface is sufficiently close to
a solution (a MOTS). However, for a less accurate initial guess, Newton’s method may converge
very slowly or even fail to converge at all. There is no usable way of determining a priori just how
large the radius of convergence of the iteration will be, but in practice 1

4 to 1
3 of the horizon radius

is often a reasonable estimate40.
Thornburg [153] described the use of various “line search” modifications to Newton’s method to

improve its radius and robustness of convergence, and reported that even fairly simple modifications
of this sort roughly doubled the radius of convergence.

Schnetter [132, 133] used the PETSc general-purpose elliptic-solver library [22, 23, 24] to solve
the equations. This offers a wide variety of Newton-like algorithms already implemented in a highly
optimized form.

Rather than Newton’s method or one of its variants, Shibata et al. [146, 147] use a functional-
iteration algorithm directly on the nonlinear elliptic PDE (16). This seems likely to be less efficient
than Newton’s method but avoids having to compute and manipulate the Jacobian matrix.

8.5.4 The Jacobian matrix

Newton’s method, and all its variants, require an explicit computation of the Jacobian matrix

Jij =
∂Θi

∂hj
, (28)

where the indices i and j label angular grid points on the horizon surface (or equivalently on S2).
Notice that J includes contributions both from the direct dependence of Θ on h, ∂uh, and ∂uvh,

and also from the indirect dependence of Θ on h through the position-dependence of the geometry
variables gij , ∂kgij , and Kij (since Θ depends on the geometry variables at the horizon surface
position, and this position is determined by h). Thornburg [153] discusses this indirect dependence
in detail.

There are two basic ways to compute the Jacobian matrix.

40Thornburg [153] used a Monte-Carlo survey of horizon-shape perturbations to quantify the radius of convergence
of Newton’s method for apparent horizon finding. He found that if strong high-spatial-frequency perturbations are
present in the slice’s geometry then the radius of convergence may be very small. Fortunately, this problem rarely
occurs in practice.
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Numerical Perturbation:
The simplest way to determine the Jacobian matrix is by “numerical perturbation”, where
for each horizon-surface grid point j, h is perturbed by some (small) amount ε at the j th
grid point (that is, hi → hi + εδij), and the expansion Θ is recomputed41. The j th column
of the Jacobian matrix (28) is then estimated as

Jij ≈
Θi(h + εδij)−Θi(h)

ε
. (29)

Curtis and Reid [53], and Stoer and Bulirsch [150, Section 5.4.3] discuss the optimum choice
of ε in this algorithm42.

This algorithm is easy to program but somewhat inefficient. It is used by a number of
researchers including Schnetter [132, 133], and Huq et al. [89, 90].

Symbolic Differentiation:
A more efficient, although somewhat more complicated, way to determine the Jacobian ma-
trix is the “symbolic differentiation” algorithm described by Thornburg [153] and also used
by Pasch [118], Shibata et al. [146, 147], and Thornburg [156]. Here the internal structure
of the finite differenced Θ(h) function is used to directly determine the Jacobian matrix
elements.

This algorithm is best illustrated by an example which is simpler than the full apparent
horizon equation: Consider the flat-space Laplacian in standard (θ, φ) polar-spherical coor-
dinates,

∆h ≡ ∂θθh +
∂θh

tan θ
+

∂φφh

sin2 θ
. (30)

Suppose we discretize this with centered 2nd order finite differences in θ and φ. Then
neglecting finite-differencing truncation errors, and temporarily adopting the usual notation
for 2-dimensional grid functions, hi,j ≡ h(θ=θi, φ=φj), our discrete approximation to ∆h is
given by

(∆h)i,j =
hi−1,j − 2hi,j + hi+1,j

(∆θ)2
+

1
tan θ

hi+1,j − hi−1,j

2 ∆θ
+

1
sin2 θ

hi,j−1 − 2hi,j + hi,j+1

(∆φ)2
. (31)

The Jacobian of ∆h is thus given by

∂(∆h)(i,j)
∂h(k,`)

=



1
(∆θ)2

± 1
2 tan θ ∆θ

if (k, `) = (i±1, j),

1
sin2 θ (∆φ)2

if (k, `) = (i, j±1),

− 2
(∆θ)2

− 2
sin2 θ (∆φ)2

if (k, `) = (i, j),

0 otherwise.

(32)

Thornburg [153] describes how to generalize this to nonlinear differential operators without
having to explicitly manipulate the nonlinear finite difference equations.

41A very important optimization here is that Θ only needs to be recomputed within the finite-difference domain
of dependence of the j th grid point.

42Because of the one-sided finite differencing, the approximation (29) is only O(ε) accurate. However, in practice
this does not seriously impair the convergence of a horizon finder, and the extra cost of a centered-finite-differencing
O(ε2) approximation is not warranted.
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8.5.5 Solving the linear equations

All the algorithms described in Section 8.5.3 for treating nonlinear elliptic PDEs require solving
a sequence of linear systems of Nang equations in Nang unknowns. Nang is typically on the order
of a few thousand, and the Jacobian matrices in question are sparse due to the locality of the
angular finite differencing (see Section 8.5.4). Thus, for reasonable efficiency, it is essential to
use linear solvers that exploit this sparsity. Unfortunately, many such algorithms/codes only
handle symmetric positive-definite matrices while, due to the angular boundary conditions43 (see
Section 8.5.1), the Jacobian matrices that arise in apparent horizon finding are generally neither
of these.

The numerical solution of large sparse linear systems is a whole subfield of numerical analysis.
See, for example, Duff, Erisman, and Reid [65], and Saad [130] for extensive discussions44. In
practice, a numerical relativist is unlikely to write her own linear solver but, rather, will use an
existing subroutine (library).

Kershaw’s [94] ILUCG iterative solver is often used; this is only moderately efficient, but is
quite easy to program45. Schnetter [132, 133] reports good results with an ILU-preconditioned
GMRES solver from the PETSc library. Thornburg [156] experimented with both an ILUCG
solver and a direct sparse LU decomposition solver (Davis’ UMFPACK library [57, 58, 56, 55, 54]),
and found each to be more efficient in some situations; overall, he found the UMFPACK solver
to be the best choice.

8.5.6 Sample results

As an example of the results obtained with this type of apparent horizon finder, Figure 10 shows
the numerically-computed apparent horizons (actually, MOTSs) at two times in a head-on binary
black hole collision. (The physical system being simulated here is very similar to that simulated
by Matzner et al. [108], a view of whose event horizon is shown in Figure 5.)

As another example, Figure 11 shows the time dependence of the irreducible masses of appar-
ent horizons found in a (spiraling) binary black hole collision, simulated at several different grid
resolutions, as found by both AHFinderDirect and another Cactus apparent horizon finder,
AHFinder46. For this evolution, the two apparent horizon finders give irreducible masses which
agree to within about 2% for the individual horizons and 0.5% for the common horizon.

As a final example, Figure 8 shows the numerically-computed event and apparent horizons in
the collapse of a rapidly rotating neutron star to a Kerr black hole. (The event horizons were
computed using the EHFinder code described in Section 5.3.3.)

8.5.7 Summary of elliptic-PDE algorithms/codes

Elliptic-PDE apparent horizon finders have been developed by many researchers, including Eard-
ley [67]47, Cook [50, 52, 51], and Thornburg [153] in axisymmetry, and Shibata et al. [146, 147],
Huq et al. [89, 90], Schnetter [132, 133], and Thornburg [156] in fully generic slices.

43Or the interpatch interpolation conditions in Thornburg’s multiple-grid-patch scheme [156].
44Multigrid algorithms are also important here; these exploit the geometric structure of the underlying elliptic

PDE. See Briggs, Henson, and McCormick [42] and Trottenberg, Oosterlee, and Schüller [158] for general introduc-
tions to multigrid algorithms.

45Madderom’s Fortran subroutine DILUCG [107], which implements the method of [94], has been used by a
number of numerical relativists for both this and other purposes.

46AHFinder incorporates both a minimization algorithm (Section 8.3) and a fast-flow algorithm (Section 8.7.4);
these tests used the fast-flow algorithm.

47This paper does not say how the author finds apparent horizons, but [68, page 135] cites a preprint of this as
treating the apparent-horizon equation as a 2-point (ODE) boundary value problem: Eardley uses a ‘beads on a
string’ technique to solve the set of simultaneous equations, i.e., imagining the curve to be defined as a bead on
each ray of constant angle. He solves for the positions on each ray at which the relation is satisfied everywhere.
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Figure 10: This figure shows the numerically-computed apparent horizons (actually MOTSs) at
two times in a head-on binary black hole collision. The black holes are colliding along the z axis.
Figure reprinted with permission from [156]. c© 2004 by IOP Publishing Ltd.
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Figure 11: This figure shows the irreducible masses (
√

area/(16π)) of individual and common
apparent horizons in a binary black hole collision, as calculated by two different apparent horizon
finders in the Cactus toolkit, AHFinder and AHFinderDirect. (AHFinderDirect was also
run in simulations at several different resolutions.) Notice that when both apparent horizon finders
are run in the same simulation (resolution dx = 0.080), there are only small differences between
their results. Figure reprinted with permission from [5]. c© 2005 by the American Physical Society.
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Elliptic-PDE algorithms are (or can be implemented to be) among the fastest horizon finding
algorithms. For example, running on a 1.7 GHz processor, Thornburg’s AHFinderDirect [156]
averaged 1.7 s per horizon finding, as compared with 61 s for an alternate “fast-flow” apparent
horizon finder AHFinder (discussed in more detail in Section 8.7)48. However, achieving maxi-
mum performance comes at some cost in implementation effort (e.g. the “symbolic differentiation”
Jacobian computation discussed in Section 8.5.4).

Elliptic-PDE algorithms are probably somewhat more robust in their convergence (i.e. they have
a slightly larger radius of convergence) than other types of local algorithms, particularly if the “line
search” modifications of Newton’s method described by Thornburg [153] are implemented49. Their
typical radius of convergence is on the order of 1

3 of the horizon radius, but cases are known where
it is much smaller. For example, Schnetter, Herrmann, and Pollney [135] report that (with no
“line search” modifications) it is only about 10% for some slices in a binary black hole coalescence
simulation.

Schnetter’s TGRapparentHorizon2D [132, 133] and Thornburg’s AHFinderDirect [156]
are both elliptic-PDE apparent horizon finders implemented as freely available modules (“thorns”)
in the Cactus computational toolkit (see Table 2). Both work with either the PUGH unigrid
driver or the Carpet mesh-refinement driver for Cactus. TGRapparentHorizon2D is no
longer maintained, but AHFinderDirect is actively supported and is now used by many different
research groups50.

8.6 Horizon pretracking

Schnetter et al. [133, 135] introduced the important concept of “horizon pretracking”. They focus
on the case where we want to find a common apparent horizon as soon as it appears in a binary
black-hole (or neutron-star) simulation. While a global (flow) algorithm (Section 8.7) could be
used to find this common apparent horizon, these algorithms tend to be very slow. They observe
that the use of a local (elliptic-PDE) algorithm for this purpose is somewhat problematic:

The common [apparent] horizon [. . . ] appears instantaneously at some late time and
without a previous good guess for its location. In practice, an estimate of the surface
location and shape can be put in by hand. The quality of this guess will determine the
rate of convergence of the finder and, more seriously, also determines whether a horizon
is found at all. Gauge effects in the strong field region can induce distortions that have
a large influence on the shape of the common horizon, making them difficult to predict,
particularly after a long evolution using dynamical coordinate conditions. As such, it
can be a matter of some expensive trial and error to find the common apparent horizon
at the earliest possible time. Further, if a common apparent horizon is not found, it is
not clear whether this is because there is none, or whether there exists one which has
only been missed due to unsuitable initial guesses – for a fast apparent horizon finder,
a good initial guess is crucial.

Pretracking tries (usually successfully) to eliminate these difficulties by determining – before it
appears – approximately where (in space) and when (in time) the common apparent horizon will
appear.

48As another comparison, the Lorene apparent horizon finder (discussed in more detail in Section 8.4.2), running
on a roughly similar processor, takes between 3 and 6 seconds to find apparent horizons to comparable accuracy.

49The convergence problems, which Thornburg [153] noted when high-spatial-frequency perturbations are present
in the slice’s geometry, seem to be rare in practice.

50In addition, at least two different research groups have now ported, or are in the process of porting, AHFind-
erDirect to their own (non-Cactus) numerical relativity codes.
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8.6.1 Constant-expansion surfaces

The basic idea of horizon pretracking is to consider surfaces of constant expansion (“CE surfaces”),
i.e. smooth closed orientable 2-surfaces in a slice satisfying the condition

Θ = E, (33)

where the expansion E is a specified real number. Each marginally outer trapped surface (including
the apparent horizon) is thus a CE surface with expansion E = 0; more generally Equation(33)
defines a 1-parameter family of 2-surfaces in the slice. As discussed by Schnetter et al. [133, 135],
for asymptotically flat slices containing a compact strong-field region, some of the E > 0 members
of this family typically foliate the weak-field region.

In the binary-coalescence context, for each t = constant slice we define E∗ to be the smallest
E ≥ 0 for which a CE surface (containing both strong-field regions) exists with expansion E. If
E∗ = 0 this “minimum-expansion CE surface” is the common apparent horizon, while if E∗ > 0
this surface is an approximation to where the common apparent horizon will appear. We expect the
minimum-expansion CE surface to change continuously during the evolution and its expansion E∗
to decrease towards 0. Essentially, horizon pretracking follows the time evolution of the minimum-
expansion CE surface and uses it as an initial guess for (searching for) the common apparent
horizon.

8.6.2 Generalized constant-expansion surfaces

Schnetter [133] implemented an early form of horizon pretracking, which followed the evolution
of the minimum-expansion constant-expansion surface, and found that it worked well for simple
test problems. However, Schnetter et al. [135] found that for more realistic binary-black-hole
coalescence systems the algorithm needs to be extended:
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Figure 12: This figure shows the expansion Θ (left scale), and the “generalized expansions” r Θ
(left scale) and r2Θ (right scale), for various r = constant surfaces in an Eddington–Finkelstein
slice of Schwarzschild spacetime. Notice that all three functions have zeros at the horizon r = 2m,
and that while Θ has a maximum at r ≈ 4.4 m, both r Θ and r2Θ increase monotonically with r.

• While the expansion is zero for a common apparent horizon, it is also zero for a 2-sphere at
spatial infinity. Figure 12 illustrates this for Schwarzschild spacetime. Notice that for small
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positive E∗ there will generally be two distinct CE surfaces with E = E∗, an inner surface
just outside the horizon and an outer one far out in the weak-field region. The inner CE
surface converges to the common apparent horizon as E∗ decreases towards 0; this surface is
the one we would like the pretracking algorithm to follow. Unfortunately, without measures
such as those described below, there is nothing to prevent the algorithm from following the
outer surface, which does not converge to the common apparent horizon as E∗ decreases
towards 0.

• In a realistic binary-coalescence simulation, the actual minimum-expansion CE surface may
be highly distorted and, thus, hard to represent accurately with a finite-resolution angular
grid.

Schnetter et al. [135] discuss these problems in more detail, arguing that to solve them, the
expansion Θ should be generalized to a “shape function” H given by one of

H1 = Θ,
Hr = hΘ,

Hr2 = h2Θ,
(34)

CE surfaces are then generalized to surfaces satisfying

H = E (35)

for some specified E ≥ 0.
Note that unlike H1, both Hr and Hr2 are typically monotonic with radius. Neither Hr nor

Hr2 are 3-covariantly defined, but they both still have the property that E = 0 in Equation (35)
implies the surface is a MOTS, and in practice they work better for horizon pretracking.

8.6.3 Goal functions

To define the single “smallest” surface at each time, Schnetter et al. [135] introduce a second
generalization, that of a “goal function” G, which maps surfaces to real numbers. The pretracking
search then attempts, on each time slice, to find the surface (shape) satisfying H = E with the
minimum value of G. They experimented with several different goal functions,

GH =H,

GrH =hH,

Gr =h,

(36)

where in each case the overbar ( ) denotes an average over the surface51.

8.6.4 The pretracking search

Schnetter’s [133] original implementation of horizon pretracking (which followed the evolution of
the minimum-expansion CE surface) used a binary search on the desired expansion E. Because E
appears only on the right hand side of the generalized CE condition (35), it is trivial to modify
any apparent horizon finder to search for a surface of specified expansion E. (Schnetter used his

51Schnetter et al. [135] use a simple arithmetic mean over all surface grid points. In theory this average could be
defined 3-covariantly by taking the induced metric on the surface into account, but in practice they found that this
was not worth the added complexity.
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TGRapparentHorizon2D elliptic-PDE apparent horizon finder described in Section 8.5.7 for
this.) A binary search on E can then be used to find the minimum value E∗.52

Implementing a horizon pretracking search on any of the generalized goal functions (36) is
conceptually similar but somewhat more involved: As described by Schnetter et al. [135] for the
case of an elliptic-PDE apparent horizon finder53, we first write the equation defining a desired
pretracking surface as

H −H + G− p = 0, (37)

where p is the desired value of the goal function G. Since H is the only term in Equation (37)
which varies over the surface, it must be constant for the equation to be satisfied. In this case
H −H vanishes, so the equation just gives G = p, as desired.

BecauseH depends on H at all surface points, directly finite differencing Equation (37) would
give a non-sparse Jacobian matrix, which would greatly slow the linear-solver phase of the elliptic-
PDE apparent horizon finder (Section 8.5.5). Schnetter et al. [135, Section III.B] show how this
problem can be solved by introducing a single extra unknown into the discrete system. This gives
a Jacobian which has a single non-sparse row and column, but is otherwise sparse, so the linear
equations can still be solved efficiently.

When doing the pretracking search, the cost of a single binary-search iteration is approximately
the same as that of finding an apparent horizon. Schnetter et al. [135, Figure 5] report that their
pretracking implementation (a modified version of Thornburg’s AHFinderDirect [156] elliptic-
PDE apparent horizon finder described in Section 8.5.7) typically takes on the order of 5 to 10
binary-search iterations54. The cost of pretracking is thus on the order of 5 to 10 times that
of finding a single apparent horizon. This is substantial, but not prohibitive, particularly if the
pretracking algorithm is not run at every time step.

8.6.5 Sample results

As an example of the results obtained from horizon pretracking, Figure 13 shows the expansion Θ
for various pretracking surfaces (i.e. various choices for the shape function H in a head-on binary
black hole collision). Notice how all three of the shape functions (34) result in pretracking surfaces
whose expansions converge smoothly to zero just when the apparent horizon appears (at about
t = 1.1).

As a further example, Figure 14 shows the pretracking surfaces (more precisely, their cross
sections projected into the black holes’ orbital plane) at various times in a spiraling binary black
hole collision.

8.6.6 Summary of horizon pretracking

Pretracking is a very valuable addition to the horizon finding repertoire: It essentially gives a local
algorithm (in this case, an elliptic-PDE algorithm) most of the robustness of a global algorithm in

52There is one complication here: Any local apparent horizon finding algorithm may fail if the initial guess is not
good enough, even if the desired surface is actually present. The solution is to use the constant-expansion surface
for a slightly larger expansion E as an initial guess, gradually “walking down” the value of E to find the minimum
value E∗. Thornburg [156, Appendix C] describes such a “continuation-algorithm binary search” algorithm in detail.

53As far as I know this is the only case that has been considered for horizon pretracking. Extension to other types
of apparent horizon finders might be a fruitful area for further research.

54This refers to the period before a common apparent horizon is found. Once a common apparent horizon is found,
then pretracking can be disabled as the apparent horizon finder can easily “track” the apparent horizon’s motion from
one time step to the next. With a binary search the number of iterations depends only weakly (logarithmically)
on the pretracking algorithm’s accuracy tolerance. It might be possible to replace the binary search by a more
sophisticated 1-dimensional search algorithm (I discuss such algorithms in Appendix A), potentially cutting the
number of iterations substantially. This might be a fruitful area for further research.
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Figure 13: This figure shows the expansion Θ for various pretracking surfaces, i.e. for various
choices for the shape function H, in a head-on binary black hole collision. Notice how the three
shape functions (34) (here labelled Θ, rΘ, and r2Θ) result in pretracking surfaces whose expansions
converge smoothly to zero just when the apparent horizon appears (at about t = 1.1). Notice also
that these three expansions have all converged to each other somewhat before the common apparent
horizon appears. Figure reprinted with permission from [135]. c© 2005 by the American Physical
Society.

terms of finding a common apparent horizon as soon as it appears. It is implemented as a higher-
level algorithm which uses a slightly-modified elliptic-PDE apparent horizon finding algorithm as
a “subroutine”.

The one significant disadvantage of pretracking is its cost: Each pretracking search typically
takes 5 to 10 times as long as finding an apparent horizon. Further research to reduce the cost of
pretracking would be useful.

Schnetter et al.’s pretracking implementation [135] is implemented as a set of modifications to
Thornburg’s AHFinderDirect [156] apparent horizon finder. Like the original AHFinderDi-
rect, the modified version is a freely available “thorn” in the Cactus toolkit (see Table 2).

8.7 Flow algorithms

Flow algorithms define a “flow” on 2-surfaces, i.e. they define an evolution of 2-surfaces in some
pseudo-time λ, such that the apparent horizon is the λ → ∞ limit of a (any) suitable starting
surface. Flow algorithms are different from other apparent horizon finding algorithms (except for
zero-finding in spherical symmetry) in that their convergence does not depend on having a good
initial guess. In other words, flow algorithms are global algorithms (Section 7.7).

To find the (an) apparent horizon, i.e. an outermost MOTS, the starting surface should be
outside the largest possible MOTS in the slice. In practice, it generally suffices to start with a
2-sphere of areal radius substantially greater than 2 mADM.

The global convergence property requires that a flow algorithm always flow from a large starting
surface into the apparent horizon. This means that the algorithm gains no particular benefit from
already knowing the approximate position of the apparent horizon. In particular, flow algorithms
are no faster when “tracking” the apparent horizon (repeatedly finding it at frequent intervals) in a
numerical time evolution. (In contrast, in this situation a local apparent horizon finding algorithm
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Figure 14: This figure shows the pretracking surfaces at various times in a spiraling binary black
hole collision, projected into the black holes’ orbital plane. (The apparent slow drift of the black
holes in a clockwise direction is an artifact of the corotating coordinate system; the black holes are
actually orbiting much faster, in a counterclockwise direction.) Notice how, even well before the
common apparent horizon first appears (t = 16.44 mADM, bottom right plot), the rΘ pretracking
surface is already a reasonable approximation to the eventual common apparent horizon’s shape.
Figure reprinted with permission from [135]. c© 2005 by the American Physical Society.
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can use the most recent previously-found apparent horizon as an initial guess, greatly speeding the
algorithm’s convergence55).

Flow algorithms were first proposed for apparent horizon finding by Tod [157]. He initially
considered the case of a time-symmetric slice (one where Kij = 0). In this case, a MOTS (and
thus an apparent horizon) is a surface of minimal area and may be found by a “mean curvature
flow”

∂λxi = −κsi, (38)

where xi are the spatial coordinates of a horizon-surface point, si is as before the outward-pointing
unit 3-vector normal to the surface, and κ ≡ ∇ksk is the mean curvature of the surface as embedded
in the slice. This is a gradient flow for the surface area, and Grayson [79] has proven that if the
slice contains a minimum-area surface, this will in fact be the stable λ → ∞ limit of this flow.
Unfortunately, this proof is valid only for the time-symmetric case.

For non-time-symmetric slices, Tod [157] proposed generalizing the mean curvature flow to the
“expansion flow”

∂λxi = −Θsi. (39)

There is no theoretical proof that this flow will converge to the (an) apparent horizon, but several
lines of argument make this convergence plausible:

• The expansion flow is identical to the mean curvature flow (38) in the principal part.

• The expansion flow’s velocity is clearly zero on an apparent horizon.

• More generally, a simple argument due to Bartnik [25]56 shows that the expansion flow can
never move a (smooth) test surface through an apparent horizon. Suppose, to the contrary,
that the test surface T is about to move through an apparent horizon H, i.e. since both
surfaces are by assumption smooth, that T and H touch at single (isolated) point P. At
that point, T and H obviously have the same gij and Kij , and they also have the same si

(because P is isolated). Hence the only term in Θ (as defined by Equation (15)) which differs
between T and H is ∇is

i. Clearly, if T is outside H and they touch at the single isolated
point P, then relative to H, T must be concave outwards at P, so that ∇is

i(T ) < ∇is
i(H).

Thus the expansion flow (39) will move T outwards, away from the apparent horizon. (If T
lies inside H the same argument holds with signs reversed appropriately.)

Numerical experiments by Bernstein [28], Shoemaker et al. [148, 149], and Pasch [118] show
that in practice the expansion flow (39) does in fact converge robustly to the apparent horizon.

In the following I discuss a number of important implementation details for, and refinements
of, this basic algorithm.

8.7.1 Implicit pseudo-time stepping

Assuming the Strahlkörper surface parameterization (4), the expansion flow (39) is a parabolic
equation for the horizon shape function h.57 This means that any fully explicit scheme to integrate
it (in the pseudo-time λ) must severely restrict its pseudo-time step ∆λ for stability, and this
restriction grows (quadratically) worse at higher spatial resolutions58. This makes the horizon
finding process very slow.

55Alternatively, a flow algorithm could use the most recent previously-found apparent horizon as an initial guess.
In this case the algorithm would have only local convergence (in particular, it would probably fail to find a new
outermost MOTS that appeared well outside the previously-found MOTS). However, the algorithm would only need
to flow the surface a small distance, so the algorithm should be fairly fast.

56Cited as Ref. [17] by [80].
57Linearizing the Θ(h) function (16) gives a negative Laplacian in h as the principal part.
58For a spatial resolution ∆x, an explicit scheme is generally limited to a pseudo-time step ∆λ . (∆x)2.
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To avoid this restriction, practical implementations of flow algorithms use implicit pseudo-time
integration schemes; these can have large pseudo-time steps and still be stable. Because we only
care about the λ →∞ limit, a highly accurate pseudo-time integration is not important; only the
accuracy of approximating the spatial derivatives matters. Bernstein [28] used a modified Du Fort–
Frankel scheme [64]59 but found some problems with the surface shape gradually developing high-
spatial-frequency noise. Pasch [118] reports that an “exponential” integrator (Hochbruck et al. [85])
works well, provided the flow’s Jacobian matrix is computed accurately60. The most common choice
is probably that of Shoemaker et al. [148, 149], who use the iterated Crank–Nicholson (“ICN”)
scheme61. They report that this works very well; in particular, they do not report any noise
problems.

By refining his finite-element grid (Section 2.3) in a hierarchical manner, Metzger [109] is able
to use standard conjugate-gradient elliptic solvers in a multigrid-like fashion62, using each refine-
ment level’s solution as an initial guess for the next higher refinement level’s iterative solution.
This greatly speeds the flow integration: Metzger reports that the performance of the overall
surface-finding algorithm is “of the same order of magnitude” as that of Thornburg’s AHFind-
erDirect [156] elliptic-PDE apparent horizon finder (described in Section 8.5.7).

In a more general context than numerical relativity, Osher and Sethian [116] have discussed a
general class of numerical algorithms for integrating “fronts propagating with curvature-dependent
speed”. These flow a level-set function (Section 2.1) which implicitly locates the actual “front”.

8.7.2 Varying the flow speed

Another important performance optimization of the standard expansion flow (39) is to replace Θ
in the right-hand side by a suitable nonlinear function of Θ, chosen so the surface shrinks faster
when it is far from the apparent horizon. For example, Shoemaker et al. [148, 149] use the flow

∂λxi = −
[
(Θ− c) arctan2

(
Θ− c

Θ0

)]
si (40)

for this purpose, where Θ0 is the value of Θ on the initial-guess surface, and c (which is gradually
decreased towards 0 as the iteration proceeds) is a “goal” value for Θ.

8.7.3 Surface representation and the handling of bifurcations

Since a flow algorithm starts with (topologically) a single large 2-sphere, if there are multiple
apparent horizons present the surface must change topology (bifurcate) at some point in the flow.
Depending on how the surface is represented, this may be easy or difficult.

Pasch [118] and Shoemaker et al. [148, 149] use a level-set function approach (Section 2.1).
This automatically handles any topology or topology change. However, it has the drawback of
requiring the flow to be integrated throughout the entire volume of the slice (or at least in some
neighborhood of each surface). This is likely to be much more expensive than only integrating
the flow on the surface itself. Shoemaker et al. also generate an explicit Strahlkörper surface
representation (Section 2.2), monitoring the surface shape to detect an imminent bifurcation and
reparameterizing the shape into 2 separate surfaces if a bifurcation happens.

59Richtmyer and Morton [129, Section 7.5] give a very clear presentation and analysis of the Du Fort–Frankel
scheme.

60More precisely, Pasch [118] found that that an exponential integrator worked well when the flow’s Jacobian
matrix was computed exactly (using the symbolic-differentiation technique described in Section 8.5.4). However,
when the Jacobian matrix was approximated using the numerical-perturbation technique described in Section 8.5.4,
Pasch found that the pseudo-time integration became unstable at high numerical resolutions. Pasch [118] also notes
that the exponential integrator uses a very large amount of memory.

61Teukolsky [152], and Leiler and Rezzolla [101] have analyzed ICN’s stability under various conditions.
62See [42, 158] for general introductions to multigrid algorithms for elliptic PDEs.
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Metzger [109] uses a finite-element surface representation (Section 2.3), which can represent
any topology. However, if the flow bifurcates, then to explicitly represent each apparent horizon
the code must detect that the surface self-intersects, which may be expensive.

8.7.4 Gundlach’s “fast flow”

Gundlach [80] introduced the important concept of a “fast flow”. He observed that the subtrac-
tion and inversion of the flat-space Laplacian in the Nakamura–Kojima–Oohara spectral integral-
iteration algorithm (Section 8.4) is an example of “a standard way of solving nonlinear elliptic
problems numerically, namely subtracting a simple linear elliptic operator from the nonlinear
one, inverting it by pseudo-spectral algorithms and iterating”. Gundlach then interpreted the
Nakamura–Kojima–Oohara algorithm as a type of flow algorithm where each pseudo-time step of
the flow corresponds to a single functional-iteration step of the Nakamura–Kojima–Oohara algo-
rithm.

In this framework, Gundlach defines a 2-parameter family of flows interpolating between the
Nakamura–Kojima–Oohara algorithm and Tod’s [157] expansion flow (39),

∂λh = −A(1−B∆)−1ρ Θ, (41)

where A ≥ 0 and B ≥ 0 are parameters, ρ > 0 is a weight functional which depends on h through
at most 1st derivatives, ∆ is the flat-space Laplacian operator, and (1−B∆)−1 denotes inverting
the operator (1−B∆). Gundlach then argues that intermediate “fast flow” members of this family
should be useful compromises between the speed of the Nakamura–Kojima–Oohara algorithm and
the robustness of Tod’s expansion flow. Based on numerical experiments, Gundlach suggests a
particular choice for the weight functional ρ and the parameters A and B. The resulting algorithm
updates high-spatial-frequency components of h essentially the same as the Nakamura–Kojima–
Oohara algorithm but should reduce low-spatial-frequency error components faster. Gundlach’s
algorithm also completely avoids the need for numerically solving Equation (23) for the a00 coeffi-
cient in the Nakamura–Kojima–Oohara algorithm.

Alcubierre’s AHFinder [4] horizon finder includes an implementation of Gundlach’s fast flow
algorithm63. AHFinder is implemented as a freely available module (“thorn”) in the Cactus
computational toolkit (see Table 2) and has been used by many research groups.

8.7.5 Summary of flow algorithms/codes

Flow algorithms are the only truly global apparent horizon finding algorithms and, as such, can be
much more robust than local algorithms. In particular, flow algorithms can guarantee convergence
to the outermost MOTS in a slice. Unfortunately, these convergence guarantees hold only for
time-symmetric slices.

In the forms which have strong convergence guarantees, flow algorithms tend to be very slow.
(Metzger’s algorithm [109] is a notable exception: It is very fast.) There are modifications which
can make flow algorithms much faster, but then their convergence is no longer guaranteed. In
particular, practical experience has shown that in some binary black hole coalescence simulations
(Alcubierre et al. [5], Diener et al. [62]), “fast flow” algorithms (Section 8.7.4) can miss common
apparent horizons which are found by other (local) algorithms.

Alcubierre’s apparent horizon finder AHFinder [4] includes a “fast flow” algorithm based on
the work of Gundlach [80]63. It is implemented as a freely available module (“thorn”) in the
Cactus computational toolkit (see Table 2) and has been used by a number of research groups.

63AHFinder also includes a minimization algorithm (Section 8.3).
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9 Summary of Algorithms/Codes for Finding Apparent Hori-
zons

There are many apparent horizon finding algorithms, with differing trade-offs between speed, ro-
bustness of convergence, accuracy, and ease of programming.

In spherical symmetry, zero-finding (Section 8.1) is fast, robust, and easy to program. In
axisymmetry, shooting algorithms (Section 8.2) work well and are fairly easy to program. Alter-
natively, any of the algorithms for generic slices (summarized below) can be used with implemen-
tations tailored to the axisymmetry.

Minimization algorithms (Section 8.3) are fairly easy to program, but when the underlying
simulation uses finite differencing these algorithms are susceptible to spurious local minima, have
relatively poor accuracy, and tend to be very slow unless axisymmetry is assumed. When the
underlying simulation uses spectral methods, then minimization algorithms can be somewhat faster
and more robust.

Spectral integral-iteration algorithms (Section 8.4) and elliptic-PDE algorithms (Section 8.5)
are fast and accurate, but are moderately difficult to program. Their main disadvantage is the
need for a fairly good initial guess for the horizon position/shape.

In many cases Schnetter’s “pretracking” algorithm (Section 8.6) can greatly improve an elliptic-
PDE algorithm’s robustness, by determining – before it appears – approximately where (in space)
and when (in time) a new outermost apparent horizon will appear. Pretracking is implemented
as a modification of an existing elliptic-PDE algorithm and is moderately slow: It typically has a
cost 5 to 10 times that of finding a single horizon with the elliptic-PDE algorithm.

Finally, flow algorithms (Section 8.7) are generally quite slow (Metzger’s algorithm [109] is a
notable exception) but can be very robust in their convergence. They are moderately easy to
program. Flow algorithms are global algorithms, in that their convergence does not depend on
having a good initial guess.

Table 2 lists freely-available apparent horizon finding codes.
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A Solving a Single Nonlinear Algebraic Equation

In this appendix I briefly outline numerical algorithms and codes for solving a single 1-dimensional
nonlinear algebraic equation f(x) = 0, where the continuous function f : < → < is given.

The process generally begins by evaluating f on a suitable grid of points and looking for sign
changes. By the intermediate value theorem, each sign change must bracket at least one root.
Given a pair of such ordinates x− and x+, there are a variety of algorithms available to accurately
and efficiently find the (a) root:

If |x+ − x−| is small, say on the order of a finite-difference grid spacing, then closed-form
approximations are probably accurate enough:

• The simplest approximation is a simple linear interpolation of f between x− and x+.

• A slightly more sophisticated algorithm, “inverse quadratic interpolation”, is to use three
ordinates, two of which bracket a root, and estimate the root as the root of the (unique)
parabola which passes through the three given (x, f(x)) points64.

For larger |x+ − x−|, iterative algorithms are necessary to obtain an accurate root:

• Bisection (binary search on the sign of f) is a well-known iterative scheme which is very
robust. However, it is rather slow if high accuracy is desired.

• Newton’s method can be used, but it requires that the derivative f ′ be available. Alterna-
tively, the secant algorithm (similar to Newton’s method but estimating f ′ from the most
recent pair of function evaluations) gives similarly fast convergence without requiring f ′ to be
available. Unfortunately, if |f ′| is small enough at any iteration point, both these algorithms
can fail to converge, or more generally they can generate “wild” trial ordinates.

• Probably the most sophisticated algorithm is that of van Wijngaarden, Dekker, and Brent.
This is a carefully engineered hybrid of the bisection, secant, and inverse quadratic inter-
polation algorithms, and generally combines the rapid convergence of the secant algorithm
with the robustness of bisection. The van Wijngaarden–Dekker–Brent algorithm is described
by Forsythe, Malcolm, and Moler [71, Chapter 7], Kahaner, Moler, and Nash [92, Chap-
ter 7], and Press et al. [125, Section 9.3]. An excellent implementation of this, the Fortran
subroutine ZEROIN, is freely available from http://www.netlib.org/fmm/.

64The parabola generically has two roots, but normally only one of them lies between x− and x+.
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B The Numerical Integration of Ordinary Differential Equa-
tions

The time-integration problem65 for ordinary differential equations (ODEs) is traditionally written
as follows: We are given an integer n > 0 (the number of ODEs to integrate), a “right-hand-side”
function f : <n ×< → <n, and the value y(0) of a function y : < → <n satisfying the ODEs

dy

dt
= f(y, t) (42)

We wish to know (or approximate) y(t) for some finite interval t ∈ [0, tmax].
This is a well-studied problem in numerical analysis. See, for example, Forsythe, Malcolm, and

Moler [71, Chapter 6] or Kahaner, Moler, and Nash [92, Chapter 8] for a general overview of ODE
integration algorithms and codes, or Shampine and Gordon [140], Hindmarsh [84], or Brankin,
Gladwell, and Shampine [38] for detailed technical accounts.

For our purposes, it suffices to note that highly accurate, efficient, and robust ODE-integration
codes are widely available. In fact, there is a strong tradition in numerical analysis of free avail-
ability of such codes. Notably, Table 3 lists several freely-available ODE codes. As well as being
of excellent numerical quality, these codes are also very easy to use, employing sophisticated adap-
tive algorithms to automatically adjust the step size and/or the precise integration scheme used66.
These codes can generally be relied upon to produce accurate results both more efficiently and
more easily than a hand-crafted integrator. I have used the LSODE solver in several research
projects with excellent results.

Program Reference(s) Web page
RKF45 [71, Chapter 6] http://www.netlib.org/ode/rkf45.f

ODE (DE/STEP) [140] http://www.netlib.org/ode/ode.f

ODEPACK (LSODE/LSODA etc.) [84] http://www.netlib.org/odepack/

RKSUITE [38] http://www.netlib.org/ode/rksuite/

Table 3: This table lists some general-purpose ODE codes which are freely available.

65The numerical-analysis literature usually refers to this as the “initial value problem”. Unfortunately, in a
relativity context this terminology often causes confusion with the “initial data problem” of solving the ADM
constraint equations. I use the term “time-integration problem for ODEs” to (try to) avoid this confusion. In this
appendix, sans-serif lower-case letters abc . . . z denote variables and functions in <n (for some fixed dimension n),
and sans-serif upper-case letters ABC . . . Z denote n× n real-valued matrices.

66LSODA can also automatically detect stiff systems of ODEs and adjust its integration scheme so as to handle
them efficiently.
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