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Abstract

We review the analytic methods used to perform the post-Newtonian expansion of grav-
itational waves induced by a particle orbiting a massive, compact body, based on black hole
perturbation theory. There exist two different methods of performing the post-Newtonian ex-
pansion. Both are based on the Teukolsky equation. In one method, the Teukolsky equation is
transformed into a Regge–Wheeler type equation that reduces to the standard Klein–Gordon
equation in the flat-space limit, while in the other method (which was introduced by Mano,
Suzuki, and Takasugi relatively recently), the Teukolsky equation is used directly in its orig-
inal form. The former’s advantage is that it is intuitively easy to understand how various
curved space effects come into play. However, it becomes increasingly complicated when one
goes to higher and higher post-Newtonian orders. In contrast, the latter’s advantage is that a
systematic calculation to higher post-Newtonian orders can be implemented relatively easily,
but otherwise, it is so mathematical that it is hard to understand the interplay of higher order
terms. In this paper, we review both methods so that their pros and cons may be seen clearly.
We also review some results of calculations of gravitational radiation emitted by a particle
orbiting a black hole.
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1 Introduction

1.1 General

In the past several years, there has been substantial progress in the projects of ground-based laser
interferometric gravitational wave detectors, which include LIGO [65], VIRGO [108], GEO600 [50],
and TAMA300 [102, 3, 103]. TAMA300 was in operation from 1999 until 2004. LIGO and GEO600
began operating in 2002. LIGO has performed it’s fifth science run from November 2005 to October
2007, and over one year of science-quality data was taken with all of it’s three LIGO interferometers
in simultaneous operation. The Virgo detector performed its first science run in 2007 and 4.5
months of joint data-taking with LIGO was done. There are several future projects as well. Most
importantly, the Laser Interferometer Space Antenna (LISA) project is in progress [67, 66]. The
DECIGO [2] and BBO [36] are more ambitious space interferometer proposals which aim to cover
the frequency gap between the ground based interferometers and LISA. For a review of ground
and space laser interferometers, see, e.g., the respective Living Reviews article [88].

The detection of gravitational waves will be done by extracting gravitational wave signals from a
noisy data stream. In developing the data analysis strategy, detailed knowledge of the gravitational
waveforms will help us greatly to detect a signal, and to extract the physical information about
its source. Thus, it has become a very important problem for theorists to predict with sufficiently
good accuracy the waveforms from possible gravitational wave sources.

Gravitational waves are generated by dynamical astrophysical events, and they are expected
to be strong enough to be detected when compact stars such as neutron stars (NS) or black holes
(BH) are involved in such events. In particular, coalescing compact binaries are considered to be
the most promising sources of gravitational radiation that can be detected by the ground-based
laser interferometers. The last inspiral phase of a coalescing compact binary, in which the binary
stars orbit each other for ∼ 104 cycles, will be in the bandwidth of the interferometers, and this
phase may not only be detectable: it could provide us with important astrophysical information
about the system, if the theoretical templates are sufficiently accurate.

Unfortunately, it seems difficult to attain the sensitivity to detect NS-NS binary inspirals with
the first generation of interferometric detectors. However, the coalescence of BH-NS/BH-BH bi-
naries with a black hole mass of ∼ 10 – 20𝑀⊙ may be detected out to the distance of the VIRGO
cluster if we are lucky enough. In any case, it will be necessary to wait for the next generation of
interferometric detectors to see these coalescing events more frequently [73, 82].

To predict the waveforms, a conventional approach is to formulate the Einstein equations with
respect to the flat Minkowski background and apply the post-Newtonian expansion to the resulting
equations (see the Section 1.2).

In this paper, however, we review a different approach, namely the black hole perturbation
approach. In this approach, binaries are assumed to consist of a massive black hole and a small
compact star which is taken to be a point particle. Hence, its applicability is constrained to the
case of binaries with large mass ratio. Nevertheless, there are several advantages here that cannot
be overlooked.

Most importantly, the black hole perturbation equations take full account of general relativistic
effects of the background spacetime and they are applicable to arbitrary orbits of a small mass
star. In particular, if a numerical approach is taken, gravitational waves from highly relativistic
orbits can be calculated. Then, if we can develop a method to calculate gravitational waves to
a sufficiently high PN order analytically, it can give insight not only into how and when general
relativistic effects become important, by comparing with numerical results, but it will also give us
a knowledge, complementary to the conventional post-Newtonian approach, about as yet unknown
higher-order PN terms or general relativistic spin effects.

Moreover, one of the main targets of LISA is to observe phenomena associated with the for-
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mation and evolution of supermassive black holes in galactic centers. In particular, a gravitational
wave event of a compact star spiraling into such a supermassive black hole is indeed a case of
application for the black hole perturbation theory.

1.2 Post-Newtonian expansion of gravitational waves

The post-Newtonian expansion of general relativity assumes that the internal gravity of a source is
small so that the deviation from the Minkowski metric is small, and that velocities associated with
the source are small compared to the speed of light, 𝑐. When we consider the orbital motion of a
compact binary system, these two conditions become essentially equivalent to each other. Although
both conditions may be violated inside each of the compact objects, this is not regarded as a serious
problem of the post-Newtonian expansion, as long as we are concerned with gravitational waves
generated from the orbital motion, and, indeed, the two bodies are usually assumed to be point-like
objects in the calculation.

In fact, Itoh, Futamase, and Asada [57, 58] developed a new post-Newtonian method that can
deal with a binary system in which the constituent bodies may have strong internal gravity, based
on earlier work by Futamase and Schutz [44, 45, 42]. They derived the equations of motion to 2.5PN
order and obtained a complete agreement with the Damour–Deruelle equations of motion [26, 25],
which assumes the validity of the point-particle approximation. In the Futamase–Schutz method,
each star in a binary is first expressed as an extended object and then the limit is taken to set
the radius to zero in a specific manner first proposed by Futamase [42]. At the same time, the
surface integral approach (à la Einstein–Infeld–Hoffmann [32]) is taken to derive the equations of
motion. More recently Itoh and Futamase [56, 54] derived the 3PN equations of motion based on
the Futamase–Schutz method, and they are again in agreement with those derived by Damour,
Jaranowski and Schäfer [27] and by Blanchet et al. [10] in which the point-particle approximation
is used.

There are two existing approaches of the post-Newtonian expansion to calculate gravitational
waves: one developed by Blanchet, Damour, and Iyer (BDI) [12, 7] and another by Will and
Wiseman (WW) [111] based on previous work by Epstein, Wagoner, and Will [33, 109]. In both
approaches, the gravitational waveforms and luminosity are expanded in time derivatives of ra-
diative multipoles, which are then related to some source multipoles (the relation between them
contains the “tails”). The source multipoles are expressed as integrals over the matter source and
the gravitational field. The source multipoles are combined with the equations of motion to obtain
explicit expressions in terms of the source masses, positions, and velocities.

One issue of the post-Newtonian calculation arises from the fact that the post-Newtonian
expansion can be applied only to the near-zone field of the source. In the conventional post-
Newtonian formalism, the harmonic coordinates are used to write down the Einstein equations. If
we define the deviation from the Minkowski metric as

ℎ𝜇𝜈 ≡
√
−𝑔𝑔𝜇𝜈 − 𝜂𝜇𝜈 , (1)

the Einstein equations are schematically written in the form

�ℎ𝜇𝜈 = 16𝜋|𝑔|𝑇𝜇𝜈 + Λ𝜇𝜈(ℎ), (2)

together with the harmonic gauge condition, 𝜕𝜈ℎ
𝜇𝜈 = 0, where � = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 is the D’Alambertian

operator in flat-space time, 𝜂𝜇𝜈 = diag (−1, 1, 1, 1), and Λ𝜇𝜈(ℎ) represents the non-linear terms
in the Einstein equations. The Einstein equations (2) are integrated using the flat-space retarded
integrals. In order to perform the post-Newtonian expansion, if we naively expand the retarded
integrals in powers of 1/𝑐, there appear divergent integrals. This is a technical problem that arises
due to the near-zone nature of the post-Newtonian approximation. In the BDI approach, in order
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to integrate the retarded integrals, and to evaluate the radiative multipole moments at infinity, two
kinds of approximation methods are introduced. One is the multipolar post-Minkowski expansion,
which can be applied to a region outside the source including infinity, and the other is the near-
zone, post-Newtonian expansion. These two expansions are matched in the intermediate region
where both expansions are valid, and the radiative multipole moments are evaluated at infinity.
In the WW approach, the retarded integrals are evaluated directly, without expanding in terms of
1/𝑐, in the region outside the source in a novel way.

The lowest order of the gravitational waves is given by the Newtonian quadrupole formula.
It is standard to refer to the post-Newtonian formulae (for the waveforms and luminosity) that
contain terms up to 𝒪((𝑣/𝑐)𝑛) beyond the Newtonian quadrupole formula as the (𝑛/2)PN for-
mulae. Evaluation of gravitational waves emitted to infinity from a compact binary system has
been successfully carried out to the 3.5 post-Newtonian (PN) order beyond the lowest Newtonian
quadrupole formula in the BDI approach [12, 7, 18, 19, 15, 16, 11]. Up to now, the WW approach
gives the same answer for the gravitational waveforms and luminosity to 2PN order.

The computation of the 3.5PN flux requires the 3PN equations of motion. As mentioned in
the above, the 3PN equations of motion have been derived by three different methods. The first
is the direct post-Newtonian iteration in the harmonic coordinates [14, 28, 10]. The second em-
ploys the Arnowitt–Deser–Misner (ADM) coordinates within the Hamiltonian formalism of general
relativity [59, 60, 27]. The third is based on the Futamase–Schutz method [56, 54].

Since the first two methods use the point particle approximation while the third one is not,
let us first focus on the first two. In both methods, since the stars are represented by the Dirac
delta functions, the divergent self-fields must be regularized. In earlier papers, they used the
Hadamard regularization method [59, 60, 14, 28]. However, it turned out that there remains an
unknown coefficient which cannot be determined within the regularization method. This problem
was solved by Damour, Jaranowski and Schäfer [27] who successfully derived the 3PN equations of
motion without undetermined numerical coefficients by using the dimensional regularization within
an ADM Hamiltonian approach. Then the 3PN equations of motion in the harmonic coordinates
were also derived without undetermined coefficients by using a combination of the Hadamard
regularization and the dimensional regularization in [10]. The 3.5PN radiation reaction terms in
the equations of motion are also derived in both approaches [76, 62]. See reviews by Blanchet [8, 9]
for details and summaries on post-Newtonian approaches.

In the case of Futamase–Schutz method, as mentioned in the beginning of this subsection, the
3PN equations of motion is derived by Itoh and Futamase [56, 54], and the 3.5PN terms are derived
by Itoh [55]. See a review article by Futamase and Itoh [43] for details on this method.

There are other methods in which stars are treated as fluid balls [51, 63, 80, 81]. Pati and
Will [80, 81] use an method which is an extension of the WW approach in which the retarded
integral is evaluated directly. With these method, the 2PN equations of motion as well as 2.5PN
and 3.5PN radiation reaction effects are derived.

1.3 Linear perturbation theory of black holes

In the black hole perturbation approach, we deal with gravitational waves from a particle of mass
𝜇 orbiting a black hole of mass 𝑀 , assuming 𝜇≪𝑀 . The perturbation of a black hole spacetime
is evaluated to linear order in 𝜇/𝑀 . The equations are essentially in the form of Equation (2)
with 𝜂𝜇𝜈 replaced by the background black hole metric 𝑔BH

𝜇𝜈 and the higher order terms Λ(ℎ)𝜇𝜈
neglected. Thus, apart from the assumption 𝜇 ≪ 𝑀 , the black hole perturbation approach is not
restricted to slow-motion sources, nor to small deviations from the Minkowski spacetime, and the
Green function used to integrate the Einstein equations contains the whole curved spacetime effect
of the background geometry.

The black hole perturbation theory was originally developed as a metric perturbation theory.
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For non-rotating (Schwarzschild) black holes, a single master equation for the metric perturbation
was derived by Regge and Wheeler [87] for the so-called odd parity part, and later by Zerilli [112]
for the even parity part. These equations have the nice property that they reduce to the standard
Klein–Gordon wave equation in the flat-space limit. However, no such equation has been found in
the case of a Kerr black hole so far.

Then, based on the Newman–Penrose null-tetrad formalism, in which the tetrad components
of the curvature tensor are the fundamental variables, a master equation for the curvature pertur-
bation was first developed by Bardeen and Press [6] for a Schwarzschild black hole without source
(𝑇𝜇𝜈 = 0), and by Teukolsky [106] for a Kerr black hole with source (𝑇𝜇𝜈 ̸= 0). The master
equation is called the Teukolsky equation, and it is a wave equation for a null-tetrad component
of the Weyl tensor 𝜓0 or 𝜓4. In the source-free case, Chrzanowski [23] and Wald [110] developed
a method to construct the metric perturbation from the curvature perturbation.

The Teukolsky equation has, however, a rather complicated structure as a wave equation. Even
in the flat-space limit, it does not reduce to the standard Klein–Gordon form. Later, Chandrasekhar
showed that the Teukolsky equation can be transformed to the form of the Regge–Wheeler or Zerilli
equation for the source-free Schwarzschild case [21]. A generalization of this to the Kerr case
with source was done by Sasaki and Nakamura [92, 93]. They gave a transformation that brings
the Teukolsky equation to a Regge–Wheeler type equation that reduces to the Regge–Wheeler
equation in the Schwarzschild limit. It may be noted that the Sasaki–Nakamura equation contains
an imaginary part, suggesting that either it is unrelated to a (yet-to-be-found) master equation
for the metric perturbation for the Kerr geometry or implying the non-existence of such a master
equation.

As mentioned above, an important difference between the black-hole perturbation approach
and the conventional post-Newtonian approach appears in the structure of the Green function
used to integrate the wave equations. In the black-hole perturbation approach, the Green function
takes account of the curved spacetime effect on the wave propagation, which implies complexity
of its structure in contrast to the flat-space Green function. Thus, since the system is linear in
the black-hole perturbation approach, the most non-trivial task is the construction of the Green
function.

There are many papers that deal with a numerical evaluation of the Green function and cal-
culations of gravitational waves induced by a particle. See Breuer [20], Chandrasekhar [22], and
Nakamura, Oohara, and Kojima [72] for reviews and for references on earlier papers.

Here, we are interested in an analytical evaluation of the Green function. One way is to adopt
the post-Minkowski expansion assuming 𝐺𝑀/𝑐2 ≪ 𝑟. Note that, for bound orbits, the condition
𝐺𝑀/𝑐2 ≪ 𝑟 is equivalent to the condition for the post-Newtonian expansion, 𝑣2/𝑐2 ≪ 1. If we
can calculate the Green function to a sufficiently high order in this expansion, we may be able to
obtain a rather accurate approximation of it that can be applicable to a relativistic orbit fairly
close to the horizon, possibly to a radius as small as the inner-most stable circular orbit (ISCO),
which is given by 𝑟ISCO = 6𝐺𝑀/𝑐2 in the case of a Schwarzschild black hole.

It turns out that this is indeed possible. Though there arise some complications as one goes
to higher PN orders, they are relatively easy to handle as compared to situations one encounters
in the conventional post-Newtonian approaches. Thus, very interesting relativistic effects such
as tails of gravitational waves can be investigated easily. Further, we can also easily investigate
convergence properties of the post-Newtonian expansion by comparing a numerically calculated
exact result with the corresponding analytic but approximate result. In this sense, the analytic
black-hole perturbation approach can provide an important test of the post-Newtonian expansion.
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1.4 Brief historical notes

Let us briefly review some of the past work on post-Newtonian calculations in black-hole pertur-
bation theory. Although the literature on numerical calculations of gravitational waves emitted
by a particle orbiting a black hole is abundant, there are not so many papers that deal with the
post-Newtonian expansion of gravitational waves, mainly because such an analysis was not neces-
sary until recently, when the construction of accurate theoretical templates for the interferometric
gravitational wave detectors became an urgent issue.

In the case of orbits in the Schwarzschild background, one of the earliest papers was by Gal’tsov,
Matiukhin and Petukhov [47], who considered the case when a particle is in a slightly eccentric
orbit around a Schwarzschild black hole, and calculated the gravitational waves up to 1PN or-
der. Poisson [83] considered a circular orbit around a Schwarzschild black hole and calculated the
waveforms and luminosity to 1.5PN order at which the tail effect appears. Cutler, Finn, Poisson,
and Sussman [24] worked on the same problem numerically by applying the least-square fitting
technique to the numerically evaluated data for the luminosity, and obtained a post-Newtonian
formula for the luminosity to 2.5PN order. Subsequently, a highly accurate numerical calculation
was carried out by Tagoshi and Nakamura [99]. They obtained the formulae for the luminosity to
4PN order numerically by using the least-square fitting method. They found the log 𝑣 terms in
the luminosity formula at 3PN and 4PN orders. They concluded that, although the convergence
of the post-Newtonian expansion is slow, the luminosity formula accurate to 3.5PN order will be
good enough to represent the orbital phase evolution of coalescing compact binaries in theoretical
templates for ground-based interferometers. After that, Sasaki [91] found an analytic method and
obtained formulae that were needed to calculate the gravitational waves to 4PN order. Then,
Tagoshi and Sasaki [100] obtained the gravitational waveforms and luminosity to 4PN order ana-
lytically, and confirmed the results of Tagoshi and Nakamura. These calculations were extended
to 5.5PN order by Tanaka, Tagoshi, and Sasaki [105]. Fujita and Iyer [39] extended this work and
derived 5.5PN waveforms.

In the case of orbits around a Kerr black hole, Poisson calculated the 1.5PN order corrections
to the waveforms and luminosity due to the rotation of the black hole, and showed that the result
agrees with the standard post-Newtonian effect due to spin-orbit coupling [84]. Then, Shibata,
Sasaki, Tagoshi, and Tanaka [94] calculated the luminosity to 2.5PN order. They calculated the
luminosity from a particle in circular orbit with small inclination from the equatorial plane. They
used the Sasaki–Nakamura equation as well as the Teukolsky equation. This analysis was extended
to 4PN order by Tagoshi, Shibata, Tanaka, and Sasaki [101], in which the orbits of the test particles
were restricted to circular ones on the equatorial plane. The analysis in the case of slightly eccentric
orbit on the equatorial plane was also done by Tagoshi [95, 96] to 2.5PN order.

Tanaka, Mino, Sasaki, and Shibata [104] considered the case when a spinning particle is in a
circular orbit near the equatorial plane of a Kerr black hole, based on the Papapetrou equations
of motion for a spinning particle [79] and the energy momentum tensor of a spinning particle by
Dixon [29]. They derived the luminosity formula to 2.5PN order which includes the linear order
effect of the particle’s spin.

The absorption of gravitational waves into the black hole horizon, appearing at 4PN order in
the Schwarzschild case, was calculated by Poisson and Sasaki for a particle in a circular orbit [85].
The black hole absorption in the case of a rotating black hole appears at 2.5PN order [46]. Using
a new analytic method to solve the homogeneous Teukolsky equation found by Mano, Suzuki, and
Takasugi [68], the black hole absorption in the Kerr case was calculated by Tagoshi, Mano, and
Takasugi [98] to 6.5PN order beyond the quadrupole formula.

If gravity is not described by the Einstein theory but by the Brans–Dicke theory, there will
appear scalar-type gravitational waves as well as transverse-traceless gravitational waves. Such
scalar-type gravitational waves were calculated to 2.5PN order by Ohashi, Tagoshi, and Sasaki [77]
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10 Misao Sasaki and Hideyuki Tagoshi

in the case when a compact star is in a circular orbit on the equatorial plane around a Kerr black
hole.

In the above works the energy and angular momentum flux at infinity or the absorption rate
at the horizon were evaluated. In the Kerr case, in order to specify the evolution of particle’s
trajectory under the influence of radiation reaction, we need to determine the rate of change of
the Carter constant which is not directly related to the asymptotic gravitational waves. Mino [70]
proved that the average rate of change of the Carter constant can be evaluated by using the
radiative field (i.e., retarded minus advanced field) in the adiabatic approximation. An explicit
calculation of the rate of change of the Carter constant was done in the case of a scalar charged
particle in [30]. Sago et al. [90] extended Mino’s work and found a simpler formula for the average
rate of change of the Carter constant. They derived analytically the rate of change of the Carter
constant as well as the energy and the angular momentum of a particle for orbits with small
eccentricities and inclinations up to 𝑂(𝑣5) [89]. In Ref. [48], the method was extended to the case
of the orbits with small eccentricity but arbitrary inclination angle, and the rate of change of the
energy, angular momentum and the Carter constant up to 𝑂(𝑣5) were derived.

In the rest of the paper, we use the units 𝑐 = 𝐺 = 1.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-6

http://www.livingreviews.org/lrr-2003-6


Analytic Black Hole Perturbation Approach to Gravitational Radiation 11

2 Basic Formulae for the Black Hole Perturbation

2.1 Teukolsky formalism

In terms of the conventional Boyer–Lindquist coordinates, the metric of a Kerr black hole is
expressed as

𝑑𝑠2 = −Δ

Σ
(𝑑𝑡− 𝑎 sin2 𝜃 𝑑𝜙)2 +

sin2 𝜃

Σ

[︀
(𝑟2 + 𝑎2)𝑑𝜙− 𝑎 𝑑𝑡

]︀2
+
Σ

Δ
𝑑𝑟2 +Σ𝑑𝜃2, (3)

where Σ = 𝑟2 + 𝑎2 cos2 𝜃 and Δ = 𝑟2 − 2𝑀𝑟 + 𝑎2. In the Teukolsky formalism [106], the
gravitational perturbations of a Kerr black hole are described by a Newman–Penrose quantity
𝜓4 = −𝐶𝛼𝛽𝛾𝛿𝑛

𝛼�̄�𝛽𝑛𝛾�̄�𝛿 [74, 75], where 𝐶𝛼𝛽𝛾𝛿 is the Weyl tensor and

𝑛𝛼 =
1

2Σ
((𝑟2 + 𝑎2),−Δ, 0, 𝑎), (4)

𝑚𝛼 =
1√

2(𝑟 + 𝑖𝑎 cos 𝜃)
(𝑖𝑎 sin 𝜃, 0, 1, 𝑖/ sin 𝜃). (5)

The perturbation equation for 𝜑 ≡ 𝜌−4𝜓4, 𝜌 = (𝑟 − 𝑖𝑎 cos 𝜃)−1, is given by

𝑠𝒪𝜑 = 4𝜋Σ𝑇 . (6)

Here, the operator 𝑠𝒪 is given by

𝑠𝒪 = −
(︂
(𝑟2 + 𝑎2)2

Δ
− 𝑎2 sin2 𝜃

)︂
𝜕2𝑡 − 4𝑀𝑎𝑟

Δ
𝜕𝑡𝜕𝜑 −

(︂
𝑎2

Δ
− 1

sin2 𝜃

)︂
𝜕2𝜑

+Δ−𝑠𝜕𝑟(Δ
𝑠+1𝜕𝑟) +

1

sin 𝜃
𝜕𝜃(sin 𝜃𝜕𝜃) + 2𝑠

(︂
𝑎(𝑟 −𝑀)

Δ
+
𝑖 cos 𝜃

sin2 𝜃

)︂
𝜕𝜑

+2𝑠

(︂
𝑀(𝑟2 − 𝑎2)

Δ
− 𝑟 − 𝑖𝑎 cos 𝜃

)︂
𝜕𝑡 − 𝑠(𝑠 cot2 𝜃 − 1), (7)

with 𝑠 = −2. The source term 𝑇 is given by

𝑇 = 2(𝐵′
2 +𝐵*′

2 ), (8)

𝐵′
2 = −1

2
𝜌8𝜌�̂�−1[𝜌

−4�̂�0(𝜌
−2𝜌−1𝑇𝑛𝑛)]

− 1

2
√
2
𝜌8𝜌Δ2�̂�−1[𝜌

−4𝜌2𝐽+(𝜌
−2𝜌−2Δ−1𝑇𝑚𝑛)], (9)

𝐵′*
2 = −1

4
𝜌8𝜌Δ2𝐽+[𝜌

−4𝐽+(𝜌
−2𝜌𝑇𝑚𝑚)]

− 1

2
√
2
𝜌8𝜌Δ2𝐽+[𝜌

−4𝜌2Δ−1�̂�−1(𝜌
−2𝜌−2𝑇𝑚𝑛)], (10)

where

�̂�𝑠 = 𝜕𝜃 −
𝑖

sin 𝜃
𝜕𝜙 − 𝑖𝑎 sin 𝜃𝜕𝑡 + 𝑠 cot 𝜃, (11)

𝐽+ = 𝜕𝑟 −
1

Δ

(︀
(𝑟2 + 𝑎2)𝜕𝑡 + 𝑎𝜕𝜙

)︀
, (12)
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and 𝑇𝑛𝑛, 𝑇𝑚𝑛, and 𝑇𝑚𝑚 are the tetrad components of the energy momentum tensor (𝑇𝑛𝑛 =
𝑇𝜇𝜈𝑛

𝜇𝑛𝜈 etc.). The bar denotes the complex conjugation.
If we set 𝑠 = 2 in Equation (6), with appropriate change of the source term, it becomes the

perturbation equation for 𝜓0. Moreover, it describes the perturbation for a scalar field (𝑠 = 0), a
neutrino field (|𝑠| = 1/2), and an electromagnetic field (|𝑠| = 1) as well.

We decompose 𝜓4 into the Fourier-harmonic components according to

𝜌−4𝜓4 =
∑︁
ℓ𝑚

1√
2𝜋

∫︁
𝑑𝜔𝑒−𝑖𝜔𝑡+𝑖𝑚𝜙

−2𝑆ℓ𝑚(𝜃)𝑅ℓ𝑚𝜔(𝑟). (13)

The radial function 𝑅ℓ𝑚𝜔 and the angular function 𝑠𝑆ℓ𝑚(𝜃) satisfy the Teukolsky equations with
𝑠 = −2 as

Δ2 𝑑

𝑑𝑟

(︂
1

Δ

𝑑𝑅ℓ𝑚𝜔

𝑑𝑟

)︂
− 𝑉 (𝑟)𝑅ℓ𝑚𝜔 = 𝑇ℓ𝑚𝜔, (14)[︃

1

sin 𝜃

𝑑

𝑑𝜃

(︂
sin 𝜃

𝑑

𝑑𝜃

)︂
− 𝑎2𝜔2 sin2 𝜃 − (𝑚− 2 cos 𝜃)2

sin2 𝜃

+4𝑎𝜔 cos 𝜃 − 2 + 2𝑚𝑎𝜔 + 𝜆

]︃
−2𝑆ℓ𝑚 = 0. (15)

The potential 𝑉 (𝑟) is given by

𝑉 (𝑟) = −𝐾
2 + 4𝑖(𝑟 −𝑀)𝐾

Δ
+ 8𝑖𝜔𝑟 + 𝜆, (16)

where 𝜆 is the eigenvalue of −2𝑆
𝑎𝜔
ℓ𝑚 and 𝐾 = (𝑟2 + 𝑎2)𝜔 −𝑚𝑎. The angular function 𝑠𝑆ℓ𝑚(𝜃) is

called the spin-weighted spheroidal harmonic, which is usually normalized as∫︁ 𝜋

0

|−2𝑆ℓ𝑚|2 sin 𝜃𝑑𝜃 = 1. (17)

In the Schwarzschild limit, it reduces to the spin-weighted spherical harmonic with 𝜆 → ℓ(ℓ + 1).
In the Kerr case, however, no analytic formula for 𝜆 is known. The source term 𝑇ℓ𝑚𝜔 is given by

𝑇ℓ𝑚𝜔 = 4

∫︁
𝑑Ω𝑑𝑡𝜌−5𝜌−1(𝐵′

2 +𝐵′*
2 )𝑒−𝑖𝑚𝜙+𝑖𝜔𝑡−2𝑆

𝑎𝜔
ℓ𝑚√
2𝜋

, (18)

We mention that for orbits of our interest, which are bounded, 𝑇ℓ𝑚𝜔 has support only in a compact
range of 𝑟.

We solve the radial Teukolsky equation by using the Green function method. For this purpose,
we define two kinds of homogeneous solutions of the radial Teukolsky equation:

𝑅in
ℓ𝑚𝜔 →

{︃
𝐵trans

ℓ𝑚𝜔 Δ2𝑒−𝑖𝑘𝑟* for 𝑟 → 𝑟+

𝑟3𝐵ref
ℓ𝑚𝜔𝑒

𝑖𝜔𝑟* + 𝑟−1𝐵inc
ℓ𝑚𝜔𝑒

−𝑖𝜔𝑟* for 𝑟 → +∞,
(19)

𝑅up
ℓ𝑚𝜔 →

{︃
𝐶up

ℓ𝑚𝜔𝑒
𝑖𝑘𝑟* +Δ2𝐶ref

ℓ𝑚𝜔𝑒
−𝑖𝑘𝑟* for 𝑟 → 𝑟+,

𝐶trans
ℓ𝑚𝜔 𝑟

3𝑒𝑖𝜔𝑟* for 𝑟 → +∞,
(20)

where 𝑘 = 𝜔 −𝑚𝑎/2𝑀𝑟+, and 𝑟
* is the tortoise coordinate defined by

𝑟* =

∫︁
𝑑𝑟*

𝑑𝑟
𝑑𝑟

= 𝑟 +
2𝑀𝑟+
𝑟+ − 𝑟−

ln
𝑟 − 𝑟+
2𝑀

− 2𝑀𝑟−
𝑟+ − 𝑟−

ln
𝑟 − 𝑟−
2𝑀

, (21)
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where 𝑟± =𝑀 ±
√
𝑀2 − 𝑎2, and where we have fixed the integration constant.

Combining with the Fourier mode 𝑒−𝑖𝜔𝑡, we see that 𝑅in
ℓ𝑚𝜔 has no outcoming wave from past

horizon, while 𝑅up has no incoming wave at past infinity. Since these are the properties of waves
causally generated by a source, a solution of the Teukolsky equation which has purely outgoing
property at infinity and has purely ingoing property at the horizon is given by

𝑅ℓ𝑚𝜔 =
1

𝑊ℓ𝑚𝜔

(︃
𝑅up

ℓ𝑚𝜔

∫︁ 𝑟

𝑟+

𝑑𝑟′𝑅in
ℓ𝑚𝜔𝑇ℓ𝑚𝜔Δ

−2 +𝑅in
ℓ𝑚𝜔

∫︁ ∞

𝑟

𝑑𝑟′𝑅up
ℓ𝑚𝜔𝑇ℓ𝑚𝜔Δ

−2

)︃
, (22)

where the Wronskian 𝑊ℓ𝑚𝜔 is given by

𝑊ℓ𝑚𝜔 = 2𝑖𝜔𝐶trans
ℓ𝑚𝜔 𝐵

inc
ℓ𝑚𝜔. (23)

Then, the asymptotic behavior at the horizon is

𝑅ℓ𝑚𝜔(𝑟 → 𝑟+) →
𝐵trans

ℓ𝑚𝜔 Δ2𝑒−𝑖𝑘𝑟*

2𝑖𝜔𝐶trans
ℓ𝑚𝜔 𝐵

inc
ℓ𝑚𝜔

∫︁ ∞

𝑟+

𝑑𝑟′𝑅up
ℓ𝑚𝜔𝑇ℓ𝑚𝜔Δ

−2 ≡ 𝑍H
ℓ𝑚𝜔Δ

2𝑒−𝑖𝑘𝑟* , (24)

while the asymptotic behavior at infinity is

𝑅ℓ𝑚𝜔(𝑟 → ∞) → 𝑟3𝑒𝑖𝜔𝑟*

2𝑖𝜔𝐵inc
ℓ𝑚𝜔

∫︁ ∞

𝑟+

𝑑𝑟′
𝑇ℓ𝑚𝜔(𝑟

′)𝑅in
ℓ𝑚𝜔(𝑟

′)

Δ2(𝑟′)
≡ 𝑍∞

ℓ𝑚𝜔𝑟
3𝑒𝑖𝜔𝑟* . (25)

We note that the homogeneous Teukolsky equation is invariant under the complex conjugation
followed by the transformation 𝑚→ −𝑚 and 𝜔 → −𝜔. Thus, we can set �̄�in,up

ℓ𝑚𝜔 = 𝑅in,up
ℓ−𝑚−𝜔, where

the bar denotes the complex conjugation.

We consider 𝑇𝜇𝜈 of a monopole particle of mass 𝜇. The energy momentum tensor takes the
form

𝑇𝜇𝜈 =
𝜇

Σsin 𝜃𝑑𝑡/𝑑𝜏

𝑑𝑧𝜇

𝑑𝜏

𝑑𝑧𝜈

𝑑𝜏
𝛿(𝑟 − 𝑟(𝑡))𝛿(𝜃 − 𝜃(𝑡))𝛿(𝜙− 𝜙(𝑡)), (26)

where 𝑧𝜇 =
(︀
𝑡, 𝑟(𝑡), 𝜃(𝑡), 𝜙(𝑡)

)︀
is a geodesic trajectory, and 𝜏 = 𝜏(𝑡) is the proper time along the

geodesic. The geodesic equations in the Kerr geometry are given by

Σ
𝑑𝜃

𝑑𝜏
= ±

[︃
𝐶 − cos2 𝜃

(︃
𝑎2(1− ℰ̂2) +

�̂�2𝑧
sin2 𝜃

)︃]︃1/2
≡ Θ(𝜃),

Σ
𝑑𝜙

𝑑𝜏
= −

(︃
𝑎ℰ̂ − �̂�𝑧

sin2 𝜃

)︃
+
𝑎

Δ

(︁
ℰ̂(𝑟2 + 𝑎2)− 𝑎�̂�𝑧

)︁
≡ Φ,

Σ
𝑑𝑡

𝑑𝜏
= −

(︃
𝑎ℰ̂ − �̂�𝑧

sin2 𝜃

)︁
𝑎 sin2 𝜃 +

𝑟2 + 𝑎2

Δ

(︁
ℰ̂(𝑟2 + 𝑎2)− 𝑎�̂�𝑧

)︃
≡ 𝑇,

Σ
𝑑𝑟

𝑑𝜏
= ±

√
𝑅,

(27)

where

𝑅 = [ℰ̂(𝑟2 + 𝑎2)− 𝑎�̂�𝑧]
2 −Δ[(ℰ̂𝑎− �̂�𝑧)

2 + 𝑟2 + 𝐶]. (28)

and ℰ̂ , �̂�𝑧, and 𝐶 are the energy, the 𝑧-component of the angular momentum, and the Carter
constant of a test particle, respectively. These constants of motion are those measured in units of
𝜇. That is, if expressed in the standard units, they become ℰ = 𝜇ℰ̂ , 𝑙𝑧 = 𝜇�̂�𝑧, and 𝐶 = 𝜇2𝐶.
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Using Equation (27), the tetrad components of the energy momentum tensor are expressed as

𝑇𝑛𝑛 = 𝜇
𝐶𝑛𝑛

sin 𝜃
𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡)) 𝛿(𝜙− 𝜙(𝑡)),

𝑇𝑚𝑛 = 𝜇
𝐶𝑚𝑛

sin 𝜃
𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡)) 𝛿(𝜙− 𝜙(𝑡)), (29)

𝑇𝑚𝑚 = 𝜇
𝐶𝑚𝑚

sin 𝜃
𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡)) 𝛿(𝜙− 𝜙(𝑡)),

where

𝐶𝑛𝑛 =
1

4Σ3𝑡

[︂
ℰ̂(𝑟2 + 𝑎2)− 𝑎�̂�𝑧 +Σ

𝑑𝑟

𝑑𝜏

]︂2
, (30)

𝐶𝑚𝑛 = − 𝜌

2
√
2Σ2𝑡

[︂
ℰ̂(𝑟2 + 𝑎2)− 𝑎�̂�𝑧 +Σ

𝑑𝑟

𝑑𝜏

]︂[︃
𝑖 sin 𝜃

(︃
𝑎ℰ̂ − �̂�𝑧

sin2 𝜃

)︃
+Σ

𝑑𝜃

𝑑𝜏

]︃
, (31)

𝐶𝑚𝑚 =
𝜌2

2Σ𝑡

[︃
𝑖 sin 𝜃

(︃
𝑎ℰ̂ − �̂�𝑧

sin2 𝜃

)︃
+Σ

𝑑𝜃

𝑑𝜏

]︃2
, (32)

and 𝑡 = 𝑑𝑡/𝑑𝜏 . Substituting Equation (10) into Equation (18) and performing integration by part,
we obtain

𝑇ℓ𝑚𝜔 =
4𝜇√
2𝜋

∫︁ ∞

−∞
𝑑𝑡

∫︁
𝑑𝜃𝑒𝑖𝜔𝑡−𝑖𝑚𝜙(𝑡)

×

{︃
−1

2
𝐿†
1

(︁
𝜌−4𝐿†

2(𝜌
3𝑆)
)︁
𝐶𝑛𝑛𝜌

−2𝜌−1 𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡))

+
Δ2𝜌2√

2𝜌

(︁
𝐿†
2𝑆 + 𝑖𝑎(𝜌− 𝜌) sin 𝜃𝑆

)︁
𝐽+

[︂
𝐶𝑚𝑛

𝜌2𝜌2Δ
𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡))

]︂
+

1

2
√
2
𝐿†
2

(︀
𝜌3𝑆(𝜌2𝜌−4),𝑟

)︀
𝐶𝑚𝑛Δ𝜌

−2𝜌−2 𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡))

− 1

4
𝜌3Δ2𝑆𝐽+

[︀
𝜌−4𝐽+

(︀
𝜌𝜌−2𝐶𝑚𝑚 𝛿(𝑟 − 𝑟(𝑡)) 𝛿(𝜃 − 𝜃(𝑡))

)︀]︀}︃
, (33)

where

𝐿†
𝑠 = 𝜕𝜃 −

𝑚

sin 𝜃
+ 𝑎𝜔 sin 𝜃 + 𝑠 cot 𝜃, (34)

𝐽+ = 𝜕𝑟 + 𝑖𝐾/Δ, (35)

and 𝑆 denotes −2𝑆
𝑎𝜔
ℓ𝑚(𝜃) for simplicity.

For a source bounded in a finite range of 𝑟, it is convenient to rewrite Equation (33) further as

𝑇ℓ𝑚𝜔 = 𝜇

∫︁ ∞

−∞
𝑑𝑡𝑒𝑖𝜔𝑡−𝑖𝑚𝜙(𝑡)Δ2

{︁
(𝐴𝑛𝑛0 +𝐴𝑚𝑛0 +𝐴𝑚𝑚0) 𝛿(𝑟 − 𝑟(𝑡))

+ [(𝐴𝑚𝑛1 +𝐴𝑚𝑚1) 𝛿(𝑟 − 𝑟(𝑡))],𝑟

+ [𝐴𝑚𝑚2 𝛿(𝑟 − 𝑟(𝑡))],𝑟𝑟

}︁
, (36)

where

𝐴𝑛𝑛0 =
−2√
2𝜋Δ2

𝜌−2𝜌−1 𝐶𝑛𝑛𝐿
†
1[𝜌

−4𝐿†
2(𝜌

3𝑆)], (37)
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𝐴𝑚𝑛0 =
2√
𝜋Δ

𝜌−3 𝐶𝑚𝑛

[︂(︁
𝐿†
2𝑆
)︁(︂ 𝑖𝐾

Δ
+ 𝜌+ 𝜌

)︂
− 𝑎 sin 𝜃𝑆

𝐾

Δ
(𝜌− 𝜌)

]︂
, (38)

𝐴𝑚𝑚0 = − 1√
2𝜋
𝜌−3𝜌𝐶𝑚𝑚𝑆

[︃
−𝑖
(︂
𝐾

Δ

)︂
,𝑟

− 𝐾2

Δ2
+ 2𝑖𝜌

𝐾

Δ

]︃
, (39)

𝐴𝑚𝑛1 =
2√
𝜋Δ

𝜌−3 𝐶𝑚𝑛[𝐿
†
2𝑆 + 𝑖𝑎 sin 𝜃(𝜌− 𝜌)𝑆], (40)

𝐴𝑚𝑚1 = − 2√
2𝜋
𝜌−3𝜌𝐶𝑚𝑚𝑆

(︂
𝑖
𝐾

Δ
+ 𝜌

)︂
, (41)

𝐴𝑚𝑚2 = − 1√
2𝜋
𝜌−3𝜌𝐶𝑚𝑚𝑆. (42)

Inserting Equation (36) into Equation (25), we obtain 𝑍ℓ𝑚𝜔 as

𝑍ℓ𝑚𝜔 =
𝜇

2𝑖𝜔𝐵inc
ℓ𝑚𝜔

∫︁ ∞

−∞
𝑑𝑡𝑒𝑖𝜔𝑡−𝑖𝑚𝜙(𝑡)𝑊ℓ𝑚𝜔, (43)

where

𝑊ℓ𝑚𝜔 =

{︂
𝑅in

ℓ𝑚𝜔 [𝐴𝑛𝑛0 +𝐴𝑚𝑛0 +𝐴𝑚𝑚0]−
𝑑𝑅in

ℓ𝑚𝜔

𝑑𝑟
[𝐴𝑚𝑛1 +𝐴𝑚𝑚1] +

𝑑2𝑅in
ℓ𝑚𝜔

𝑑𝑟2
𝐴𝑚𝑚2

}︂
𝑟=𝑟(𝑡)

. (44)

In this paper, we focus on orbits which are either circular (with or without inclination) or
eccentric but confined on the equatorial plane. In either case, the frequency spectrum of 𝑇ℓ𝑚𝜔

becomes discrete. Accordingly, 𝑍ℓ𝑚𝜔 in Equation (24) or (25) takes the form,

𝑍ℓ𝑚𝜔 =
∑︁
𝑛

𝛿(𝜔 − 𝜔𝑛)𝑍ℓ𝑚𝜔. (45)

Then, in particular, 𝜓4 at 𝑟 → ∞ is obtained from Equation (13) as

𝜓4 =
1

𝑟

∑︁
ℓ𝑚𝑛

𝑍ℓ𝑚𝜔𝑛

−2𝑆
𝑎𝜔𝑛

ℓ𝑚√
2𝜋

𝑒𝑖𝜔𝑛(𝑟
*−𝑡)+𝑖𝑚𝜙. (46)

At infinity, 𝜓4 is related to the two independent modes of gravitational waves ℎ+ and ℎ× as

𝜓4 =
1

2
(ℎ̈+ − 𝑖ℎ̈×). (47)

From Equations (46) and (47), the luminosity averaged over 𝑡≫ Δ𝑡, where Δ𝑡 is the characteristic
time scale of the orbital motion (e.g., a period between the two consecutive apastrons), is given by

⟨
𝑑𝐸

𝑑𝑡

⟩
=
∑︁
ℓ,𝑚,𝑛

⃒⃒⃒
𝑍ℓ𝑚𝜔𝑛

⃒⃒⃒2
4𝜋𝜔2

𝑛

≡
∑︁
ℓ,𝑚,𝑛

(︁𝑑𝐸
𝑑𝑡

)︁
ℓ𝑚𝑛

. (48)

In the same way, the time-averaged angular momentum flux is given by⟨
𝑑𝐽𝑧
𝑑𝑡

⟩
=
∑︁
ℓ,𝑚,𝑛

𝑚 |𝑍ℓ𝑚𝜔𝑛
|2

4𝜋𝜔3
𝑛

≡
∑︁
ℓ,𝑚,𝑛

(︂
𝑑𝐽𝑧
𝑑𝑡

)︂
ℓ𝑚𝑛

=
∑︁
ℓ,𝑚,𝑛

𝑚

𝜔𝑛

(︂
𝑑𝐸

𝑑𝑡

)︂
ℓ𝑚𝑛

. (49)
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2.2 Chandrasekhar–Sasaki–Nakamura transformation

As seen from the asymptotic behaviors of the radial functions given in Equations (24) and (25), the
Teukolsky equation is not in the form of a canonical wave equation near the horizon and infinity.
Therefore, it is desirable to find a transformation that brings the radial Teukolsky equation into
the form of a standard wave equation.

In the Schwarzschild case, Chandrasekhar found that the Teukolsky equation can be trans-
formed to the Regge–Wheeler equation, which has the standard form of a wave equation with
solutions having regular asymptotic behaviors at horizon and infinity [21]. The Regge–Wheeler
equation was originally derived as an equation governing the odd parity metric perturbation [87].
The existence of this transformation implies that the Regge–Wheeler equation can describe the
even parity metric perturbation simultaneously, though the explicit relation of the Regge–Wheeler
function obtained by the Chandrasekhar transformation with the actual metric perturbation vari-
ables has not been given in the literature yet.

Later, Sasaki and Nakamura succeeded in generalizing the Chandrasekhar transformation to the
Kerr case [92, 93]. The Chandrasekhar–Sasaki–Nakamura transformation was originally introduced
to make the potential in the radial equation short-ranged, and to make the source term well-behaved
at the horizon and at infinity. Since we are interested only in bound orbits, it is not necessary
to perform this transformation. Nevertheless, because its flat-space limit reduces to the standard
radial wave equation in the Minkowski spacetime, it is convenient to apply the transformation when
dealing with the post-Minkowski or post-Newtonian expansion, at least at low orders of expansion.

We transform the homogeneous Teukolsky equation to the Sasaki–Nakamura equation [92, 93],
which is given by (︂

𝑑2

𝑑𝑟*2
− 𝐹 (𝑟)

𝑑

𝑑𝑟*
− 𝑈(𝑟)

)︂
𝑋ℓ𝑚𝜔 = 0. (50)

The function 𝐹 (𝑟) is given by

𝐹 (𝑟) =
𝜂,𝑟
𝜂

Δ

𝑟2 + 𝑎2
, (51)

where

𝜂 = 𝑐0 +
𝑐1
𝑟

+
𝑐2
𝑟2

+
𝑐3
𝑟3

+
𝑐4
𝑟4
, (52)

with
𝑐0 = −12𝑖𝜔𝑀 + 𝜆(𝜆+ 2)− 12𝑎𝜔(𝑎𝜔 −𝑚),

𝑐1 = 8𝑖𝑎[3𝑎𝜔 − 𝜆(𝑎𝜔 −𝑚)],

𝑐2 = −24𝑖𝑎𝑀(𝑎𝜔 −𝑚) + 12𝑎2[1− 2(𝑎𝜔 −𝑚)2],

𝑐3 = 24𝑖𝑎3(𝑎𝜔 −𝑚)− 24𝑀𝑎2,

𝑐4 = 12𝑎4.

(53)

The function 𝑈(𝑟) is given by

𝑈(𝑟) =
Δ𝑈1

(𝑟2 + 𝑎2)2
+𝐺2 +

Δ𝐺,𝑟

𝑟2 + 𝑎2
− 𝐹𝐺, (54)

where

𝐺 = −2(𝑟 −𝑀)

𝑟2 + 𝑎2
+

𝑟Δ

(𝑟2 + 𝑎2)2
, (55)

𝑈1 = 𝑉 +
Δ2

𝛽

[︃(︂
2𝛼+

𝛽,𝑟
Δ

)︂
,𝑟

− 𝜂,𝑟
𝜂

(︂
𝛼+

𝛽,𝑟
Δ

)︂]︃
, (56)
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𝛼 = −𝑖𝐾𝛽
Δ2

+ 3𝑖𝐾,𝑟 + 𝜆+
6Δ

𝑟2
, (57)

𝛽 = 2Δ

(︂
−𝑖𝐾 + 𝑟 −𝑀 − 2Δ

𝑟

)︂
. (58)

The relation between 𝑅ℓ𝑚𝜔 and 𝑋ℓ𝑚𝜔 is

𝑅ℓ𝑚𝜔 =
1

𝜂

[︂(︂
𝛼+

𝛽,𝑟
Δ

)︂
𝜒ℓ𝑚𝜔 − 𝛽

Δ
𝜒ℓ𝑚𝜔,𝑟

]︂
, (59)

where 𝜒ℓ𝑚𝜔 = 𝑋ℓ𝑚𝜔Δ/(𝑟
2 + 𝑎2)1/2. Conversely, we can express 𝑋ℓ𝑚𝜔 in terms of 𝑅ℓ𝑚𝜔 as

𝑋ℓ𝑚𝜔 = (𝑟2 + 𝑎2)1/2 𝑟2 𝐽−𝐽−

(︂
1

𝑟2
𝑅ℓ𝑚𝜔

)︂
, (60)

where 𝐽− = (𝑑/𝑑𝑟)− 𝑖(𝐾/Δ).
If we set 𝑎 = 0, this transformation reduces to the Chandrasekhar transformation for the

Schwarzschild black hole [21]. The explicit form of the transformation is

𝑅ℓ𝑚𝜔 =
Δ

𝑐0

(︂
𝑑

𝑑𝑟*
+ 𝑖𝜔

)︂
𝑟2

Δ

(︂
𝑑

𝑑𝑟*
+ 𝑖𝜔

)︂
𝑟𝑋ℓ𝑚𝜔, (61)

𝑋ℓ𝑚𝜔 =
𝑟5

Δ

(︂
𝑑

𝑑𝑟*
− 𝑖𝜔

)︂
𝑟2

Δ

(︂
𝑑

𝑑𝑟*
+ 𝑖𝜔

)︂
𝑅ℓ𝑚𝜔

𝑟2
, (62)

where 𝑐0, defined in Equation (53), reduces to 𝑐0 = (ℓ−1)ℓ(ℓ+1)(ℓ+2)−12𝑖𝑀𝜔. In this case, the
Sasaki–Nakamura equation (50) reduces to the Regge–Wheeler equation [87], which is given by(︂

𝑑2

𝑑𝑟*2
+ 𝜔2 − 𝑉 (𝑟)

)︂
𝑋ℓ𝜔(𝑟) = 0, (63)

where

𝑉 (𝑟) =

(︂
1− 2𝑀

𝑟

)︂(︂
ℓ(ℓ+ 1)

𝑟2
− 6𝑀

𝑟3

)︂
. (64)

As is clear from the above form of the equation, the lowest order solutions are given by the spherical
Bessel functions. Hence it is intuitively straightforward to apply the post-Newtonian expansion to
it. Some useful techniques for the post-Newtonian expansion were developed for the Schwarzschild
case by Poisson [83] and Sasaki [91].

The asymptotic behavior of the ingoing wave solution 𝑋 in which corresponds to Equation (19)
is

𝑋 in
ℓ𝑚𝜔 →

{︃
𝐴ref

ℓ𝑚𝜔𝑒
𝑖𝜔𝑟* +𝐴inc

ℓ𝑚𝜔𝑒
−𝑖𝜔𝑟* for 𝑟* → ∞,

𝐴trans
ℓ𝑚𝜔 𝑒

−𝑖𝑘𝑟* for 𝑟* → −∞.
(65)

The coefficients 𝐴inc, 𝐴ref , and 𝐴trans are related to 𝐵inc, 𝐵ref , and 𝐵trans, defined in Equation (19),
by

𝐵inc
ℓ𝑚𝜔 = − 1

4𝜔2
𝐴inc

ℓ𝑚𝜔, (66)

𝐵ref
ℓ𝑚𝜔 = −4𝜔2

𝑐0
𝐴ref

ℓ𝑚𝜔, (67)

𝐵trans
ℓ𝑚𝜔 =

1

𝑑ℓ𝑚𝜔
𝐴trans

ℓ𝑚𝜔 , (68)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-6

http://www.livingreviews.org/lrr-2003-6


18 Misao Sasaki and Hideyuki Tagoshi

where

𝑑ℓ𝑚𝜔 =
√︀
2𝑀𝑟+

[︀
(8− 24𝑖𝑀𝜔 − 16𝑀2𝜔2)𝑟2+

+(12𝑖𝑎𝑚− 16𝑀 + 16𝑎𝑚𝑀𝜔 + 24𝑖𝑀2𝜔)𝑟+

−4𝑎2𝑚2 − 12𝑖𝑎𝑚𝑀 + 8𝑀2
]︀
. (69)

In the following sections, we present a method of post-Newtonian expansion based on the above for-
malism in the case of the Schwarzschild background. In the Kerr case, although a post-Newtonian
expansion method developed in previous work [94, 101] was based on the Sasaki–Nakamura equa-
tion, we will not present it in this paper. Instead, we present a different formalism, namely the
one developed by Mano, Suzuki, and Takasugi which allows us to solve the Teukolsky equation in
a more systematic manner, albeit very mathematical [68]. The reason is that the equations in the
Kerr case are already complicated enough even if one uses the Sasaki–Nakamura equation, so that
there is not much advantage in using it. In contrast, in the Schwarzschild case, it is much easier to
obtain physical insight into the role of relativistic corrections if we deal with the Regge–Wheeler
equation.
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3 Post-Newtonian Expansion of the Regge–Wheeler Equa-
tion

In this section, we review a post-Newtonian expansion method for the Schwarzschild background,
based on the Regge–Wheeler equation. We focus on the gravitational waves emitted to infinity,
but not on those absorbed by the black hole. The black hole absorption is deferred to Section 4,
in which we review the Mano–Suzuki–Takasugi method for solving the Teukolsky equation.

Since we are interested in the waves emitted to infinity, as seen from Equation (25), what we
need is a method to evaluate the ingoing wave Teukolsky function 𝑅in

ℓ𝑚𝜔, or its counterpart in the
Regge–Wheeler equation, 𝑋 in

ℓ𝑚𝜔, which are related by Equation (59). In addition, we assume 𝜔 > 0
whenever it is necessary throughout this section. Formulae and equations for 𝜔 < 0 are obtained
from the symmetry �̄� in

ℓ𝑚𝜔 = 𝑋 in
ℓ−𝑚−𝜔.

3.1 Basic assumptions

We consider the case of a test particle with mass 𝜇 in a nearly circular orbit around a black hole
with mass𝑀 ≫ 𝜇. For a nearly circular orbit, say at 𝑟 ∼ 𝑟0, what we need to know is the behavior
of 𝑅in

ℓ𝑚𝜔 at 𝑟 ∼ 𝑟0. In addition, the contribution of 𝜔 to 𝑅in
ℓ𝑚𝜔 comes mainly from 𝜔 ∼ 𝑚Ω𝜙, where

Ω𝜙 ∼ (𝑀/𝑟30)
1/2 is the orbital angular frequency.

Thus, if we express the Regge–Wheeler equation (63) in terms of a non-dimensional variable 𝑧 ≡
𝜔𝑟, with a non-dimensional parameter 𝜖 ≡ 2𝑀𝜔, we are interested in the behavior of 𝑋 in

ℓ𝑚𝜔(𝑧) at
𝑧 ∼ 𝜔𝑟0 ∼ 𝑚(𝑀/𝑟0)

1/2 ∼ 𝑣 with 𝜖 ∼ 2𝑚(𝑀/𝑟0)
3/2 ∼ 𝑣3, where 𝑣 ≡ (𝑀/𝑟0)

1/2 is the characteristic
orbital velocity. The post-Newtonian expansion assumes that 𝑣 is much smaller than the velocity
of light: 𝑣 ≪ 1. Consequently, we have 𝜖≪ 𝑣 ≪ 1 in the post-Newtonian expansion.

To obtain 𝑋 in
ℓ𝑚𝜔 (which we denote below by 𝑋ℓ for simplicity) under these assumptions, we

find it convenient to rewrite the Regge–Wheeler equation in an alternative form. It is[︂
𝑑2

𝑑𝑧2
+

2

𝑧

𝑑

𝑑𝑧
+

(︂
1− ℓ(ℓ+ 1)

𝑧2

)︂]︂
𝜉ℓ(𝑧) = 𝜖𝑒−𝑖𝑧 𝑑

𝑑𝑧

[︂
1

𝑧3
𝑑

𝑑𝑧

(︀
𝑒𝑖𝑧𝑧2𝜉ℓ(𝑧)

)︀]︂
, (70)

where 𝜉ℓ is a function related to 𝑋ℓ as

𝑋ℓ = 𝑧𝑒−𝑖𝜖 ln(𝑧−𝜖)𝜉ℓ. (71)

The ingoing wave boundary condition of 𝜉ℓ is derived from Equations (65) and (71) as

𝜉ℓ →

{︃
𝐴inc

ℓ 𝑒𝑖𝜖 ln 𝜖𝑧−1𝑒−𝑖𝑧 +𝐴ref
ℓ 𝑒−𝑖𝜖 ln 𝜖𝑧−1𝑒𝑖(𝑧+2𝜖 ln 𝑧) for 𝑟* → ∞,

𝐴trans
ℓ 𝜖−1𝑒𝑖𝜖(ln 𝜖−1) for 𝑟* → −∞.

(72)

The above form of the Regge–Wheeler equation is used in Sections 3.2, 3.3, 3.4, and 3.5.
It should be noted that if we reinstate the gravitational constant 𝐺, we have 𝜖 = 2𝐺𝑀𝜔.

Thus, the expansion in terms of 𝜖 corresponds to the post-Minkowski expansion, and expanding
the Regge–Wheeler equation with the assumption 𝜖 ≪ 1 gives a set of iterative wave equations
on the flat spacetime background. One of the most significant differences between the black hole
perturbation theory and any theory based on the flat spacetime background is the presence of the
black hole horizon in the former case. Thus, if we naively expand the Regge–Wheeler equation
with respect to 𝜖, the horizon boundary condition becomes unclear, since there is no horizon on the
flat spacetime. To establish the boundary condition at the horizon, we need to treat the Regge–
Wheeler equation near the horizon separately. We thus have to find a solution near the horizon,
and the solution obtained by the post-Minkowski expansion must be matched with it in the region
where both solutions are valid.
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It may be of interest to note the difference between the matching used in the BDI approach
for the post-Newtonian expansion [7, 12] and the matching used here. In the BDI approach,
the matching is done between the post-Minkowskian metric and the near-zone post-Newtonian
metric. In our case, the matching is done between the post-Minkowskian gravitational field and
the gravitational field near the black hole horizon.

3.2 Horizon solution; 𝑧 ≪ 1

In this section, we first consider the solution near the horizon, which we call the horizon solution,
based on [85]. To do so, we assume 𝑧 ≪ 1 and treat 𝜖 as a small number, but leave the ratio 𝑧/𝜖
arbitrary. We change the independent variable to 𝑥 = 1− 𝑧/𝜖 and the wave function to

𝑍 =
(︁ 𝜖
𝑧

)︁3 𝑋ℓ

𝐴trans
ℓ

=
(︁ 𝜖
𝑧

)︁2 𝜖 𝜉ℓ
𝐴trans

ℓ 𝑒𝑖𝜖(ln 𝜖−1)
. (73)

Note that the horizon corresponds to 𝑥 = 0. We then have

𝑥(𝑥− 1)𝑍 ′′ +
[︀
2(3− 𝑖𝜖)𝑥− (1− 2𝑖𝜖)

]︀
𝑍 ′ +

[︀
6− ℓ(ℓ+ 1)− 5𝑖𝜖+ 𝜖2(2− 3𝑥+ 𝑥2)

]︀
𝑍 = 0, (74)

where a prime denotes differentiation with respect to 𝑥. We look for a solution which is regular at
𝑥 = 0.

First, we consider the lowest order solution by setting 𝜖 = 0 in Equation (74). The boundary
condition (72) requires that 𝑍 = 1 at 𝑥 = 0. The solution that satisfies the boundary condition is

𝑍 =

ℓ−2∑︁
𝑛=0

(2− ℓ)𝑛(ℓ+ 3)𝑛
𝑛!

𝑥𝑛, (𝑎)𝑛 =
Γ(𝑎+ 𝑛)

Γ(𝑎)
. (75)

Thus, the lowest order solution is a polynomial of order ℓ− 2 in 𝑥 = 1− 𝑧/𝜖.
Next, we consider the solution accurate to𝒪(𝜖). We neglect the terms of𝒪(𝜖2) in Equation (74).

Then, the wave equation takes the form of a hypergeometric equation,

𝑥(𝑥− 1)𝑍 ′′ +
[︀
(𝑎+ 𝑏+ 1)𝑥− 𝑐

]︀
𝑍 ′ + 𝑎𝑏𝑍 = 0, (76)

with parameters
𝑎 = −(ℓ− 2)− 𝑖𝜖+𝒪(𝜖2),
𝑏 = ℓ+ 3− 𝑖𝜖+𝒪(𝜖2),
𝑐 = 1− 2𝑖𝜖.

(77)

The two linearly independent solutions are 𝐹 (𝑎, 𝑏; 𝑐;𝑥) and 𝑥1−𝑐𝐹 (𝑎+1−𝑐, 𝑏+1−𝑐; 2−𝑐;𝑥), where
𝐹 is the hypergeometric function. However, only the first solution is regular at 𝑥 = 0. Therefore,
we obtain

𝜉ℓ(𝑧) = 𝐴trans
ℓ 𝜖−1𝑒𝑖𝜖(ln 𝜖−1)

(︁𝑧
𝜖

)︁2
𝐹
(︁
𝑎, 𝑏; 𝑐; 1− 𝑧

𝜖

)︁
. (78)

The above solution must be matched with the solution obtained from the post-Minkowski
expansion of Equation (70), which we call the outer solution, in a region where both solutions are
valid. It is the region where the post-Newtonian expansion is applied, i.e., the region 𝜖 ≪ 𝑧 ≪ 1.
For this purpose, we rewrite Equation (78) as (see, e.g., Equation (15.3.8) of [1])

𝜉ℓ = 𝐴trans
ℓ 𝜖−1𝑒𝑖𝜖(ln 𝜖−1)

[︂(︁𝑧
𝜖

)︁ℓ+𝑖𝜖 Γ(𝑐)Γ(𝑏− 𝑎)

Γ(𝑏)Γ(𝑐− 𝑎)
𝐹
(︁
𝑎, 𝑐− 𝑏; 𝑎− 𝑏+ 1;

𝜖

𝑧

)︁
+
(︁𝑧
𝜖

)︁−ℓ−1+𝑖𝜖 Γ(𝑐)Γ(𝑎− 𝑏)

Γ(𝑎)Γ(𝑐− 𝑏)
𝐹
(︁
𝑏, 𝑐− 𝑎; 𝑏− 𝑎+ 1;

𝜖

𝑧

)︁]︂
. (79)
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This naturally allows the expansion in 𝜖/𝑧. It should be noted that the second term in the square
brackets of the above expression is meaningless as it is, since the factor Γ(𝑎−𝑏) diverges for integer
ℓ. So, when evaluating the second term, we first have to extend ℓ to a non-integer number. Then,
only after expanding it in terms of 𝜖, we should take the limit of an integer ℓ. One then finds
that this procedure gives rise to an additional factor of 𝒪(𝜖). For 𝜖/𝑧 ≪ 1, it therefore becomes
𝒪(𝜖2ℓ+2) higher in 𝜖 than the first term. Then, we obtain

𝜉ℓ(𝜖≪ 𝑧 ≪ 1) =
(2ℓ)!

(ℓ− 2)!(ℓ+ 2)!

𝑧ℓ

𝜖ℓ+1

[︂
1 + 𝑖𝜖(𝑎ℓ + ln 𝑧)− (ℓ− 2)(ℓ+ 2)

2ℓ

𝜖

𝑧
+𝒪(𝜖2)

]︂
, (80)

where
𝑎ℓ = 2𝛾 + 𝜓(ℓ− 1) + 𝜓(ℓ+ 3)− 1, (81)

and 𝜓(𝑛) is the digamma function,

𝜓(𝑛) = −𝛾 +

𝑛−1∑︁
𝑘=1

𝑘−1, (82)

and 𝛾 ≃ 0.57721 is the Euler constant.
As we will see below, the above solution is accurate enough to determine the boundary condition

of the outer solution up to the 6PN order of expansion.

3.3 Outer solution; 𝜖 ≪ 1

We now solve Equation (70) in the limit 𝜖≪ 1, i.e., by applying the post-Minkowski expansion to
it. In this section, we consider the solution to 𝒪(𝜖). Then we match the solution to the horizon
solution given by Equation (80) at 𝜖≪ 𝑧 ≪ 1.

By setting

𝜉ℓ(𝑧) =

∞∑︁
𝑛=0

𝜖𝑛𝜉
(𝑛)
ℓ (𝑧), (83)

each 𝜉
(𝑛)
ℓ (𝑧) is found to satisfy[︂

𝑑2

𝑑𝑧2
+

2

𝑧

𝑑

𝑑𝑧
+

(︂
1− ℓ(ℓ+ 1)

𝑧2

)︂]︂
𝜉
(𝑛)
ℓ = 𝑒−𝑖𝑧 𝑑

𝑑𝑧

[︂
1

𝑧3
𝑑

𝑑𝑧

(︁
𝑒𝑖𝑧𝑧2𝜉

(𝑛−1)
ℓ (𝑧)

)︁]︂
. (84)

Equation (84) is an inhomogeneous spherical Bessel equation. It is the simplicity of this equation
that motivated the introduction of the auxiliary function 𝜉ℓ [91].

The zeroth-order solution 𝜉
(0)
ℓ satisfies the homogeneous spherical Bessel equation, and must

be a linear combination of the spherical Bessel functions of the first and second kinds, 𝑗ℓ(𝑧) and
𝑛ℓ(𝑧). Here, we demand the compatibility with the horizon solution (80). Since 𝑗ℓ(𝑧) ∼ 𝑧ℓ and
𝑛ℓ(𝑧) ∼ 𝑧−ℓ−1, 𝑛ℓ(𝑧) does not match with the horizon solution at the leading order of 𝜖. Therefore,
we have

𝜉
(0)
ℓ (𝑧) = 𝛼

(0)
ℓ 𝑗ℓ(𝑧). (85)

The constant 𝛼
(0)
ℓ represents the overall normalization of the solution. Since it can be chosen

arbitrarily, we set 𝛼
(0)
ℓ = 1 below.

The procedure to obtain 𝜉
(1)
ℓ (𝑧) was described in detail in [91]. Using the Green function

𝐺(𝑧, 𝑧′) = 𝑗ℓ(𝑧<)𝑛ℓ(𝑧>), Equation (84) may be put into an indefinite integral form,

𝜉
(𝑛)
ℓ = 𝑛ℓ

∫︁ 𝑧

𝑑𝑧𝑧2𝑒−𝑖𝑧𝑗ℓ

[︂
1

𝑧3
(𝑒𝑖𝑧𝑧2𝜉

(𝑛−1)
ℓ (𝑧))′

]︂′
− 𝑗ℓ

∫︁ 𝑧

𝑑𝑧𝑧2𝑒−𝑖𝑧𝑛ℓ

[︂
1

𝑧3
(𝑒𝑖𝑧𝑧2𝜉

(𝑛−1)
ℓ (𝑧))′

]︂′
. (86)

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-6

http://www.livingreviews.org/lrr-2003-6


22 Misao Sasaki and Hideyuki Tagoshi

The calculation is tedious but straightforward. All the necessary formulae to obtain 𝜉
(𝑛)
ℓ for 𝑛 ≤ 2

are given in the Appendix of [91] or Appendix D of [71]. Using those formulae, for 𝑛 = 1 we have

𝜉
(1)
ℓ = 𝛼

(1)
ℓ 𝑗ℓ + 𝛽

(1)
ℓ 𝑛ℓ

+
(ℓ− 1)(ℓ+ 3)

2(ℓ+ 1)(2ℓ+ 1)
𝑗ℓ+1 −

(︂
ℓ2 − 4

2ℓ(2ℓ+ 1)
+

2ℓ− 1

ℓ(ℓ− 1)

)︂
𝑗ℓ−1

+𝑅ℓ,0𝑗0 +

ℓ−2∑︁
𝑚=1

(︂
1

𝑚
+

1

𝑚+ 1

)︂
𝑅ℓ,𝑚𝑗𝑚 − 2𝐷𝑛𝑗

ℓ + 𝑖𝑗ℓ ln 𝑧. (87)

Here, 𝐷𝑛𝑗
ℓ and 𝑅ℓ,𝑚 are functions defined as follows. The function 𝐷𝑛𝑗

ℓ is given by

𝐷𝑛𝑗
ℓ =

1

2
[𝑗ℓ Si(2𝑧)− 𝑛ℓ (Ci(2𝑧)− 𝛾 − ln 2𝑧)] , (88)

where Ci(𝑥) = −
∫︀∞
𝑥
𝑑𝑡 cos 𝑡/𝑡 and Si(𝑥) =

∫︀ 𝑥

0
𝑑𝑡 sin 𝑡/𝑡. The function 𝑅𝑚,𝑘 is defined by 𝑅𝑚,𝑘 =

𝑧2(𝑛𝑚𝑗𝑘 − 𝑗𝑚𝑛𝑘). It is a polynomial in inverse powers of 𝑧 given by

𝑅𝑚,𝑘 =

⎧⎪⎪⎨⎪⎪⎩
−

1
2 (𝑚−𝑘−1)∑︁

𝑟=0

(−1)𝑟
Γ(𝑚− 𝑘 − 𝑟)Γ

(︀
𝑚+ 1

2 − 𝑟
)︀

𝑟! Γ(𝑚− 𝑘 − 2𝑟)Γ
(︀
𝑘 + 3

2 + 𝑟
)︀ (︂2

𝑧

)︂𝑚−𝑘−1−2𝑟

for 𝑚 > 𝑘,

−𝑅𝑘,𝑚 for 𝑚 < 𝑘.

(89)

Here, we again perform the matching with the horizon solution (80). It should be noted that

𝜉
(1)
ℓ , given by Equation (87), is regular in the limit 𝑧 → 0 except for the term 𝛽

(1)
ℓ 𝑛ℓ. By examining

the asymptotic behavior of Equation (87) at 𝑧 ≪ 1, we find 𝛽
(1)
ℓ = 0, i.e., the solution is regular

at 𝑧 = 0. As for 𝛼
(1)
ℓ , it only contributes to the renormalization of 𝛼

(0)
ℓ . Hence, we set 𝛼

(1)
ℓ = 0

and the transmission amplitude 𝐴trans
ℓ is determined to 𝒪(𝜖) as

𝐴trans
ℓ =

(ℓ− 2)!(ℓ+ 2)!

(2ℓ)!(2ℓ+ 1)!
𝜖ℓ+1[1− 𝑖𝜖 𝑎ℓ +𝒪(𝜖2)]. (90)

It may be noted that this explicit expression for 𝐴trans
ℓ is unnecessary for the evaluation of gravi-

tational waves at infinity. It is relevant only for the evaluation of the black hole absorption.

3.4 More on the inner boundary condition of the outer solution

In this section, we discuss the inner boundary condition of the outer solution in more detail. As
we have seen in Section 3.3, the boundary condition on 𝜉ℓ is that it is regular at 𝑧 → 0, at least to
𝒪(𝜖), while in the full non-linear level, the horizon boundary is at 𝑧 = 𝜖. We therefore investigate
to what order in 𝜖 the condition of regularity at 𝑧 = 0 can be applied.

Let us consider the general form of the horizon solution. With 𝑥 = 1 − 𝑧/𝜖, it is expanded in
the form

𝜉ℓ = 𝜉
{0}
ℓ (𝑥) + 𝜖 𝜉

{1}
ℓ (𝑥) + 𝜖2 𝜉

{2}
ℓ (𝑥) + . . . (91)

The lowest order solution 𝜉
{0}
ℓ (𝑥) is given by the polynomial (75). Apart from the common overall

factor, it is schematically expressed as

𝜉
{0}
ℓ =

(︁𝑧
𝜖

)︁ℓ [︃
1 + 𝑐1

𝜖

𝑧
+ . . .+ 𝑐ℓ−2

(︂
𝜖

𝑧

)︂ℓ−2
]︃
. (92)
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Thus, 𝜉
{0}
ℓ does not have a term matched with 𝑛ℓ, but it matches with 𝑗ℓ. We have 𝜉

{0}
ℓ =

𝑧ℓ𝜖−ℓ ∼ 𝜖−ℓ𝑗ℓ. A term that matches with 𝑛ℓ first appears in 𝜉
{1}
ℓ . This can be seen from the

horizon solution valid to 𝒪(𝜖), Equation (79). The second term in the square brackets of it
produces a term 𝜖 (𝑧/𝜖)−ℓ−1 = 𝜖ℓ+2𝑧−ℓ−1 ∼ 𝜖ℓ+2𝑛ℓ. This term therefore becomes 𝒪(𝜖2ℓ+2/𝑧2ℓ+1)
higher than the lowest order term 𝜖−ℓ𝑗ℓ. Since ℓ ≥ 2, this effect first appears at 𝒪(𝜖6) in the
post-Minkowski expansion, while it first appears at 𝒪(𝑣13) in the post-Newtonian expansion if
we note that 𝜖 = 𝒪(𝑣3) and 𝑧 = 𝒪(𝑣). This implies, in particular, that if we are interested in
the gravitational waves emitted to infinity, we may simply impose the regularity at 𝑧 = 0 as the
inner boundary condition of the outer solution for the calculation up to 6PN order beyond the
quadrupole formula.

The above fact that a non-trivial boundary condition due to the presence of the black hole
horizon appears at 𝒪(𝜖2ℓ+2) in the post-Minkowski expansion can be more easily seen as follows.
Since 𝑗ℓ = 𝒪(𝑧ℓ) as 𝑧 → 0, we have 𝑋ℓ → 𝒪(𝜖ℓ+1)𝑒−𝑖𝑧*

, or 𝐴trans
ℓ = 𝒪(𝜖ℓ+1), where 𝑧* =

𝑧 + 𝜖 ln(𝑧 − 𝜖). On the other hand, from the asymptotic behavior of 𝑗ℓ at 𝑧 = ∞, the coefficients
𝐴inc

ℓ and 𝐴ref
ℓ must be of order unity. Then, using the Wronskian argument, we find

|𝐴inc
ℓ | − |𝐴ref

ℓ | = |𝐴trans
ℓ |2

|𝐴inc
ℓ |+ |𝐴ref

ℓ |
= 𝒪(𝜖2ℓ+2). (93)

Thus, we immediately see that a non-trivial boundary condition appears at 𝒪(𝜖2ℓ+2).
It is also useful to keep in mind the above fact when we solve for 𝜉ℓ under the post-Minkowski

expansion. It implies that we may choose a phase such that 𝐴inc
ℓ and 𝐴ref

ℓ are complex conjugate
to each other, to 𝒪(𝜖2ℓ+1). With this choice, the imaginary part of 𝑋ℓ, which reflects the boundary
condition at the horizon, does not appear until 𝒪(𝜖2ℓ+2) because the Regge–Wheeler equation is

real. Then, recalling the relation of 𝜉ℓ to 𝑋ℓ, Equation (71), Im (𝜉
(𝑛)
ℓ ) for a given 𝑛 ≤ 2ℓ + 1 is

completely determined in terms of Re (𝜉
(𝑟)
ℓ ) for 𝑟 ≤ 𝑛− 1. That is, we may focus on solving only

the real part of Equation (84).

3.5 Structure of the ingoing wave function to 𝒪(𝜖2)

With the boundary condition discussed in Section 2, we can integrate the ingoing wave Regge–
Wheeler function iteratively to higher orders of 𝜖 in the post-Minkowskian expansion, 𝜖≪ 1. This
was carried out in [91] to 𝒪(𝜖2) and in [105] to 𝒪(𝜖3) (See [71] for details). Here, we do not
recapitulate the details of the calculation since it is already quite involved at 𝒪(𝜖2), with much
less space for physical intuition. Instead, we describe the general properties of the ingoing wave
function to 𝒪(𝜖2).

As discussed in Section 2, the ingoing wave Regge–Wheeler function 𝑋ℓ can be made real up
to 𝒪(𝜖2ℓ+1), or to 𝒪(𝜖5) of the post-Minkowski expansion, if we recall ℓ ≥ 2. Choosing the phase

of 𝑋ℓ in this way, let us explicitly write down the expressions of Im(𝜉
(𝑛)
ℓ ) (𝑛 = 1, 2) in terms of

Re(𝜉
(𝑚)
ℓ ) (𝑚 ≤ 𝑛− 1). We decompose the real and imaginary parts of 𝜉

(𝑛)
ℓ as

𝜉
(𝑛)
ℓ = 𝑓

(𝑛)
ℓ + 𝑖𝑔

(𝑛)
ℓ . (94)

Inserting this expression into Equation (71), and expanding the result with respect to 𝜖 (and noting

𝑓
(0)
ℓ = 𝑗ℓ and 𝑔

(0)
ℓ = 0), we find

𝑋ℓ = 𝑒−𝑖𝜖 ln(𝑧−𝜖)𝑧
[︁
𝑗ℓ + 𝜖

(︁
𝑓
(1)
ℓ + 𝑖𝑔

(1)
ℓ

)︁
+ 𝜖2

(︁
𝑓
(2)
ℓ + 𝑖𝑔

(2)
ℓ

)︁
+ . . .

]︁
= 𝑧

[︂
𝑗ℓ + 𝜖𝑓

(1)
ℓ + 𝜖2

(︂
𝑓
(2)
ℓ + 𝑔

(1)
ℓ ln 𝑧 − 1

2
𝑗ℓ(ln 𝑧)

2

)︂
+ . . .

]︂
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+𝑖𝑧

[︂
𝜖(𝑔

(1)
ℓ − 𝑗ℓ ln 𝑧) + 𝜖2

(︂
𝑔
(2)
ℓ +

1

𝑧
𝑗ℓ − 𝑓

(1)
ℓ ln 𝑧

)︂
+ . . .

]︂
. (95)

Hence, we have

𝑔
(1)
ℓ = 𝑗ℓ ln 𝑧, 𝑔

(2)
ℓ = −1

𝑧
𝑗ℓ + 𝑓

(1)
ℓ ln 𝑧, . . . (96)

We thus have the post-Minkowski expansion of 𝑋ℓ as

𝑋ℓ =

∞∑︁
𝑛=0

𝜖𝑛𝑋
(𝑛)
ℓ , with 𝑋

(0)
ℓ = 𝑧 𝑗ℓ, 𝑋

(1)
ℓ = 𝑧𝑓

(1)
ℓ , 𝑋

(2)
ℓ = 𝑧

(︂
𝑓
(2)
ℓ +

1

2
𝑗ℓ (ln 𝑧)

2

)︂
, . . .

(97)

Now, let us consider the asymptotic behavior of 𝑋ℓ at 𝑧 ≪ 1. As we know that 𝜉
(1)
ℓ and 𝜉

(2)
ℓ

are regular at 𝑧 = 0, it is readily obtained by simply assuming Taylor expansion forms for them
(including possible ln 𝑧 terms), inserting them into Equation (84), and comparing the terms of the

same order on both sides of the equation. We denote the right-hand side of Equation (84) by 𝑆
(𝑛)
ℓ .

For 𝑛 = 1, we have

Re (𝑆
(1)
ℓ ) =

1

𝑧

(︂
𝑗′′ℓ +

1

𝑧
𝑗′ℓ −

4 + 𝑧2

𝑧2
𝑗ℓ

)︂
=

{︂
𝒪(𝑧) for ℓ = 2,

𝒪(𝑧ℓ−3) for ℓ ≥ 3.
(98)

Inserting this into Equation (84) with 𝑛 = 1, we find

Re (𝜉
(1)
ℓ ) = 𝑓

(1)
ℓ =

{︂
𝒪(𝑧3) for ℓ = 2,

𝒪(𝑧ℓ−1) for ℓ ≥ 3.
(99)

Of course, this behavior is consistent with the full post-Minkowski solution given in Equation (87).
For 𝑛 = 2, we then have

Re(𝑆
(2)
ℓ ) =

1

𝑧

(︂
𝑓
(1)
ℓ

′′ +
1

𝑧
𝑓
(1)
ℓ

′ − 4 + 𝑧2

𝑧2
𝑓
(1)
ℓ

)︂
− 1

𝑧

(︂
2𝑔

(1)
ℓ

′ +
1

𝑧
𝑔
(1)
ℓ

)︂
= −1

𝑧
(𝑗ℓ ln 𝑧)

′ − 1

𝑧2
𝑗ℓ ln 𝑧 +

{︂
𝒪(𝑧ℓ−2) for ℓ = 2, 3,

𝒪(𝑧ℓ−4) for ℓ ≥ 4.
(100)

This gives

Re(𝜉
(2)
ℓ ) = 𝑓

(2)
ℓ =

{︂
𝒪(𝑧ℓ) +𝒪(𝑧ℓ) ln 𝑧 − 1

2𝑗ℓ(ln 𝑧)
2 for ℓ = 2, 3,

𝒪(𝑧ℓ−2) +𝒪(𝑧ℓ) ln 𝑧 − 1
2𝑗ℓ(ln 𝑧)

2 for ℓ ≥ 4.
(101)

Note that the ln 𝑧 terms in Equation (100) arising from 𝑔
(1)
ℓ give the (ln 𝑧)2 term in 𝑓

(2)
ℓ that just

cancels the 𝑗ℓ(ln 𝑧)
2/2 term of 𝑋

(2)
ℓ in Equation (97).

Inserting Equations (99) and (101) into the relevant expressions in Equation (97), we find

𝑋2 = 𝑧3
{︀
𝒪(1) + 𝜖𝒪(𝑧) + 𝜖2 [𝒪(1) +𝒪(1) ln 𝑧] + . . .

}︀
,

𝑋3 = 𝑧3
{︀
𝒪(𝑧) + 𝜖𝒪(1) + 𝜖2 [𝒪(𝑧) +𝒪(𝑧) ln 𝑧] + . . .

}︀
,

𝑋ℓ = 𝑧3
{︀
𝒪(𝑧ℓ−2) + 𝜖𝒪(𝑧ℓ−3) + 𝜖2

[︀
𝒪(𝑧ℓ−4) +𝒪(𝑧ℓ−2) ln 𝑧

]︀
+ . . .

}︀
for ℓ ≥ 4.

(102)

Note that, for ℓ = 2 and 3, the leading behavior of 𝑋
(𝑛)
ℓ at 𝑛 = ℓ − 1 is more regular than the

naively expected behavior, ∼ 𝑧ℓ+1−𝑛, which propagates to the consecutive higher order terms in
𝜖. This behavior seems to hold for general ℓ, but we do not know a physical explanation for it.
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Given a post-Newtonian order to which we want to calculate, by setting 𝑧 = 𝒪(𝑣) and 𝜖 =

𝒪(𝑣3), the above asymptotic behaviors tell us the highest order of 𝑋
(𝑛)
ℓ we need. We also see the

presence of ln 𝑧 terms in 𝑋
(2)
ℓ . The logarithmic terms appear as a consequence of the mathematical

structure of the Regge–Wheeler equation at 𝑧 ≪ 1. The simple power series expansion of 𝑋
(𝑛)
ℓ in

terms of 𝑧 breaks down at 𝒪(𝜖2), and we have to add logarithmic terms to obtain the solution.
These logarithmic terms will give rise to ln 𝑣 terms in the wave-form and luminosity formulae at
infinity, beginning at 𝒪(𝑣6) [99, 100]. It is not easy to explain physically how these ln 𝑣 terms
appear. But the above analysis suggests that the ln 𝑣 terms in the luminosity originate from some
spatially local curvature effects in the near-zone.

Now we turn to the asymptotic behavior at 𝑧 = ∞. For this purpose, let the asymptotic form

of 𝑓
(𝑛)
ℓ be

𝑓
(𝑛)
ℓ → 𝑃

(𝑛)
ℓ 𝑗ℓ +𝑄

(𝑛)
ℓ 𝑛ℓ as 𝑧 → ∞. (103)

Noting Equation (97) and the equality 𝑒−𝑖𝜖 ln(𝑧−𝜖) = 𝑒−𝑖𝑧*
𝑒𝑖𝑧, the asymptotic form of 𝑋ℓ is ex-

pressed as

𝑋ℓ → 𝐴inc
ℓ 𝑒−𝑖(𝑧*−𝜖 ln 𝜖) +𝐴ref

ℓ 𝑒𝑖(𝑧
*−𝜖 ln 𝜖), (104)

𝐴inc
ℓ =

1

2
𝑖ℓ+1𝑒−𝑖𝜖 ln 𝜖

{︂
1 + 𝜖

[︁
𝑃

(1)
ℓ + 𝑖

(︁
𝑄

(1)
ℓ + ln 𝑧

)︁]︁
+ 𝜖2

[︁(︁
𝑃

(2)
ℓ −𝑄

(1)
ℓ ln 𝑧

}︁
+ 𝑖
(︁
𝑄

(2)
ℓ + 𝑃

(1)
ℓ ln 𝑧

)︁]︁
+ . . .

}︂
. (105)

Note that

𝜔𝑟* = 𝜔

(︂
𝑟 + 2𝑀 ln

𝑟 − 2𝑀

2𝑀

)︂
= 𝑧* − 𝜖 ln 𝜖, (106)

because of our definition of 𝑧*, 𝑧* = 𝑧 + 𝜖+ ln(𝑧 − 𝜖). The phase factor 𝑒−𝑖𝜖 ln 𝜖 of 𝐴inc
ℓ originates

from this definition, but it represents a physical phase shift due to wave propagation on the curved
background.

As one may immediately notice, the above expression for 𝐴inc
ℓ contains ln 𝑧-dependent terms.

Since 𝐴inc
ℓ should be constant, 𝑃

(𝑛)
ℓ and 𝑄

(𝑛)
ℓ should contain appropriate ln 𝑧-dependent terms

which exactly cancel the ln 𝑧-dependent terms in Equation (105). To be explicit, we must have

𝑃
(1)
ℓ = 𝑝

(1)
ℓ ,

𝑄
(1)
ℓ = 𝑞

(1)
ℓ − ln 𝑧,

𝑃
(2)
ℓ = 𝑝

(2)
ℓ + 𝑞

(1)
ℓ ln 𝑧 − (ln 𝑧)2,

𝑄
(2)
ℓ = 𝑞

(2)
ℓ − 𝑝

(1)
ℓ ln 𝑧,

(107)

where 𝑝
(𝑛)
ℓ and 𝑞

(𝑛)
ℓ are constants. These relations can be used to check the consistency of the

solution 𝑓 (𝑛) obtained by integration. In terms of 𝑝
(𝑛)
ℓ and 𝑞

(𝑛)
ℓ , 𝐴inc

ℓ is expressed as

𝐴inc
ℓ =

1

2
𝑖ℓ+1𝑒−𝑖𝜖 ln 𝜖

[︁
1 + 𝜖

(︁
𝑝
(1)
ℓ + 𝑖𝑞

(1)
ℓ

)︁
+ 𝜖2

(︁
𝑝
(2)
ℓ + 𝑖𝑞

(2)
ℓ

)︁
+ . . .

]︁
. (108)

Note that the above form of 𝐴inc
ℓ implies that the so-called tail of radiation, which is due to

the curvature scattering of waves, will contain ln 𝑣 terms as phase shifts in the waveform, but will
not give rise to such terms in the luminosity formula. This supports our previous argument on the
origin of the ln 𝑣 terms in the luminosity. That is, it is not due to the wave propagation effect but
due to some near-zone curvature effect.
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4 Analytic Solutions of the Homogeneous Teukolsky Equa-
tion by Means of the Series Expansion of Special Func-
tions

In this section, we review a method developed by Mano, Suzuki, and Takasugi [68], who found
analytic expressions of the solutions of the homogeneous Teukolsky equation. In this method, the
exact solutions of the radial Teukolsky equation (14) are expressed in two kinds of series expansions.
One is given by a series of hypergeometric functions and the other by a series of the Coulomb wave
functions. The former is convergent at horizon and the latter at infinity. The matching of these
two solutions is done exactly in the overlapping region of convergence. They also found that the
series expansions are naturally related to the low frequency expansion. Properties of the analytic
solutions were studied in detail in [69]. Thus, the formalism is quite powerful when dealing with
the post-Newtonian expansion, especially at higher orders.

In many cases, when we study the perturbation of a Kerr black hole, it is more convenient to
use the Sasaki–Nakamura equation, since it has the form of a standard wave equation, similar to
the Regge–Wheeler equation. However, it is not quite suited for investigating analytic properties
of the solution near the horizon. In contrast, the Mano–Suzuki–Takasugi (MST) formalism allows
us to investigate analytic properties of the solution near the horizon systematically. Hence, it can
be used to compute the higher order post-Newtonian terms of the gravitational waves absorbed
into a rotating black hole.

We also note that this method is the only existing method that can be used to calculate the
gravitational waves emitted to infinity to an arbitrarily high post-Newtonian order in principle.

4.1 Angular eigenvalue

The solutions of the angular equation (15) that reduce to the spin-weighted spherical harmonics in
the limit 𝑎𝜔 → 0 are called the spin-weighted spheroidal harmonics. They are the eigenfunctions
of Equation (15), with 𝜆 being the eigenvalues. The eigenvalues 𝜆 are necessary for discussions of
the radial Teukolsky equation. For general spin weight 𝑠, the spin weighted spheroidal harmonics
obey{︂

1

sin 𝜃

𝑑

𝑑𝜃

[︂
sin 𝜃

𝑑

𝑑𝜃

]︂
− 𝑎2𝜔2 sin2 𝜃 − (𝑚+ 𝑠 cos 𝜃)2

sin2 𝜃
− 2𝑎𝜔𝑠 cos 𝜃 + 𝑠+ 2𝑚𝑎𝜔 + 𝜆

}︂
𝑠𝑆ℓ𝑚 = 0.

(109)
In the post-Newtonian expansion, the parameter 𝑎𝜔 is assumed to be small. Then, it is straight-

forward to obtain a spheroidal harmonic 𝑠𝑆ℓ𝑚 of spin-weight 𝑠 and its eigenvalue 𝜆 perturbatively
by the standard method [86, 101, 94].

It is also possible to obtain the spheroidal harmonics by expansion in terms of the Jacobi
functions [35]. In this method, if we calculate numerically, we can obtain them and their eigenvalues
for an arbitrary value of 𝑎𝜔.

Here we only show an analytic formula for the eigenvalue 𝜆 accurate to 𝒪((𝑎𝜔)2), which is
needed for the calculation of the radial functions. It is given by

𝜆 = 𝜆0 + 𝑎𝜔𝜆1 + 𝑎2𝜔2𝜆2 +𝒪((𝑎𝜔)3), (110)

where
𝜆0 = ℓ(ℓ+ 1)− 𝑠(𝑠+ 1),

𝜆1 = −2𝑚
(︁
1 + 𝑠2

ℓ(ℓ+1)

)︁
,

𝜆2 = 𝐻(ℓ+ 1)−𝐻(ℓ),

(111)
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𝐻(ℓ) =
2(ℓ2 −𝑚2)(ℓ2 − 𝑠2)2

(2ℓ− 1)ℓ3(2ℓ+ 1)
. (112)

4.2 Horizon solution in series of hypergeometric functions

As in Section 3, we focus on the ingoing wave function of the radial Teukolsky equation (14). Since
the analysis below is applicable to any spin, |𝑠| = 0, 1/2, 1, 3/2, and 2, we do not specify it except
when it is needed. Also, the analysis is not restricted to the case 𝑎𝜔 ≪ 1 unless so stated explicitly.
For general spin weight 𝑠, the homogeneous Teukolsky equation is given by

Δ−𝑠 𝑑

𝑑𝑟

(︂
Δ𝑠+1 𝑑𝑅ℓ𝑚𝜔

𝑑𝑟

)︂
+

(︂
𝐾2 − 2𝑖𝑠(𝑟 −𝑀)𝐾

Δ
+ 4𝑖𝑠𝜔𝑟 − 𝜆

)︂
𝑅ℓ𝑚𝜔 = 0. (113)

As before, taking account of the symmetry �̄�ℓ𝑚𝜔 = 𝑅ℓ−𝑚−𝜔, we may assume 𝜖 = 2𝑀𝜔 > 0 if
necessary.

The Teukolsky equation has two regular singularities at 𝑟 = 𝑟±, and one irregular singularity
at 𝑟 = ∞. This implies that it cannot be represented in the form of a single hypergeometric
equation. However, if we focus on the solution near the horizon, it may be approximated by a
hypergeometric equation. This motivates us to consider the solution expressed in terms of a series
of hypergeometric functions.

We define the independent variable 𝑥 in place of 𝑧 (= 𝜔𝑟) as

𝑥 =
𝑧+ − 𝑧

𝜖𝜅
, (114)

where

𝑧± = 𝜔𝑟±, 𝜅 =
√︀

1− 𝑞2, 𝑞 =
𝑎

𝑀
. (115)

For later convenience, we also introduce 𝜏 = (𝜖−𝑚𝑞)/𝜅 and 𝜖± = (𝜖± 𝜏)/2. Taking into account
the structure of the singularities at 𝑟 = 𝑟±, we put the ingoing wave Teukolsky function 𝑅in

ℓ𝑚𝜔 as

𝑅in
ℓ𝑚𝜔 = 𝑒𝑖𝜖𝜅𝑥(−𝑥)−𝑠−𝑖(𝜖+𝜏)/2(1− 𝑥)𝑖(𝜖−𝜏)/2𝑝in(𝑥). (116)

Then the radial Teukolsky equation becomes

𝑥(1− 𝑥)𝑝in
′′ + [1− 𝑠− 𝑖𝜖− 𝑖𝜏 − (2− 2𝑖𝜏)𝑥]𝑝in

′ + [𝑖𝜏(1− 𝑖𝜏) + 𝜆+ 𝑠(𝑠+ 1)]𝑝in =

2𝑖𝜖𝜅[−𝑥(1− 𝑥)𝑝in
′ + (1− 𝑠+ 𝑖𝜖− 𝑖𝜏)𝑥𝑝in] + [𝜖2 − 𝑖𝜖𝜅(1− 2𝑠)]𝑝in, (117)

where a prime denotes 𝑑/𝑑𝑥. The left-hand side of Equation (117) is in the form of a hypergeometric
equation. In the limit 𝜖→ 0, noting Equation (110), we find that a solution that is finite at 𝑥 = 0
is given by

𝑝in(𝜖→ 0) = 𝐹 (−ℓ− 𝑖𝜏, ℓ+ 1− 𝑖𝜏, 1− 𝑠− 𝑖𝜏, 𝑥). (118)

For a general value of 𝜖, Equation (117) suggests that a solution may be expanded in a series of
hypergeometric functions with 𝜖 being a kind of expansion parameter. This idea was extensively
developed by Leaver [64]. Leaver obtained solutions of the Teukolsky equation expressed in a series
of the Coulomb wave functions. The MST formalism is an elegant reformulation of the one by
Leaver [64].

The essential point is to introduce the so-called renormalized angular momentum 𝜈, which is a
generalization of ℓ, to a non-integer value such that the Teukolsky equation admits a solution in a
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convergent series of hypergeometric functions. Namely, we add the term [𝜈(𝜈+1)−𝜆−𝑠(𝑠+1)] 𝑝in
to both sides of Equation (117) to rewrite it as

𝑥(1− 𝑥)𝑝in
′′ + [1− 𝑠− 𝑖𝜖− 𝑖𝜏 − (2− 2𝑖𝜏)𝑥]𝑝in

′ + [𝑖𝜏(1− 𝑖𝜏) + 𝜈(𝜈 + 1)]𝑝in =

2𝑖𝜖𝜅[−𝑥(1− 𝑥)𝑝in
′ + (1− 𝑠+ 𝑖𝜖− 𝑖𝜏)𝑥𝑝in]

+[𝜈(𝜈 + 1)− 𝜆− 𝑠(𝑠+ 1) + 𝜖2 − 𝑖𝜖𝜅(1− 2𝑠)]𝑝in. (119)

Of course, no modification is done to the original equation, and 𝜈 is just an irrelevant parameter
at this stage. A trick is to consider the right-hand side of the above equation as a perturbation,
and look for a formal solution specified by the index 𝜈 in a series expansion form. Then, only after
we obtain the formal solution, we require that the series should converge, and this requirement
determines the value of 𝜈. Note that, if we take the limit 𝜖→ 0, we must have 𝜈 → ℓ (or 𝜈 → −ℓ−1)
to assure [𝜈(𝜈 + 1)− 𝜆− 𝑠(𝑠+ 1)] → 0 and to recover the solution (118).

Let us denote the formal solution specified by a value of 𝜈 by 𝑝𝜈in. We express it in the series
form,

𝑝𝜈in =

∞∑︁
𝑛=−∞

𝑎𝑛 𝑝𝑛+𝜈(𝑥),

𝑝𝑛+𝜈(𝑥) = 𝐹 (𝑛+ 𝜈 + 1− 𝑖𝜏,−𝑛− 𝜈 − 𝑖𝜏 ; 1− 𝑠− 𝑖𝜖− 𝑖𝜏 ;𝑥).

(120)

Here, the hypergeometric functions 𝑝𝑛+𝜈(𝑥) satisfy the recurrence relations [68],

𝑥𝑝𝑛+𝜈 = − (𝑛+ 𝜈 + 1− 𝑠− 𝑖𝜖)(𝑛+ 𝜈 + 1− 𝑖𝜏)

2(𝑛+ 𝜈 + 1)(2𝑛+ 2𝜈 + 1)
𝑝𝑛+𝜈+1

+
1

2

[︂
1 +

𝑖𝜏(𝑠+ 𝑖𝜖)

(𝑛+ 𝜈)(𝑛+ 𝜈 + 1)

]︂
𝑝𝑛+𝜈

− (𝑛+ 𝜈 + 𝑠+ 𝑖𝜖)(𝑛+ 𝜈 + 𝑖𝜏)

2(𝑛+ 𝜈)(2𝑛+ 2𝜈 + 1)
𝑝𝑛+𝜈−1, (121)

𝑥(1− 𝑥)𝑝′𝑛+𝜈 =
(𝑛+ 𝜈 + 𝑖𝜏)(𝑛+ 𝜈 + 1− 𝑖𝜏)(𝑛+ 𝜈 + 1− 𝑠− 𝑖𝜖)

2(𝑛+ 𝜈 + 1)(2𝑛+ 2𝜈 + 1)
𝑝𝑛+𝜈+1

+
1

2
(𝑠+ 𝑖𝜖)

[︂
1 +

𝑖𝜏(1− 𝑖𝜏)

(𝑛+ 𝜈)(𝑛+ 𝜈 + 1)

]︂
𝑝𝑛+𝜈

− (𝑛+ 𝜈 + 1− 𝑖𝜏)(𝑛+ 𝜈 + 𝑖𝜏)(𝑛+ 𝜈 + 𝑠+ 𝑖𝜖)

2(𝑛+ 𝜈)(2𝑛+ 2𝜈 + 1)
𝑝𝑛+𝜈−1, (122)

Inserting the series (120) into Equation (119) and using the above recurrence relations, we obtain
a three-term recurrence relation among the expansion coefficients 𝑎𝑛. It is given by

𝛼𝜈
𝑛𝑎𝑛+1 + 𝛽𝜈

𝑛𝑎𝑛 + 𝛾𝜈𝑛𝑎𝑛−1 = 0, (123)

where

𝛼𝜈
𝑛 =

𝑖𝜖𝜅(𝑛+ 𝜈 + 1 + 𝑠+ 𝑖𝜖)(𝑛+ 𝜈 + 1 + 𝑠− 𝑖𝜖)(𝑛+ 𝜈 + 1 + 𝑖𝜏)

(𝑛+ 𝜈 + 1)(2𝑛+ 2𝜈 + 3)
,

𝛽𝜈
𝑛 = −𝜆− 𝑠(𝑠+ 1) + (𝑛+ 𝜈)(𝑛+ 𝜈 + 1) + 𝜖2 + 𝜖(𝜖−𝑚𝑞) +

𝜖(𝜖−𝑚𝑞)(𝑠2 + 𝜖2)

(𝑛+ 𝜈)(𝑛+ 𝜈 + 1)
,

𝛾𝜈𝑛 = − 𝑖𝜖𝜅(𝑛+ 𝜈 − 𝑠+ 𝑖𝜖)(𝑛+ 𝜈 − 𝑠− 𝑖𝜖)(𝑛+ 𝜈 − 𝑖𝜏)

(𝑛+ 𝜈)(2𝑛+ 2𝜈 − 1)
.

(124)

The convergence of the series (120) is determined by the asymptotic behaviors of the coefficients
𝑎𝜈𝑛 at 𝑛 → ±∞. We thus discuss properties of the three-term recurrence relation (123) and the
role of the parameter 𝜈 in detail.
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The general solution of the recurrence relation (123) is expressed in terms of two linearly

independent solutions {𝑓 (1)𝑛 } and {𝑓 (2)𝑛 } (𝑛 = ±1, ±2, . . .). According to the theory of three-term
recurrence relations (see [49], Page 31) when there exists a pair of solutions that satisfy

lim
𝑛→∞

𝑓
(1)
𝑛

𝑓
(2)
𝑛

= 0

(︃
lim

𝑛→−∞

𝑓
(1)
𝑛

𝑓
(2)
𝑛

= 0

)︃
, (125)

then the solution {𝑓 (1)𝑛 } is called minimal as 𝑛 → ∞ (𝑛 → −∞). Any non-minimal solution is
called dominant. The minimal solution (either as 𝑛 → ∞ or as 𝑛 → −∞) is determined uniquely
up to an overall normalization factor.

The three-term recurrence relation is closely related to continued fractions. We introduce

𝑅𝑛 ≡ 𝑎𝑛
𝑎𝑛−1

, 𝐿𝑛 ≡ 𝑎𝑛
𝑎𝑛+1

. (126)

We can express 𝑅𝑛 and 𝐿𝑛 in terms of continued fractions as

𝑅𝑛 = − 𝛾𝜈𝑛
𝛽𝜈
𝑛 + 𝛼𝜈

𝑛𝑅𝑛+1
= − 𝛾𝜈𝑛

𝛽𝜈
𝑛−

·
𝛼𝑛𝛾

𝜈
𝑛+1

𝛽𝜈
𝑛+1−

·
𝛼𝑛+1𝛾

𝜈
𝑛+2

𝛽𝜈
𝑛+2−

· . . . , (127)

𝐿𝑛 = − 𝛼𝜈
𝑛

𝛽𝜈
𝑛 + 𝛾𝜈𝑛𝐿𝑛−1

= − 𝛼𝜈
𝑛

𝛽𝜈
𝑛−

· 𝛼𝑛−1𝛾
𝜈
𝑛

𝛽𝜈
𝑛−1−

·
𝛼𝑛−2𝛾

𝜈
𝑛−1

𝛽𝜈
𝑛−2−

· . . . . (128)

These expressions for 𝑅𝑛 and 𝐿𝑛 are valid if the respective continued fractions converge. It is
proved (see [49], Page 31) that the continued fraction (127) converges if and only if the recurrence
relation (123) possesses a minimal solution as 𝑛→ ∞, and the same for the continued fraction (128)
as 𝑛→ −∞.

Analysis of the asymptotic behavior of (123) shows that, as long as 𝜈 is finite, there exists a
set of two independent solutions that behave as (see, e.g., [49], Page 35)

lim
𝑛→∞

𝑛
𝑎
(1)
𝑛

𝑎
(1)
𝑛−1

=
𝑖𝜖𝜅

2
, lim

𝑛→∞

𝑎
(2)
𝑛

𝑛𝑎
(2)
𝑛−1

=
2𝑖

𝜖𝜅
, (129)

and another set of two independent solutions that behave as

lim
𝑛→−∞

𝑛
𝑏
(1)
𝑛

𝑏
(1)
𝑛+1

= − 𝑖𝜖𝜅
2
, lim

𝑛→−∞

𝑏
(2)
𝑛

𝑛𝑏
(2)
𝑛+1

= − 2𝑖

𝜖𝜅
. (130)

Thus, {𝑎(1)𝑛 } is minimal as 𝑛→ ∞ and {𝑏(1)𝑛 } is minimal as 𝑛→ −∞.
Since the recurrence relation (123) possesses minimal solutions as 𝑛 → ±∞, the continued

fractions on the right-hand sides of Equations (127) and (128) converge for 𝑎𝑛 = 𝑎
(1)
𝑛 and 𝑎𝑛 = 𝑏

(1)
𝑛 .

In general, however, 𝑎
(1)
𝑛 and 𝑏

(1)
𝑛 do not coincide. Here, we use the freedom of 𝜈 to obtain a

consistent solution. Let {𝑓𝜈𝑛} be a sequence that is minimal for both 𝑛 → ±∞. We then have
expressions for 𝑓𝜈𝑛/𝑓

𝜈
𝑛−1 and 𝑓𝜈𝑛/𝑓

𝜈
𝑛+1 in terms of continued fractions as

�̃�𝑛 ≡ 𝑓𝑛
𝑓𝑛−1

= − 𝛾𝜈𝑛
𝛽𝜈
𝑛−

·
𝛼𝑛𝛾

𝜈
𝑛+1

𝛽𝜈
𝑛+1−

·
𝛼𝑛+1𝛾

𝜈
𝑛+2

𝛽𝜈
𝑛+2−

· . . . , (131)

�̃�𝑛 ≡ 𝑓𝑛
𝑓𝑛+1

= − 𝛼𝜈
𝑛

𝛽𝜈
𝑛−

· 𝛼𝑛−1𝛾
𝜈
𝑛

𝛽𝜈
𝑛−1−

·
𝛼𝑛−2𝛾

𝜈
𝑛−1

𝛽𝜈
𝑛−2−

· . . . . (132)

This implies
�̃�𝑛�̃�𝑛−1 = 1. (133)
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Thus, if we choose 𝜈 such that it satisfies the implicit equation for 𝜈, Equation (133), for a certain
𝑛, we obtain a unique minimal solution {𝑓𝜈𝑛} that is valid over the entire range of 𝑛, −∞ < 𝑛 <∞,
that is

lim
𝑛→∞

𝑛
𝑓𝜈𝑛
𝑓𝜈𝑛−1

=
𝑖𝜖𝜅

2
, lim

𝑛→−∞
𝑛

𝑓𝜈𝑛
𝑓𝜈𝑛+1

= − 𝑖𝜖𝜅
2
. (134)

Note that if Equation (133) for a certain value of 𝑛 is satisfied, it is automatically satisfied for any
other value of 𝑛.

The minimal solution is also important for the convergence of the series (120). For the minimal
solution {𝑓𝜈𝑛}, together with the properties of the hypergeometric functions 𝑝𝑛+𝜈 for large |𝑛|, we
find

lim
𝑛→∞

𝑛
𝑓𝜈𝑛+1𝑝𝑛+𝜈+1(𝑥)

𝑓𝜈𝑛𝑝𝑛+𝜈(𝑥)
= − lim

𝑛→−∞
𝑛
𝑓𝜈𝑛−1𝑝𝑛+𝜈−1(𝑥)

𝑓𝜈𝑛𝑝𝑛+𝜈(𝑥)
=
𝑖𝜖𝜅

2
[1− 2𝑥+ ((1− 2𝑥)2 − 1)1/2]. (135)

Thus, the series of hypergeometric functions (120) converges for all 𝑥 in the range 0 ≥ 𝑥 > −∞
(in fact, for all complex values of 𝑥 except at |𝑥| = ∞), provided that the coefficients are given by
the minimal solution.

Instead of Equation (133), we may consider an equivalent but practically more convenient form
of an equation that determines the value of 𝜈. Dividing Equation (123) by 𝑎𝑛, we find

𝛽𝜈
𝑛 + 𝛼𝜈

𝑛𝑅𝑛+1 + 𝛾𝜈𝑛𝐿𝑛−1 = 0, (136)

where 𝑅𝑛+1 and 𝐿𝑛+1 are those given by the continued fractions (131) and (132), respectively.
Although the value of 𝑛 in this equation is arbitrary, it is convenient to set 𝑛 = 0 to solve for 𝜈.

For later use, we need a series expression for 𝑅in with better convergence properties at large
|𝑥|. Using analytic properties of hypergeometric functions, we have

𝑅in = 𝑅𝜈
0 +𝑅−𝜈−1

0 , (137)

where

𝑅𝜈
0 = 𝑒𝑖𝜖𝜅𝑥(−𝑥)−𝑠−(𝑖/2)(𝜖+𝜏)(1− 𝑥)(𝑖/2)(𝜖+𝜏)+𝜈

×
∞∑︁

𝑛=−∞
𝑓𝜈𝑛

Γ(1− 𝑠− 𝑖𝜖− 𝑖𝜏) Γ(2𝑛+ 2𝜈 + 1)

Γ(𝑛+ 𝜈 + 1− 𝑖𝜏) Γ(𝑛+ 𝜈 + 1− 𝑠− 𝑖𝜖)

×(1− 𝑥)𝑛𝐹 (−𝑛− 𝜈 − 𝑖𝜏,−𝑛− 𝜈 − 𝑠− 𝑖𝜖;−2𝑛− 2𝜈;
1

1− 𝑥
). (138)

This expression explicitly exhibits the symmetry of 𝑅in under the interchange of 𝜈 and −𝜈 − 1.
This is a result of the fact that 𝜈(𝜈+1) is invariant under the interchange 𝜈 ↔ −𝜈−1. Accordingly,
the recurrence relation (123) has the structure that 𝑓−𝜈−1

−𝑛 satisfies the same recurrence relation
as 𝑓𝜈𝑛 .

Finally, we note that if 𝜈 is a solution of Equation (133) or (136), 𝜈 + 𝑘 with an arbitrary
integer 𝑘 is also a solution, since 𝜈 appears only in the combination of 𝑛+𝜈. Thus, Equation (133)
or (136) contains an infinite number of roots. However, not all of these can be used to express a
solution we want. As noted in the earlier part of this section, in order to reproduce the solution
in the limit 𝜖 → 0, Equation (118), we must have 𝜈 → ℓ (or 𝜈 → −ℓ− 1 by symmetry). Thus, we
impose a constraint on 𝜈 such that it must continuously approach ℓ as 𝜖→ 0.

4.3 Outer solution as a series of Coulomb wave functions

The solution as a series of hypergeometric functions discussed in Section 4.2 is convergent at any
finite value of 𝑟. However, it does not converge at infinity, and hence the asymptotic amplitudes,
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𝐵inc and 𝐵ref , cannot be determined from it. To determine the asymptotic amplitudes, it is
necessary to construct a solution that is valid at infinity and to match the two solutions in a region
where both solutions converge. The solution convergent at infinity was obtained by Leaver as a
series of Coulomb wave functions [64]. In this section, we review Leaver’s solution based on [69].

In this section again, by noting the symmetry �̄�ℓ𝑚𝜔 = 𝑅ℓ−𝑚−𝜔, we assume 𝜔 > 0 without loss
of generality.

First, we define a variable 𝑧 = 𝜔(𝑟 − 𝑟−) = 𝜖𝜅(1 − 𝑥). Let us denote a Teukolsky function by
𝑅C. We introduce a function 𝑓(𝑧) by

𝑅C = 𝑧−1−𝑠
(︁
1− 𝜖𝜅

𝑧

)︁−𝑠−𝑖(𝜖+𝜏)/2

𝑓(𝑧). (139)

Then the Teukolsky equation becomes

𝑧2𝑓 ′′ + [𝑧2 + (2𝜖+ 2𝑖𝑠)𝑧 − 𝜆− 𝑠(𝑠+ 1)]𝑓 = 𝜖𝜅𝑧(𝑓 ′′ + 𝑓) + 𝜖𝜅(𝑠− 1 + 2𝑖𝜖)𝑓 ′

− 𝜖

𝑧
[𝜅− 𝑖(𝜖−𝑚𝑞)](𝑠− 1 + 𝑖𝜖)𝑓

+[−2𝜖2 + 𝜖𝑚𝑞 + 𝜅(𝜖2 + 𝑖𝜖𝑠)]𝑓. (140)

We see that the right-hand side is explicitly of 𝒪(𝜖) and the left-hand side is in the form of the
Coulomb wave equation. Therefore, in the limit 𝜖→ 0, we obtain a solution

𝑓(𝑧) = 𝐹ℓ(−𝑖𝑠− 𝜖, 𝑧), (141)

where 𝐹𝐿(𝜂, 𝑧) is a Coulomb wave function given by

𝐹𝐿(𝜂, 𝑧) = 𝑒−𝑖𝑧2𝐿𝑧𝐿+1Γ(𝐿+ 1− 𝑖𝜂)

Γ(2𝐿+ 2)
Φ(𝐿+ 1− 𝑖𝜂, 2𝐿+ 2; 2𝑖𝑧), (142)

and Φ is the regular confluent hypergeometric function (see [1], Section 13) which is regular at
𝑧 = 0.

In the same spirit as in Section 4.2, we introduce the renormalized angular momentum 𝜈. That
is, we add [𝜆+ 𝑠(𝑠+ 1)− 𝜈(𝜈 + 1)]𝑓(𝑧) to both sides of Equation (140) to rewrite it as

𝑧2𝑓 ′′ + [𝑧2 + (2𝜖+ 2𝑖𝑠)𝑧 − 𝜈(𝜈 + 1)]𝑓 = 𝜖𝜅𝑧(𝑓 ′′ + 𝑓) + 𝜖𝜅(𝑠− 1 + 2𝑖𝜖+)𝑓
′

− 𝜖

𝑧
[𝜅− 𝑖(𝜖−𝑚𝑞)](𝑠− 1 + 𝑖𝜖)𝑓

+[−𝜈(𝜈 + 1) + 𝜆+ 𝑠(𝑠+ 1)− 2𝜖2 + 𝜖𝑚𝑞 + 𝜅(𝜖2 + 𝑖𝜖𝑠)]𝑓.

(143)

We denote the formal solution specified by the index 𝜈 by 𝑓𝜈(𝑧), and expand it in terms of the
Coulomb wave functions as

𝑓𝜈 =

∞∑︁
𝑛=−∞

(−𝑖)𝑛 (𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

𝑏𝑛 𝐹𝑛+𝜈(−𝑖𝑠− 𝜖, 𝑧), (144)

where (𝑎)𝑛 = Γ(𝑎+ 𝑛)/Γ(𝑎). Then, using the recurrence relations among 𝐹𝑛+𝜈 ,

1

𝑧
𝐹𝑛+𝜈 =

(𝑛+ 𝜈 + 1 + 𝑠− 𝑖𝜖)

(𝑛+ 𝜈 + 1)(2𝑛+ 2𝜈 + 1)
𝐹𝑛+𝜈+1

+
𝑖𝑠+ 𝜖

(𝑛+ 𝜈)(𝑛+ 𝜈 + 1)
𝐹𝑛+𝜈

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-6

http://www.livingreviews.org/lrr-2003-6


32 Misao Sasaki and Hideyuki Tagoshi

+
(𝑛+ 𝜈 − 𝑠+ 𝑖𝜖)

(𝑛+ 𝜈)(2𝑛+ 2𝜈 + 1)
𝐹𝑛+𝜈−1, (145)

𝐹 ′
𝑛+𝜈 = − (𝑛+ 𝜈)(𝑛+ 𝜈 + 1 + 𝑠− 𝑖𝜖)

(𝑛+ 𝜈 + 1)(2𝑛+ 2𝜈 + 1)
𝐹𝑛+𝜈+1

+
𝑖𝑠+ 𝜖

(𝑛+ 𝜈)(𝑛+ 𝜈 + 1)
𝐹𝑛+𝜈

+
(𝑛+ 𝜈 + 1)(𝑛+ 𝜈 − 𝑠+ 𝑖𝜖)

(𝑛+ 𝜈)(2𝑛+ 2𝜈 + 1)
𝐹𝑛+𝜈−1, (146)

we can derive the recurrence relation among 𝑏𝑛. The result turns out to be identical to the one
given by Equation (123) for 𝑎𝑛. We mention that the extra factor (𝜈+1+𝑠−𝑖𝜖)𝑛/(𝜈+1−𝑠+𝑖𝜖)𝑛 in
Equation (144) is introduced to make the recurrence relation exactly identical to Equation (123).

The fact that we have the same recurrence relation as Equation (123) implies that if we choose
the parameter 𝜈 in Equation (144) to be the same as the one given by a solution of Equation (133)
or (136), the sequence {𝑓𝜈𝑛} is also the solution for {𝑏𝑛}, which is minimal for both 𝑛→ ±∞. Let
us set

𝑔𝜈𝑛 = (−𝑖)𝑛 (𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

𝑓𝜈𝑛 . (147)

By choosing 𝜈 as stated above, we have the asymptotic value for the ratio of two successive terms
of 𝑔𝜈𝑛 as

lim
𝑛→∞

𝑛
𝑔𝜈𝑛
𝑔𝜈𝑛−1

= lim
𝑛→−∞

𝑛
𝑔𝜈𝑛
𝑔𝜈𝑛+1

=
𝜖𝜅

2
. (148)

Using an asymptotic property of the Coulomb wave functions, we have

lim
𝑛→∞

𝑔𝜈𝑛𝐹𝑛+𝜈(𝑧)

𝑔𝜈𝑛−1𝐹𝑛+𝜈−1(𝑧)
= lim

𝑛→−∞

𝑔𝜈𝑛𝐹𝑛+𝜈(𝑧)

𝑔𝜈𝑛−1𝐹𝑛+𝜈+1(𝑧)
=
𝜖𝜅

𝑧
. (149)

We thus find that the series (144) converges at 𝑧 > 𝜖𝜅 or equivalently 𝑟 > 𝑟+.

The fact that we can use the same 𝜈 as in the case of hypergeometric functions to obtain the
convergence of the series of the Coulomb wave functions is crucial to match the horizon and outer
solutions.

Here, we note an analytic property of the confluent hypergeometric function (see [34], Page 259),

Φ(𝑎, 𝑐;𝑥) =
Γ(𝑐)

Γ(𝑐− 𝑎)
𝑒𝑖𝑎𝜋Ψ(𝑎, 𝑐;𝑥) +

Γ(𝑐)

Γ(𝑎)
𝑒𝑖𝜋(𝑎−𝑐)𝑒𝑥Ψ(𝑐− 𝑎, 𝑐;−𝑥), (150)

where Ψ is the irregular confluent hypergeometric function, and Im(𝑥) > 0 is assumed. Using this
with the identities

𝑎 = 𝑛+ 𝜈 + 1− 𝑠+ 𝑖𝜖,

𝑐 = 2(𝑛+ 𝜈 + 1),

𝑥 = 2𝑖𝑧,

(151)

we can rewrite 𝑅𝜈
C (for 𝜔 > 0) as

𝑅𝜈
C = 𝑅𝜈

+ +𝑅𝜈
−, (152)
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where

𝑅𝜈
+ = 2𝜈𝑒−𝜋𝜖𝑒𝑖𝜋(𝜈+1−𝑠)Γ(𝜈 + 1− 𝑠+ 𝑖𝜖)

Γ(𝜈 + 1 + 𝑠− 𝑖𝜖)
𝑒−𝑖𝑧𝑧𝜈+𝑖𝜖+(𝑧 − 𝜖𝜅)−𝑠−𝑖𝜖+

×
∞∑︁

𝑛=−∞
𝑖𝑛𝑓𝜈𝑛(2𝑧)

𝑛Ψ(𝑛+ 𝜈 + 1− 𝑠+ 𝑖𝜖, 2𝑛+ 2𝜈 + 2; 2𝑖𝑧),

𝑅𝜈
− = 2𝜈𝑒−𝜋𝜖𝑒−𝑖𝜋(𝜈+1+𝑠)𝑒𝑖𝑧𝑧𝜈+𝑖𝜖+(𝑧 − 𝜖𝜅)−𝑠−𝑖𝜖+

×
∞∑︁

𝑛=−∞
𝑖𝑛

(𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

𝑓𝜈𝑛(2𝑧)
𝑛

×Ψ(𝑛+ 𝜈 + 1 + 𝑠− 𝑖𝜖, 2𝑛+ 2𝜈 + 2;−2𝑖𝑧).

(153)

By noting an asymptotic behavior of Ψ(𝑎, 𝑐;𝑥) at large |𝑥|,

Ψ(𝑎, 𝑐;𝑥) → 𝑥−𝑎 as |𝑥| → ∞, (154)

we find

𝑅𝜈
+ = 𝐴𝜈

+𝑧
−1𝑒−𝑖(𝑧+𝜖 ln 𝑧), (155)

𝑅𝜈
− = 𝐴𝜈

−𝑧
−1−2𝑠𝑒𝑖(𝑧+𝜖 ln 𝑧), (156)

where

𝐴𝜈
+ = 𝑒−(𝜋/2)𝜖𝑒(𝜋/2)𝑖(𝜈+1−𝑠)2−1+𝑠−𝑖𝜖Γ(𝜈 + 1− 𝑠+ 𝑖𝜖)

Γ(𝜈 + 1 + 𝑠− 𝑖𝜖)

+∞∑︁
𝑛=−∞

𝑓𝜈𝑛 , (157)

𝐴𝜈
− = 2−1−𝑠+𝑖𝜖𝑒−(𝜋/2)𝑖(𝜈+1+𝑠)𝑒−(𝜋/2)𝜖

+∞∑︁
𝑛=−∞

(−1)𝑛
(𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

𝑓𝜈𝑛 . (158)

We can see that the functions 𝑅𝜈
+ and 𝑅𝜈

− are incoming-wave and outgoing wave solutions at
infinity, respectively. In particular, we have the upgoing solution, defined for 𝑠 = −2 by the
asymptotic behavior (20), expressed in terms of a series of Coulomb wave functions as

𝑅up = 𝑅𝜈
−. (159)

4.4 Matching of horizon and outer solutions

Now, we match the two types of solutions 𝑅𝜈
0 and 𝑅𝜈

C. Note that both of them are convergent in a
very large region of 𝑟, namely for 𝜖𝜅 < 𝑧 <∞. We see that both solutions behave as 𝑧𝜈 multiplied
by a single-valued function of 𝑧 for large |𝑧|. Thus, the analytic properties of 𝑅𝜈

0 and 𝑅𝜈
C are the

same, which implies that these two are identical up to a constant multiple. Therefore, we set

𝑅𝜈
0 = 𝐾𝜈𝑅

𝜈
C. (160)

In the region 𝜖𝜅 < 𝑧 <∞, we may expand both solutions in powers of 𝑧 except for analytically
non-trivial factors. We have

𝑅𝜈
0 = 𝑒𝑖𝜖𝜅𝑒−𝑖𝑧(𝜖𝜅)−𝜈−𝑖𝜖+𝑧𝜈+𝑖𝜖+

(︂
𝑧

𝜖𝜅
− 1

)︂−𝑠−𝑖𝜖+ ∞∑︁
𝑛=−∞

∞∑︁
𝑗=0

𝐶𝑛,𝑗𝑧
𝑛−𝑗

= 𝑒𝑖𝜖𝜅𝑒−𝑖𝑧(𝜖𝜅)−𝜈−𝑖𝜖+𝑧𝜈+𝑖𝜖+

(︂
𝑧

𝜖𝜅
− 1

)︂−𝑠−𝑖𝜖+ ∞∑︁
𝑘=−∞

∞∑︁
𝑛=𝑘

𝐶𝑛,𝑛−𝑘𝑧
𝑘, (161)
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𝑅𝜈
C = 𝑒−𝑖𝑧2𝜈(𝜖𝜅)−𝑠−𝑖𝜖+𝑧𝜈+𝑖𝜖+

(︂
𝑧

𝜖𝜅
− 1

)︂−𝑠−𝑖𝜖+ ∞∑︁
𝑛=−∞

∞∑︁
𝑗=0

𝐷𝑛,𝑗𝑧
𝑛+𝑗

= 𝑒−𝑖𝑧2𝜈(𝜖𝜅)−𝑠−𝑖𝜖+𝑧𝜈+𝑖𝜖+

(︂
𝑧

𝜖𝜅
− 1

)︂−𝑠−𝑖𝜖+ ∞∑︁
𝑘=−∞

𝑘∑︁
𝑛=−∞

𝐷𝑛,𝑘−𝑛𝑧
𝑘, (162)

where

𝐶𝑛,𝑗 =
Γ(1− 𝑠− 2𝑖𝜖+) Γ(2𝑛+ 2𝜈 + 1)

Γ(𝑛+ 𝜈 + 1− 𝑖𝜏)Γ(𝑛+ 𝜈 + 1− 𝑠− 𝑖𝜖)

× (−𝑛− 𝜈 − 𝑖𝜏)𝑗(−𝑛− 𝜈 − 𝑠− 𝑖𝜖)𝑗
(−2𝑛− 2𝜈)𝑗(𝑗!)

(𝜖𝜅)−𝑛+𝑗𝑓𝑛, (163)

𝐷𝑛,𝑗 = (−1)𝑛(2𝑖)𝑛+𝑗 Γ(𝑛+ 𝜈 + 1− 𝑠+ 𝑖𝜖)

Γ(2𝑛+ 2𝜈 + 2)

(𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

× (𝑛+ 𝜈 + 1− 𝑠+ 𝑖𝜖)𝑗
(2𝑛+ 2𝜈 + 2)𝑗(𝑗!)

𝑓𝑛. (164)

Then, by comparing each integer power of 𝑧 in the summation, in the region 𝜖𝜅 ≪ 𝑧 < ∞, and
using the formula Γ(𝑧) Γ(1− 𝑧) = 𝜋/ sin𝜋𝑧, we find

𝐾𝜈 = 𝑒𝑖𝜖𝜅(𝜖𝜅)𝑠−𝜈2−𝜈

(︃
𝑟∑︁

𝑛=−∞
𝐷𝑛,𝑟−𝑛

)︃−1(︃ ∞∑︁
𝑛=𝑟

𝐶𝑛,𝑛−𝑟

)︃

=
𝑒𝑖𝜖𝜅(2𝜖𝜅)𝑠−𝜈−𝑟2−𝑠𝑖𝑟 Γ(1− 𝑠− 2𝑖𝜖+) Γ(𝑟 + 2𝜈 + 2)

Γ(𝑟 + 𝜈 + 1− 𝑠+ 𝑖𝜖) Γ(𝑟 + 𝜈 + 1 + 𝑖𝜏) Γ(𝑟 + 𝜈 + 1 + 𝑠+ 𝑖𝜖)

×

(︃ ∞∑︁
𝑛=𝑟

(−1)𝑛
Γ(𝑛+ 𝑟 + 2𝜈 + 1)

(𝑛− 𝑟)!

Γ(𝑛+ 𝜈 + 1 + 𝑠+ 𝑖𝜖)

Γ(𝑛+ 𝜈 + 1− 𝑠− 𝑖𝜖)

Γ(𝑛+ 𝜈 + 1 + 𝑖𝜏)

Γ(𝑛+ 𝜈 + 1− 𝑖𝜏)
𝑓𝜈𝑛

)︃

×

(︃
𝑟∑︁

𝑛=−∞

(−1)𝑛

(𝑟 − 𝑛)!(𝑟 + 2𝜈 + 2)𝑛

(𝜈 + 1 + 𝑠− 𝑖𝜖)𝑛
(𝜈 + 1− 𝑠+ 𝑖𝜖)𝑛

𝑓𝜈𝑛

)︃−1

, (165)

where 𝑟 can be any integer, and the factor 𝐾𝜈 should be independent of the choice of 𝑟. Although
this fact is not manifest from Equation (165), we can check it numerically, or analytically by
expanding it in terms of 𝜖.

We thus have two expressions for the ingoing wave function 𝑅in. One is given by Equation (116),
with 𝑝𝜈in expressed in terms of a series of hypergeometric functions as given by Equation (120) (a
series which converges everywhere except at 𝑟 = ∞). The other is expressed in terms of a series of
Coulomb wave functions given by

𝑅in = 𝐾𝜈𝑅
𝜈
C +𝐾−𝜈−1𝑅

−𝜈−1
C , (166)

which converges at 𝑟 > 𝑟+, including 𝑟 = ∞. Combining these two, we have a complete analytic
solution for the ingoing wave function.

Now we can obtain analytic expressions for the asymptotic amplitudes of 𝑅in, 𝐵trans, 𝐵inc, and
𝐵ref . By investigating the asymptotic behaviors of the solution at 𝑟 → ∞ and 𝑟 → 𝑟+, they are
found to be1

𝐵trans =
(︁𝜖𝜅
𝜔

)︁2𝑠
𝑒𝑖𝜅𝜖+(1+ 2 ln𝜅

1+𝜅 )
∞∑︁

𝑛=−∞
𝑓𝜈𝑛 , (167)

1 In the first version of this article, these asymptotic amplitudes contained errors in the phase. We thank
W. Throwe and S.A. Hughes for pointing out these errors.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2003-6

http://www.livingreviews.org/lrr-2003-6


Analytic Black Hole Perturbation Approach to Gravitational Radiation 35

𝐵inc = 𝜔−1

(︂
𝐾𝜈 − 𝑖𝑒−𝑖𝜋𝜈 sin𝜋(𝜈 − 𝑠+ 𝑖𝜖)

sin𝜋(𝜈 + 𝑠− 𝑖𝜖)
𝐾−𝜈−1

)︂
𝐴𝜈

+𝑒
−𝑖(𝜖 ln 𝜖− 1−𝜅

2 𝜖), (168)

𝐵ref = 𝜔−1−2𝑠
(︀
𝐾𝜈 + 𝑖𝑒𝑖𝜋𝜈𝐾−𝜈−1

)︀
𝐴𝜈

−𝑒
𝑖(𝜖 ln 𝜖− 1−𝜅

2 𝜖). (169)

Incidentally, since we have the upgoing solution in the outer region (159), it is straightforward
to obtain the asymptotic outgoing amplitude at infinity 𝐶trans from Equation (153). We find

𝐶trans = 𝜔−1−2𝑠𝐴𝜈
−𝑒

𝑖(𝜖 ln 𝜖− 1−𝜅
2 𝜖). (170)

4.5 Low frequency expansion of the hypergeometric expansion

So far, we have considered exact solutions of the Teukolsky equation. Now, let us consider their
low frequency approximations and determine the value of 𝜈. We solve Equation (136) with 𝑛 = 0,

𝛽𝜈
0 + 𝛼𝜈

0𝑅1 + 𝛾𝜈0𝐿−1 = 0, (171)

with a requirement that 𝜈 → ℓ as 𝜖→ 0.

To solve Equation (174), we first note the following. Unless the value of 𝜈 is such that the
denominator in the expression of 𝛼𝜈

𝑛 or 𝛾𝜈𝑛 happens to vanish, or 𝛽𝜈
𝑛 happens to vanish in the

limit 𝜖 → 0, we have 𝛼𝜈
𝑛 = 𝒪(𝜖), 𝛾𝜈𝑛 = 𝒪(𝜖), and 𝛽𝜈

𝑛 = 𝒪(1). Also, from the asymptotic behavior
of the minimal solution 𝑓𝜈𝑛 as 𝑛 → ±∞ given by Equation (134), we have 𝑅𝑛(𝜈) = 𝒪(𝜖) and
𝐿−𝑛(𝜈) = 𝒪(𝜖) for sufficiently large 𝑛. Thus, except for exceptional cases mentioned above, the
order of 𝑎𝜈𝑛 in 𝜖 increases as |𝑛| increases. That is, the series solution naturally gives the post-
Minkowski expansion.

First, let us consider the case of 𝑅𝑛(𝜈) for 𝑛 > 0. It is easily seen that 𝛼𝜈
𝑛 = 𝒪(𝜖), 𝛾𝜈𝑛 = 𝒪(𝜖),

and 𝛽𝜈
𝑛 = 𝒪(1) for all 𝑛 > 0. Therefore, we have 𝑅𝑛(𝜈) = 𝒪(𝜖) for all 𝑛 > 0.

On the other hand, for 𝑛 < 0, the order of 𝐿−𝑛(𝜈) behaves irregularly for certain values of 𝑛.
For the moment, let us assume that 𝐿−1(𝜈) = 𝒪(𝜖). We see from Equations (124) that 𝛼𝜈

0 = 𝒪(𝜖),
𝛾𝜈0 = 𝒪(𝜖), since 𝜈 = ℓ+𝒪(𝜖). Then, Equation (174) implies 𝛽𝜈

0 = 𝒪(𝜖2). Using the expansion of
𝜆 given by Equation (110), we then find 𝜈 = ℓ+𝒪(𝜖2) (i.e., there is no term of 𝒪(𝜖) in 𝜈). With
this estimate of 𝜈, we see from Equation (128) that 𝐿−1(𝜈) = 𝒪(𝜖) is justified if 𝐿−2(𝜈) is of order
unity or smaller.

The general behavior of the order of 𝐿−𝑛(𝜈) in 𝜖 for general values of 𝑠 is rather complicated.
However, if we assume 𝑠 to be a non-integer and ℓ ≥ |𝑠|, and 𝜏 = (𝜖−𝑚𝑞)/𝜅 = 𝒪(1), it is relatively
easily studied. With the assumption that 𝜈 = ℓ+𝒪(𝜖2), we find there are three exceptional cases:

∙ For 𝑛 = −2ℓ− 1, we have 𝛼𝑛 = 𝒪(𝜖), 𝛽 = 𝒪(𝜖2), and 𝛾𝑛 = 𝒪(𝜖).

∙ For 𝑛 = −ℓ− 1, we have 𝛼𝜈
𝑛 = 𝒪(1/𝜖), 𝛽𝜈

𝑛 = 𝒪(1/𝜖), and 𝛾𝑛 = 𝒪(𝜖).

∙ For 𝑛 = −ℓ, we have 𝛼𝑛 = 𝒪(𝜖), 𝛽𝑛 = 𝒪(1/𝜖), and 𝛾𝑛 = 𝒪(1/𝜖).

These imply that 𝐿−2ℓ−1(𝜈) = 𝒪(1/𝜖), 𝐿−ℓ−1(𝜈) = 𝒪(1), and 𝐿−ℓ(𝜈) = 𝒪(𝜖2), respectively. To
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summarize, we have

𝑅𝑛(𝜈) =
𝑓𝜈𝑛
𝑓𝜈𝑛−1

= 𝒪(𝜖) for all 𝑛 > 0,

𝐿−ℓ(𝜈) =
𝑓𝜈−ℓ

𝑓𝜈−ℓ+1

= 𝒪(𝜖2),

𝐿−ℓ−1(𝜈) =
𝑓𝜈−ℓ−1

𝑓𝜈−ℓ

= 𝒪(1),

𝐿−2ℓ−1(𝜈) =
𝑓𝜈−2ℓ−1

𝑓𝜈−2ℓ

= 𝒪(1/𝜖),

𝐿𝑛(𝜈) =
𝑓𝜈𝑛
𝑓𝜈𝑛+1

= 𝒪(𝜖) for all the other 𝑛 < 0.

(172)

With these results, we can calculate the value of 𝜈 to 𝒪(𝜖), which is given by

𝜈 = ℓ+
1

2ℓ+ 1

(︂
−2− 𝑠2

ℓ(ℓ+ 1)
+

[(ℓ+ 1)2 − 𝑠2]2

(2ℓ+ 1)(2ℓ+ 2)(2ℓ+ 3)
− (ℓ2 − 𝑠2)2

(2ℓ− 1)2ℓ(2ℓ+ 1)

)︂
𝜖2+𝒪(𝜖3). (173)

Now one can take the limit of an integer value of 𝑠. In particular, the above holds also for 𝑠 = 0.
Interestingly, 𝜈 is found to be independent of the azimuthal eigenvalue 𝑚 to 𝒪(𝜖2).

The post-Minkowski expansion of homogeneous Teukolsky functions can be obtained with ar-
bitrary accuracy by solving Equation (123) to a desired order, and by summing up the terms to
a sufficiently large |𝑛|. The first few terms of the coefficients 𝑓𝜈𝑛 are explicitly given in [68]. A
calculation up to a much higher order in 𝒪(𝜖) was performed in [98], in which the black hole
absorption of gravitational waves was calculated to 𝒪(𝑣8) beyond the lowest order.

4.6 Property of 𝜈

In this section, we discuss the property of the solution of Equation (136) which we recapitulate:

𝑔𝑛(𝜈) ≡ 𝛽𝜈
𝑛 + 𝛼𝜈

𝑛𝑅𝑛+1 + 𝛾𝜈𝑛𝐿𝑛−1 = 0. (174)

The numerical evaluation of this equation was not done very much before. Leaver [64] briefly
mentioned a numerical implementation of a code to obtain 𝜈 by solving Equation (174). In the
Schwarzschild case, Tagoshi and Nakamura [99] solved Equation (174) numerically to obtain 𝜈.
They evaluated the homogeneous solution numerically based on Leaver’s method [64] by using the
value of 𝜈 obtained numerically. Later, Fujita and Tagoshi [40] tried a numerical implementation
of the MST method. They found that, as 𝜔 becomes large, it becomes impossible to obtain a
solution of (174) if 𝜈 is restricted to a real number. In a subsequent paper [41], they found that
when the real solution ceases to exist, a complex solution appears. They also found that when 𝜈
is complex, the real part of 𝜈 is always either an integer or half-integer. As an example, we show
the value of 𝜈 as a function of 𝑀𝜔 in Table 1.

The fact that we only have an integer or half-integer as the real part of 𝜈 is strongly suggested
from the property of 𝑔𝑛(𝜈) [37]. Let us summarize the argument. We first convert 𝜈 to 𝑦 as
𝜈 = 𝑝/2 + 𝑖𝑦, where 𝑝 is an arbitrary integer and 𝑦 is an arbitrary complex number. We note that
for an arbitrary integer 𝑛,

(𝛽𝑝/2+𝑖𝑦
𝑛 )* = 𝛽

𝑝/2+𝑖𝑦*

−𝑛−𝑝−1,

(𝛼𝑝/2+𝑖𝑦
𝑛 𝛾

𝑝/2+𝑖𝑦
𝑛+1 )* = 𝛼

𝑝/2+𝑖𝑦*

−𝑛−𝑝−2𝛾
𝑝/2+𝑖𝑦*

−𝑛−𝑝−1, (175)
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where * denotes complex conjugation. From these relations, we find that if 𝜈 = 𝑝/2 + 𝑖𝑦 is a
solution of 𝑔𝑛(𝜈) = 0, we have

0 = (𝑔𝑛(𝑝/2 + 𝑖𝑦))* = 𝑔−𝑛−𝑝−1(𝑝/2 + 𝑖𝑦*) = 𝑔𝑛(𝑝/2− 𝑝− 2𝑛− 1 + 𝑖𝑦*), (176)

where we used the relation, 𝑔𝑛+1(𝜈) = 𝑔𝑛(𝜈+1). We see that in this case 𝜈′ = 𝑝/2−𝑝−2𝑛−1+𝑖𝑦*

is also an solution of 𝑔𝑛 = 0. As already discussed at the end of Section 4.2, when 𝜈 is a solution of
𝑔𝑛 = 0, 𝜈+𝑘 and −𝜈−1+𝑘 with an arbitrary integer 𝑘 are also solutions. We assume that there are
no other solutions. Although we do not have a formal proof of it, numerical investigations suggest
that this is so. Under this assumption, since both 𝜈 = 𝑝/2+ 𝑖𝑦 and 𝜈′ = 𝑝/2− 𝑝− 2𝑛− 1+ 𝑖𝑦* are
solutions of 𝑔𝑛 = 0, we have two possibilities about the property of 𝑦:

𝑖𝑦* = 𝑖𝑦, or 𝑖𝑦* = −𝑖𝑦. (177)

In the former case, 𝑦 is real. In this case, 𝜈 is complex with real part 𝑝/2 (integer or half-integer).
In the later case, 𝑦 is pure imaginary. In this case, 𝜈 is real.

It becomes possible to determine 𝜈 in the wide range of 𝜔 by allowing Im(𝜈) ̸= 0. The MST
formalism is now very useful in the fully numerical evaluation of homogeneous solutions of the
Teukolsky equation. As a first step, Fujita, Hikida and Tagoshi [38] considered generic bound
geodesic orbits around a Kerr black hole and evaluate the energy and angular momentum flux to
infinity as well as the rate of change of the Carter constant in a wide range of orbital parameters.

The critical value of 𝜔 when 𝜈 becomes complex is not very small. The complex 𝜈 does not
appear in the analytic evaluation of 𝜈 in the low frequency expansion in powers of 𝜖 = 2𝑀𝜔. Thus,
at the first glance, it seems impossible to express the complex 𝜈 in the power series expansion of 𝜖.
However, Hikida et al. [52] pointed out that it is possible to evaluate sin2(𝜋𝜈) very accurately in
terms of the power series expansion of 𝜖, even if 𝜔 is larger than a critical value and 𝜈 is complex.
Such an analytical expression of 𝜈 is very useful in the numerical root finding of Equation (174) as
well as in the analytical calculation of the homogeneous solutions.

Table 1: The value of 𝜈 for various value of 𝑀𝜔 in the case 𝑠 = −2, 𝑙 = 𝑚 = 2 and 𝑞 = 0.

𝑀𝜔 Re(𝜈) Im(𝜈)

0.1 1.9793154547208 0.0000000000000
0.2 1.9129832302687 0.0000000000000
0.3 1.7792805424199 0.0000000000000
0.4 1.5000000000000 0.1862468531447
0.5 1.5000000000000 0.3618806153941
0.6 1.7878302655744 0.0000000000000
0.7 2.0000000000000 0.8003377636925
0.8 2.0000000000000 1.1099466644118
0.9 2.0000000000000 1.3699138540831
1.0 2.0000000000000 1.6085538776570
2.0 2.0000000000000 3.6867890278893
3.0 2.0000000000000 5.5939000509184
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5 Gravitational Waves from a Particle Orbiting a Black
Hole

Based on the ingoing wave functions discussed in Section 3 and 4, we can derive the gravitational
wave energy and angular momentum flux emitted to infinity. The formula for the energy and the
angular momentum luminosity to infinity are given by Equations (48) and (49). Since most of the
calculations are very long, we show only the final results. In [71], some details of the calculations
are summarized. We define the post-Newtonian expansion parameter by 𝑥 ≡ (𝑀Ω𝜙)

1/3, where 𝑀
is the mass of the black hole and Ω𝜙 is the orbital angular frequency of the particle. Since the
parameter 𝑥 is directly related to the observable frequency, this result can be compared with the
results by another method easily.

5.1 Circular orbit around a Schwarzschild black hole

First, we present the gravitational wave luminosity for a particle in a circular orbit around a
Schwarzschild black hole [100, 105]. In this case, Ω𝜙 is given by Ω𝜙 = (𝑀/𝑟30)

1/2 ≡ Ωc, where 𝑟0
is the orbital radius, in standard Schwarzschild coordinates. The luminosity to 𝒪(𝑥11) is given by⟨

𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

×

[︃
1− 1247

336
𝑥2 + 4𝜋𝑥3 − 44711

9072
𝑥4 − 8191

672
𝜋𝑥5

+

(︂
6643739519

69854400
− 1712

105
𝛾 +

16

3
𝜋2 − 3424

105
ln 2− 1712

105
ln𝑥

)︂
𝑥6 − 16285

504
𝜋𝑥7

+

(︂
−323105549467

3178375200
+

232597

4410
𝛾 − 1369

126
𝜋2

+
39931

294
ln 2− 47385

1568
ln 3 +

232597

4410
ln𝑥

)︂
𝑥8

+

(︂
265978667519

745113600
𝜋 − 6848

105
𝜋𝛾 − 13696

105
𝜋 ln 2− 6848

105
𝜋 ln𝑥

)︂
𝑥9

+

(︂
−2500861660823683

2831932303200
+

916628467

7858620
𝛾 − 424223

6804
𝜋2

−83217611

1122660
ln 2 +

47385

196
ln 3 +

916628467

7858620
ln𝑥

)︂
𝑥10

+

(︂
8399309750401

101708006400
𝜋 +

177293

1176
𝜋𝛾

+
8521283

17640
𝜋 ln 2− 142155

784
𝜋 ln 3 +

177293

1176
𝜋 ln𝑥

)︂
𝑥11

]︃
, (178)

where (𝑑𝐸/𝑑𝑡)N is the Newtonian quadrupole luminosity given by(︂
𝑑𝐸

𝑑𝑡

)︂
N

=
32𝜇2𝑀3

5𝑟50
=

32

5

(︁ 𝜇
𝑀

)︁2
𝑥10. (179)

This is the 5.5PN formula beyond the lowest, Newtonian quadrupole formula. We can find that
our result agrees with the standard post-Newtonian results up to 𝒪(𝑥5) [13] in the limit 𝜇/𝑀 ≪ 1.
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5.2 Circular orbit on the equatorial plane around a Kerr black hole

Next, we consider a particle in a circular orbit on the equatorial plane around a Kerr black
hole [101]. In this case, the orbital angular frequency Ω𝜙 is given by

Ω𝜙 = Ωc

[︀
1− 𝑞𝑣3 + 𝑞2𝑣6 +𝒪(𝑣9)

]︀
, (180)

where Ωc is the orbital angular frequency of the circular orbit in the Schwarzschild case, 𝑣 =
(𝑀/𝑟0)

1/2, 𝑞 = 𝑎/𝑀 , and 𝑟0 is the orbital radius in the Boyer–Lindquist coordinate. The effect of
the angular momentum of the black hole is given by the corrections depending on the parameter
𝑞. Here, 𝑞 is arbitrary as long as |𝑞| < 1. The luminosity is given up to 𝒪(𝑥8) (4PN order) by⟨

𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

[︃
1 + (𝑞-independent terms)− 11

4
𝑞𝑥3 +

33

16
𝑞2𝑥4 − 59

16
𝑞𝑥5

+

(︂
−65

6
𝜋𝑞 +

611

504
𝑞2
)︂
𝑥6 +

(︂
162035

3888
𝑞 +

65

8
𝜋𝑞2 − 71

24
𝑞3
)︂
𝑥7

+

(︂
−359

14
𝜋𝑞 +

22667

4536
𝑞2 +

17

16
𝑞4
)︂
𝑥8

]︃
. (181)

5.3 Waveforms in the case of circular orbit

In the previous two subsections, we only considered the luminosity formulas for the energy and the
angular momentum. Here, focusing on circular orbits, we review the previous calculation of the
gravitational waveforms.

On the other hand, the gravitational waveforms have also been calculated. In the case of circular
orbit around a Schwarzschild black hole, Poisson [83] derived the 1.5PN waveform and Tagoshi and
Sasaki [100] derived the 4PN waveform. These were done by using the post-Newtonian expansion
of the Regge–Wheeler equation discussed in Section 3. Recently, Fujita and Iyer [39] derived
the 5.5PN waveform by using the MST formalism. They also discussed factorized re-summed
waveforms which is useful to obtain better agreement with accurate numerical data.

In the case of circular orbit around a Kerr black hole, Poisson [83] derived the 1.5PN waveform
under the assumption of slow rotation of the black hole. In [94] and [101], although the luminosity
was derived up to 2.5PN and 4PN order respectively, the waveform was not derived up to the
same order. Recently, Tagoshi and Fujita [97] computed the all multipolar modes 𝑍𝑙𝑚𝜔 necessary
to derive the waveform up to 4PN order, and the results were used to derive the factorized, re-
summed, multipolar waveform in [78].

From Equations (46) and (47), we have

ℎ+ − 𝑖ℎ× = −2

𝑟

∑︁
ℓ𝑚𝑛

𝑍ℓ𝑚𝜔𝑛

−2𝑆
𝑎𝜔𝑛

ℓ𝑚√
2𝜋

𝑒𝑖𝜔𝑛(𝑟
*−𝑡)+𝑖𝑚𝜙

≡
∑︁
ℓ𝑚

(ℎ+ℓ𝑚 − 𝑖ℎ×ℓ𝑚) (182)

Since the formulas for the waveform are very complicated, we only show the mode for ℓ = 𝑚 = 2
up to 4PN order in the Schwarzschild case. We define 𝜁+,×

ℓ,−𝑚 as [83]

ℎ+,×
ℓ𝑚 + ℎ+,×

ℓ,−𝑚 = −𝜇
𝑟
(𝑀Ω𝜙)

2/3𝜁+,×
ℓ,𝑚 . (183)
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𝜁+,×
2,2 are given as

𝜁+2,2 = (3 + cos(2 𝜃))

(︂
cos(2𝜓)− 107 𝑣2 cos(2𝜓)

42

+𝑣3
(︂
2𝜋 cos(2𝜓) +

(︂
−17

3
+ 4 ln 2

)︂
sin(2𝜓)

)︂
− 2173 𝑣4 cos(2𝜓)

1512

+𝑣5
(︂
−107𝜋 cos(2𝜓)

21
+

(︂
1819

126
− 214 ln 2

21

)︂
sin(2𝜓)

)︂
+𝑣6

(︂
cos(2𝜓)

(︂
49928027

1940400
− 856 𝛾

105
+

2𝜋2

3
+

668 ln 2

105
− 8 (ln 2)

2 − 856 ln 𝑣

105

)︂
+

(︂
−254𝜋

35
+ 8𝜋 ln 2

)︂
sin(2𝜓)

)︂
+𝑣7

(︂
−2173𝜋 cos(2𝜓)

756
+

(︂
36941

4536
− 2173 ln 2

378

)︂
sin(2𝜓)

)︂
+𝑣8

(︂
cos(2𝜓)

(︂
−326531600453

12713500800
+

45796 𝛾

2205
− 107𝜋2

63

−35738 ln 2

2205
+

428 (ln 2)
2

21
+

45796 ln 𝑣

2205

)︃
+

(︂
13589𝜋

735
− 428𝜋 ln 2

21

)︂
sin(2𝜓)

)︂)︂
, (184)

𝜁×2,2 = 4 cos(𝜃)

(︂
sin(2𝜓)− 107 𝑣2 sin(2𝜓)

42
+ 𝑣3

(︂
cos(2𝜓)

(︂
17

3
− 4 log(2)

)︂
+ 2𝜋 sin(2𝜓)

)︂
−2173 𝑣4 sin(2𝜓)

1512
+ 𝑣5

(︂
cos(2𝜓)

(︂
−1819

126
+

214 log(2)

21

)︂
− 107𝜋 sin(2𝜓)

21

)︂
+𝑣6

(︂
cos(2𝜓)

(︂
254𝜋

35
− 8𝜋 log(2)

)︂
+

(︂
49928027

1940400
− 856 𝛾

105
+

2𝜋2

3
+

668 log(2)

105
− 8 log(2)

2 − 856 log(𝑣)

105

)︂
sin(2𝜓)

)︂
+𝑣7

(︂
cos(2𝜓)

(︂
−36941

4536
+

2173 log(2)

378

)︂
− 2173𝜋 sin(2𝜓)

756

)︂
+𝑣8

(︂
cos(2𝜓)

(︂
−13589𝜋

735
+

428𝜋 log(2)

21

)︂
+

(︂
−326531600453

12713500800
+

45796 𝛾

2205

−107𝜋2

63
− 35738 log(2)

2205
+

428 log(2)
2

21
+

45796 log(𝑣)

2205

)︃
sin(2𝜓)

)︃)︃
, (185)

where

𝜓 = Ω(𝑡− 𝑟*)− 𝜙− 2𝑣3(𝛾 + 2 ln 2 + 3 ln 𝑣). (186)

Other modes are given in [100] up to 4PN order. (Note however the following errors which were
pointed out in [61, 17, 4, 5, 39]. The signs of 𝜁+ℓ𝑚 are opposite. The sign of 𝜁×7,3 is also opposite.

𝜁×8,7 and 𝜁+10,6 have errors and the corrected formulas are given in Equations (6.6) and (6.7) in [39].)
In the literature on the post-Newtonian approximation [17, 4, 5], the post-Newtonian waveforms

are express in terms of 𝐻
(𝑛/2)
+,× defined as

ℎ+,× =
2𝜇𝑥

𝑟

∑︁
𝑛

𝑥𝑛/2𝐻
(𝑛/2)
+,× , (187)

where 𝑥 ≡ (𝑀Ω𝜙)
2/3. The expression of 𝐻

(𝑛/2)
+,× up to 5.5PN order are given in [39].
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5.4 Slightly eccentric orbit around a Schwarzschild black hole

Next, we consider a particle in slightly eccentric orbit on the equatorial plane around a Schwarzschild
black hole (see [71], Section 7). We define 𝑟0 as the minimum of the radial potential 𝑅(𝑟)/𝑟4. We
also define an eccentricity parameter 𝑒 from the maximum radius of the orbit 𝑟max, which is given
by 𝑟max = 𝑟0(1 + 𝑒). These conditions are explicitly given by

𝜕(𝑅/𝑟4)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0, and 𝑅(𝑟0(1 + 𝑒)) = 0. (188)

We assume 𝑒≪ 1. In this case, Ω𝜙 is given to 𝒪(𝑒2) by

Ω𝜙 = Ωc

[︀
1− 𝑓(𝑣)𝑒2

]︀
, 𝑓(𝑣) =

3(1− 3𝑣2)(1− 8𝑣2)

2(1− 2𝑣2)(1− 6𝑣2)
, (189)

where Ωc = (𝑀/𝑟30)
1/2 is the orbital angular frequency in the circular orbit case. We now present

the energy and angular momentum luminosity, accurate to 𝒪(𝑒2) and to 𝒪(𝑥8) beyond Newtonian
order. They are given by⟨

𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

{︃
1 + (𝑒-independent terms)

+𝑒2

[︃
157

24
− 6781

168
𝑥2 +

2335

48
𝜋𝑥3 − 14929

189
𝑥4 − 773

3
𝜋𝑥5

+

(︂
156066596771

69854400
− 106144

315
𝛾 +

992

9
𝜋2 − 80464

315
ln 2

−234009

560
ln 3− 106144

315
ln𝑥

)︂
𝑥6 − 32443727

48384
𝜋𝑥7

+

(︂
−3045355111074427

671272842240
+

507208

245
𝛾 − 31271

63
𝜋2 − 151336

441
ln 2

+
12887991

3920
ln 3 +

507208

245
ln𝑥

)︂
𝑥8

]︃}︃
, (190)

and ⟨
𝑑𝐽𝑧
𝑑𝑡

⟩
=

(︂
𝑑𝐽

𝑑𝑡

)︂
N

{︃
1 + (𝑒-independent terms)

+𝑒2

[︃
23

8
− 3259

168
𝑥2 +

209

8
𝜋𝑥3 − 1041349

18144
𝑥4 − 785

6
𝜋𝑥5

+

(︂
91721955203

69854400
− 41623

210
𝛾 +

389

6
𝜋2 − 24503

210
ln 2

−78003

280
ln 3− 41623

210
ln𝑥

)︂
𝑥6 − 91565

168
𝜋𝑥7

+

(︂
−105114325363

72648576
+

696923

630
𝛾 − 4387

18
𝜋2 − 7051

10
ln 2

+
3986901

1960
ln 3 +

696923

630
ln𝑥

)︂
𝑥8

]︃}︃
, (191)
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where (𝑑𝐽/𝑑𝑡)N is the Newtonian angular momentum flux expressed in terms of 𝑥,(︂
𝑑𝐽𝑧
𝑑𝑡

)︂
N

=
32

5

(︁ 𝜇
𝑀

)︁2
𝑀𝑥7, (192)

and the 𝑒-independent terms in both ⟨𝑑𝐸/𝑑𝑡⟩ and ⟨𝑑𝐽/𝑑𝑡⟩ are the same and are given by the terms
in the case of circular orbit, Equation (178).

5.5 Slightly eccentric orbit around a Kerr black hole

Next, we consider a particle in a slightly eccentric orbit on the equatorial plane around a Kerr
black hole [95, 96]. We define the orbital radius 𝑟0 and the eccentricity in the same way as in the
Schwarzschild case by

𝜕(𝑅/𝑟4)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0, and 𝑅(𝑟0(1 + 𝑒)) = 0. (193)

We also assume 𝑒≪ 1. In this case, Ω𝜙 is given to 𝒪(𝑒2) by

Ω𝜙 = Ωc

[︂
1− 𝑞𝑣3 + 𝑒2

(︂
−3

2
+

9

2
𝑣2 − 9

2
𝑞𝑣3 + 3

(︀
6 + 𝑞2

)︀
𝑣4 − 60𝑞𝑣5

)︂
+𝒪(𝑣6)

]︂
. (194)

We now give the energy and angular momentum luminosity that are accurate to 𝒪(𝑒2) and to
𝒪(𝑥5) beyond Newtonian order:⟨

𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

{︃
1− 1247

336
𝑥2 −

(︂
11

4
𝑞 + 4𝜋

)︂
𝑥3 −

(︂
44711

9072
+

33

16
𝑞2
)︂
𝑥4 −

(︂
59

16
𝑞 − 8191

672
𝜋

)︂
𝑥5

+𝑒2

[︃
157

24
− 6781

168
𝑥2 +

(︂
−2009

72
𝑞 +

2335

48
𝜋

)︂
𝑥3 +

(︂
−14929

189
+

281

16
𝑞2
)︂
𝑥4

+

(︂
+
3223

168
𝑞 − 773

3
𝜋

)︂
𝑥5

]︃}︃
, (195)

⟨
𝑑𝐽𝑧
𝑑𝑡

⟩
=

(︂
𝑑𝐽𝑧
𝑑𝑡

)︂
N

{︃
1− 1247

336
𝑥2 +

(︂
−11

4
𝑞 + 4𝜋

)︂
𝑥3 +

(︂
−44711

9072
+

33

16
𝑞2
)︂
𝑥4 −

(︂
59

16
𝑞 +

8191

672
𝜋

)︂
𝑥5

+𝑒2

[︃
23

8
− 3259

168
𝑥2 +

(︂
−371

24
𝑞 +

209

8
𝜋

)︂
𝑥3

+

(︂
−1041349

18144
+

171

16
𝑞2 +

949

56
𝑞 − 785

6
𝜋

)︂
𝑥5

]︃}︃
. (196)

5.6 Circular orbit with a small inclination from the equatorial plane
around a Kerr black hole

Next, we consider a particle in a circular orbit with small inclination from the equatorial plane
around a Kerr black hole [94]. In this case, apart from the energy ℰ and 𝑧-component of the angular
momentum 𝑙𝑧, the particle motion has another constant of motion, the Carter constant 𝐶. The
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orbital plane of the particle precesses around the symmetry axis of the black hole, and the degree
of precession is determined by the value of the Carter constant. We introduce a dimensionless
parameter 𝑦 defined by

𝑦 =
𝐶

�̂�2𝑧 + 𝑎2(1− ℰ̂2)
. (197)

Given the Carter constant and the orbital radius 𝑟0, the energy and angular momentum is uniquely
determined by 𝑅(𝑟) = 0, and 𝜕𝑅(𝑟)/𝜕𝑟 = 0. By solving the geodesic equation with the assumption
𝑦 ≪ 1, we find that 𝑦1/2 is equal to the inclination angle from the equatorial plane. The angular
frequency Ω𝜙 is determined to 𝒪(𝑦) and 𝒪(𝑣4) as

Ω𝜙 = Ωc

[︂
1− 𝑞𝑣3 +

3

2
𝑦
(︀
𝑞𝑣3 − 𝑞2𝑣4

)︀
+𝒪(𝑣6)

]︂
. (198)

We now present the energy and the 𝑧-component angular flux to 𝒪(𝑣5):⟨
𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

[︂
1− 1247

336
𝑣2 +

(︂
4𝜋 − 73

12

(︁
1− 𝑦

2

)︁
𝑞

)︂
𝑣3 +

(︂
−44711

9072
+

33

16
𝑞2 − 527

96
𝑞2𝑦

)︂
𝑣4

+

(︂
−8191

672
𝜋 +

3749

336
𝑞
(︁
1− 𝑦

2

)︁)︂
𝑣5
]︂
. (199)

⟨
𝑑𝐽𝑧
𝑑𝑡

⟩
=

(︂
𝑑𝐽𝑧
𝑑𝑡

)︂
N

{︃(︁
1− 𝑦

2

)︁
− 1247

336

(︁
1− 𝑦

2

)︁
𝑣2 +

[︂
4𝜋
(︁
1− 𝑦

2

)︁
− 61

12

(︁
1− 𝑦

2

)︁
𝑞

]︂
𝑣3

+

[︂
−44711

9072

(︁
1− 𝑦

2

)︁
+

(︂
33

16
− 229

32
𝑦

)︂
𝑞2
]︂
𝑣4

+

[︂
−8191

672

(︁
1− 𝑦

2

)︁
𝜋 +

(︂
417

56
− 4301

224
𝑦

)︂
𝑞

]︂
𝑣5

}︃
. (200)

Using Equation (198), we can express 𝑣 in terms of 𝑥 = (𝑀Ω𝜙)
1/3 as

𝑣 = 𝑥

(︂
1 +

𝑞

3
𝑥3 +

1

2
𝑦
(︀
−𝑞𝑥3 + 𝑞2𝑥4

)︀)︂
. (201)

We then express Equations (199) and (200) in terms of 𝑥 as⟨
𝑑𝐸

𝑑𝑡

⟩
=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

{︃
1− 1247

336
𝑥2 +

(︂
4𝜋 − 11

4
𝑞 − 47

24
𝑞𝑦

)︂
𝑥3 +

[︂
−44711

9072
+

(︂
33

16
− 47

96
𝑦

)︂
𝑞2
]︂
𝑥4

+

[︂
−8191

672
𝜋 +

(︂
−59

16
+

11215

672
𝑦

)︂
𝑞

]︂
𝑥5

}︃
, (202)

⟨
𝑑𝐽𝑧
𝑑𝑡

⟩
=

(︂
𝑑𝐽𝑧
𝑑𝑡

)︂
N

{︃(︁
1− 𝑦

2

)︁
− 1247

336

(︁
1− 𝑦

2

)︁
𝑥2 +

[︂
4𝜋
(︁
1− 𝑦

2

)︁
−
(︂
7

2
𝑦 +

11

4

(︁
1− 𝑦

2

)︁)︂
𝑞

]︂
𝑥3

+

[︂
−44711

9072

(︁
1− 𝑦

2

)︁
+

(︂
33

16
− 117

32
𝑦

)︂
𝑞2
]︂
𝑥4

+

[︂
−8191

672

(︁
1− 𝑦

2

)︁
𝜋 +

(︂
−59

16
+

687

224
𝑦

)︂
𝑞

]︂
𝑥5

}︃
. (203)
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5.7 Absorption of gravitational waves by a black hole

In this section, we evaluate the energy absorption rate by a black hole. The energy flux formula is
given by [107](︂

𝑑𝐸hole

𝑑𝑡 𝑑Ω

)︂
=
∑︁
ℓ𝑚

∫︁
𝑑𝜔

2𝑆
2
ℓ𝑚

2𝜋

128𝜔𝑘(𝑘2 + 4𝜖2)(𝑘2 + 16𝜖2)(2𝑀𝑟+)
5

|𝐶|2
|𝑍H

ℓ𝑚𝜔|2, (204)

where 𝜖 = 𝜅/(4𝑟+), and

|𝐶|2 =
(︀
(𝜆+ 2)2 + 4𝑎𝜔𝑚− 4𝑎2𝜔2

)︀ (︀
𝜆2 + 36𝑎𝜔𝑚− 36𝑎2𝜔2

)︀
+(2𝜆+ 3)(96𝑎2𝜔2 − 48𝑎𝜔𝑚) + 144𝜔2(𝑀2 − 𝑎2). (205)

In calculating 𝑍H
ℓ𝑚𝜔, we need to evaluate the upgoing solution 𝑅up, and the asymptotic amplitude

of ingoing and upgoing solutions, 𝐵inc, 𝐵trans, and 𝐶trans in Equations (19) and (20). Evaluation
of the incident amplitude 𝐵trans of the ingoing solution is essential in the calculation. Poisson and
Sasaki [85] evaluated them, in the case of a circular orbit around the Schwarzschild black hole,
up to 𝒪(𝜖) beyond the lowest order, and obtained the energy flux at the lowest order, using the
method we have described in Section 3. Later, Tagoshi, Mano, and Takasugi [98] evaluated the
energy absorption rate in the Kerr case to 𝒪(𝑣8) beyond the lowest order using the method in
Section 4. Since the resulting formula is very long and complicated, we show it here only to 𝒪(𝑣3)
beyond the lowest order. The energy absorption rate is given by(︂

𝑑𝐸

𝑑𝑡

)︂
H

=
32

5

(︁ 𝜇
𝑀

)︁2
𝑥10𝑥5

[︃
−1

4
𝑞 − 3

4
𝑞3 +

(︂
−𝑞 − 33

16
𝑞3
)︂
𝑥2

+

(︂
2𝑞𝐵2 +

1

2
+

13

2
𝜅𝑞2 +

35

6
𝑞2 − 1

4
𝑞4 +

1

2
𝜅+ 3𝑞4𝜅+ 6𝑞3𝐵2

)︂
𝑥3

]︃
,

(206)

where

𝐵𝑛 =
1

2𝑖

[︃
𝜓(0)

(︃
3 +

𝑛𝑖𝑞√︀
1− 𝑞2

)︃
− 𝜓(0)

(︃
3− 𝑛𝑖𝑞√︀

1− 𝑞2

)︃]︃
, (207)

and 𝜓(𝑛)(𝑧) is the polygamma function. We see that the absorption effect begins at 𝒪(𝑣5) beyond
the quadrupole formula in the case 𝑞 ̸= 0. If we set 𝑞 = 0 in the above formula, we have(︂

𝑑𝐸

𝑑𝑡

)︂
H

=

(︂
𝑑𝐸

𝑑𝑡

)︂
N

(︀
𝑥8 +𝒪(𝑣10)

)︀
, (208)

which was obtained by Poisson and Sasaki [85].
We note that the leading terms in (𝑑𝐸/𝑑𝑡)H are negative for 𝑞 > 0, i.e., the black hole loses

energy if the particle is co-rotating. This is because of the superradiance for modes with 𝑘 < 0.

5.8 Adiabatic evolution of Carter constant for orbit with small eccen-
tricity and small inclination angle around a Kerr black hole

In the Schwarzschild case, the particle’s trajectory is characterized by the energy 𝐸 and the z-
component angular momentum 𝐿𝑧. In the adiabatic approximation, the rates of change of 𝐸 and
𝐿𝑧 are equated with those radiated to infinity as gravitational waves or with those absorbed into
the black hole horizon, in accordance with the conservation of 𝐸 and 𝐿𝑧. On the other hand, in
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the Kerr case, the Carter constant, 𝑄, is also necessary to specify the particle’s trajectory. In
this case, the rate of change of 𝑄 is not directly related to the asymptotic gravitational waves.
Mino [70] proposed a new method for evaluating the average rate of change of the Carter constant
by using the radiative field in the adiabatic approximation. He showed that the average rate of
change of the Carter constant as well as the energy and angular momentum can be obtained by
the radiative field of the metric perturbation. The radiative field is defined as half the retarded
field minus half the advanced field. Mino’s work gave a proof of an earlier work by Gal’tsov [46]
in which the radiative field is used to evaluate the average rate of change of the energy and the
angular momentum without proof. Inspired by this new development, it was demonstrated in [53]
and [31] that the time-averaged rates of change of the energy and the angular momentum can be
computed numerically for generic orbits. A first step toward explicit calculation of the rate of
change of the Carter constant was done in the case of a scalar charged particle in [30]. After that
a simpler formula for the average rate of change of the Carter constant was found in [90, 89]. This
new formula relates the rate of change of the Carter constant to the flux evaluated at infinity and
on the horizon. Based on the new formula, in [89], the rate of change of the Carter constant for
orbits with small eccentricities and inclinations is derived analytically up to 𝑂(𝑣5) by using the
MK method discussed in Section 4. In Ref. [48], the method was extended to the case of the orbits
with small eccentricity but arbitrary inclination angle.

First we show the results for the small inclination case [89]. We define the radius 𝑟0 and the
eccentricity 𝑒 as

𝑑𝑅

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑟0

= 0, and 𝑅(𝑟0(1 + 𝑒)) = 0. (209)

In Ref. [89], the parameter which expresses a small inclination from the equatorial plane is defined
as

𝑦′ = 𝐶/�̂�2𝑧 . (210)

Note that this definition of 𝑦′ is different from 𝑦 in Equation (197). By solving Equation (209)

with respect to 𝐸 and �̂�𝑧, we obtain

ℰ̂ = 1− 𝑣2

2
+

3𝑣4

8
− 𝑞𝑣5 − 𝑒2

(︂
𝑣2

2
− 𝑣4

4
+ 2𝑞𝑣5

)︂
+

1

2
𝑞𝑣5𝑦′ + 𝑞𝑣5𝑒2𝑦′, (211)

�̂�𝑧 = 𝑟0𝑣

[︂
1 +

3𝑣2

2
− 3𝑞𝑣3 +

27𝑣4

8
+ 𝑞2𝑣4 − 15𝑞𝑣5

2

+𝑒2
(︂
−1 +

3𝑣2

2
− 6𝑞𝑣3 +

81𝑣4

8
+

7𝑞2𝑣4

2
− 63𝑞𝑣5

2

)︂
+𝑦′

(︂
−1

2
− 3𝑣2

4
+ 3𝑞𝑣3 − 27𝑣4

16
− 3𝑞2𝑣4

2
+

15𝑞𝑣5

2

)︂
+𝑒2𝑦′

(︂
1

2
− 3𝑣2

4
+ 6𝑞𝑣3 − 81𝑣4

16
− 19𝑞2𝑣4

4
+

63𝑞𝑣5

2

)︂]︂
. (212)

By using Equations (4.9) and (4.12) in [89], we find the azimuthal angular frequency Ω𝜙 as

Ω𝜙 = Ω𝑐

[︂
1− 𝑞𝑣3 + 𝑒2

(︂
3

2
+

9𝑣2

2
− 21𝑞𝑣3

2
+ 18𝑣4 + 3𝑞2𝑣4 − 60𝑞𝑣5

)︂
+

(︂
3𝑞𝑣3

2
− 3𝑞2𝑣4

2

)︂
𝑦′ +

(︂
39𝑞𝑣3

4
− 51𝑞2𝑣4

4
+

75𝑞𝑣5

2

)︂
𝑒2𝑦′

]︂
, (213)

where 𝑣 = (𝑀/𝑟0)
1/2 and Ω𝑐 = (𝑀/𝑟30)

1/2. From the definition of 𝑥 ≡ (𝑀Ω𝜙)
1/3, the parameter
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𝑣 is expressed with 𝑥 as

𝑣 = 𝑥

[︂
1 +

𝑞𝑥3

3
+ 𝑒2

(︂
−1

2
− 3𝑥2

2
+

7𝑞𝑥3

3
− 6𝑥4 − 𝑞2𝑥4 +

31𝑞𝑥5

2

)︂
+

(︂
−𝑞𝑥

3

2
+
𝑞2𝑥4

2

)︂
𝑦′ + 𝑒2𝑦′

(︂
−3𝑞𝑥3

2
+

9𝑞2𝑥4

4
− 23𝑞𝑥5

4

)︂]︂
. (214)

By using the above formula, we can express 𝑦 defined in Equation (197) in terms of 𝑦′ above as

𝑦 =
𝐶

�̂�2𝑧 + 𝑎2(1− ℰ̂2)

=
�̂�2𝑧𝑦

′

�̂�2𝑧 + 𝑎2(1− ℰ̂2)
=
(︀
1− 𝑞2𝑥4 + 4𝑞2𝑥6

)︀
𝑦′ + 𝑒2

(︀
−𝑞2𝑥4 + 12𝑞2𝑥6

)︀
𝑦′ . (215)

The average rate of change of ℰ , 𝑙𝑧 and 𝑄 become⟨
𝑑ℰ
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑣10

×
[︂
1− 1247

336
𝑣2 −

(︂
73

12
𝑞 − 4𝜋

)︂
𝑣3

−
(︂
44711

9072
− 33

16
𝑞2
)︂
𝑣4 +

(︂
3749

336
𝑞 − 8191

672
𝜋

)︂
𝑣5

+

{︂
277

24
− 4001

84
𝑣2 +

(︂
3583

48
𝜋 − 457

4
𝑞

)︂
𝑣3

+

(︂
42𝑞2 − 1091291

9072

)︂
𝑣4 +

(︂
58487

672
𝑞 − 364337

1344
𝜋

)︂
𝑣5
}︂
𝑒2

+

(︂
73

24
𝑞𝑣3 − 527

96
𝑞2𝑣4 − 3749

672
𝑞𝑣5
)︂
𝑦′

+

(︂
457

8
𝑞𝑣3 − 5407

48
𝑞2𝑣4 − 58487

1344
𝑞𝑣5
)︂
𝑒2𝑦′

]︂
, (216)⟨

𝑑𝑙𝑧
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑀𝑣7

×
[︂
1− 1247

336
𝑣2 −

(︂
61

12
𝑞 − 4𝜋

)︂
𝑣3

−
(︂
44711

9072
− 33

16
𝑞2
)︂
𝑣4 +

(︂
417

56
𝑞 − 8191

672
𝜋

)︂
𝑣5

+

{︂
51

8
− 17203

672
𝑣2 +

(︂
− 781

12
𝑞 +

369

8
𝜋

)︂
𝑣3

+

(︂
929

32
𝑞2 − 1680185

18144

)︂
𝑣4 +

(︂
1809

224
𝑞 − 48373

336
𝜋

)︂
𝑣5
}︂
𝑒2

+

{︂
− 1

2
+

1247

672
𝑣2 +

(︂
61

8
𝑞 − 2𝜋

)︂
𝑣3

−
(︂
213

32
𝑞2 − 44711

18144

)︂
𝑣4 −

(︂
4301

224
𝑞 − 8191

1344
𝜋

)︂
𝑣5
}︂
𝑦′

+

{︂
− 51

16
+

17203

1344
𝑣2 +

(︂
1513

16
𝑞 − 369

16
𝜋

)︂
𝑣3

+

(︂
1680185

36288
− 5981

64
𝑞2
)︂
𝑣4 −

(︂
168𝑞 − 48373

672
𝜋

)︂
𝑣5
}︂
𝑒2𝑦′

]︂
, (217)
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⟨
𝑑𝑄

𝑑𝑡

⟩
= −64

5

(︁ 𝜇
𝑀

)︁3
𝑀3𝑣6

×
[︂
1− 𝑞𝑣 − 743

336
𝑣2 −

(︂
1637

336
𝑞 − 4𝜋

)︂
𝑣3

+

(︂
439

48
𝑞2 − 129193

18144
− 4𝜋𝑞

)︂
𝑣4 +

(︂
151765

18144
𝑞 − 4159

672
𝜋 − 33

16
𝑞3
)︂
𝑣5

+

{︂
43

8
− 51

8
𝑞𝑣 − 2425

224
𝑣2 −

(︂
14869

224
𝑞 − 337

8
𝜋

)︂
𝑣3

−
(︂
453601

4536
− 3631

32
𝑞2 +

369

8
𝜋𝑞

)︂
𝑣4

+

(︂
141049

9072
𝑞 − 38029

672
𝜋 − 929

32
𝑞3
)︂
𝑣5
}︂
𝑒2

+

{︂
1

2
𝑞𝑣 +

1637

672
𝑞𝑣3 −

(︂
1355

96
𝑞2 − 2𝜋𝑞

)︂
𝑣4

−
(︂
151765

36288
𝑞 − 213

32
𝑞3
)︂
𝑣5
}︂
𝑦′

+

{︂
51

16
𝑞𝑣 +

14869

448
𝑞𝑣3 +

(︂
369

16
𝜋𝑞 − 33257

192
𝑞2
)︂
𝑣4

+

(︂
− 141049

18144
𝑞 +

5981

64
𝑞3
)︂
𝑣5
}︂
𝑒2𝑦′

]︂
. (218)

The rate of change of 𝐶 becomes⟨
𝑑𝐶

𝑑𝑡

⟩
=

⟨
𝑑𝑄

𝑑𝑡

⟩
− 2(𝑎ℰ − 𝑙𝑧)

(︂
𝑎

⟨
𝑑ℰ
𝑑𝑡

⟩
−
⟨
𝑑𝑙𝑧
𝑑𝑡

⟩)︂
= −64

5

(︁ 𝜇
𝑀

)︁3
𝑀3𝑣6𝑦′

[︂
1− 743

336
𝑣2 −

(︂
85

8
𝑞 − 4𝜋

)︂
𝑣3

−
(︂
129193

18144
− 307

96
𝑞2
)︂
𝑣4 +

(︂
2553

224
𝑞 − 4159

672
𝜋

)︂
𝑣5

+

{︂
43

8
− 2425

224
𝑣2 +

(︂
337

8
𝜋 − 1793

16
𝑞

)︂
𝑣3

−
(︂
453601

4536
− 7849

192
𝑞2
)︂
𝑣4

+

(︂
3421

224
𝑞 − 38029

672
𝜋

)︂
𝑣5
}︂
𝑒2
]︂
. (219)

We can use Equation (214) to express these equations in terms of 𝑥. We obtain⟨
𝑑ℰ
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑥10
[︂
1− 1247𝑥2

336
+

(︂
4𝜋 − 11𝑞

4

)︂
𝑥3

+

(︂
−44711

9072
+

33𝑞2

16

)︂
𝑥4 +

(︂
−8191𝜋

672
− 59𝑞

16

)︂
𝑥5

+𝑒2
{︂
157

24
− 6781𝑥2

168
+

(︂
2335𝜋

48
− 2009𝑞

72

)︂
𝑥3

+

(︂
−14929

189
+

281𝑞2

16

)︂
𝑥4 +

(︂
−773𝜋

3
+

3223𝑞

168

)︂
𝑥5
}︂

+

(︂
−47𝑞𝑥3

24
− 47𝑞2𝑥4

96
+

11215𝑞𝑥5

672

)︂
𝑦′

+𝑒2𝑦′
(︂
−617𝑞𝑥3

48
− 1585𝑞2𝑥4

96
+

60187𝑞𝑥5

336

)︂]︂
, (220)
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⟨
𝑑𝑙𝑧
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑀𝑥7

[︂
1− 1247𝑥2

336
+

(︂
4𝜋 − 11𝑞

4

)︂
𝑥3

+

(︂
−44711

9072
+

33𝑞2

16

)︂
𝑥4 +

(︂
−8191𝜋

672
− 59𝑞

16

)︂
𝑥5

+𝑒2
{︂
23

8
− 3259𝑥2

168
+

(︂
209𝜋

8
− 371𝑞

24

)︂
𝑥3

+

(︂
−1041349

18144
+

171𝑞2

16

)︂
𝑥4 +

(︂
−785𝜋

6
+

949𝑞

56

)︂
𝑥5
}︂

+𝑒2𝑦′
{︂
− 23

16
+

3259𝑥2

336
+

(︂
−209𝜋

16
+

1057𝑞

48

)︂
𝑥3

+

(︂
1041349

36288
− 825𝑞2

32

)︂
𝑥4 +

(︂
785𝜋

12
− 925𝑞

14

)︂
𝑥5
}︂

+

{︂
− 1

2
+

1247𝑥2

672
+

(︂
−2𝜋 +

71𝑞

24

)︂
𝑥3

+

(︂
44711

18144
− 101𝑞2

32

)︂
𝑥4 +

(︂
8191𝜋

1344
+

687𝑞

224

)︂
𝑥5
}︂
𝑦′
]︂
, (221)

⟨
𝑑𝐶

𝑑𝑡

⟩
= −64

5

(︁ 𝜇
𝑀

)︁3
𝑀3𝑥6𝑦′

[︂
1− 743𝑥2

336
+

(︂
4𝜋 − 69𝑞

8

)︂
𝑥3

+

(︂
−129193

18144
+

307𝑞2

96

)︂
𝑥4 +

(︂
−4159𝜋

672
+

11089𝑞

2016

)︂
𝑥5

+𝑒2
{︂
19

8
− 7379𝑥2

672
+

(︂
193𝜋

8
− 89𝑞

2

)︂
𝑥3

+

(︂
−1340159

18144
+

1209𝑞2

64

)︂
𝑥4 +

(︂
−34295𝜋

448
+

502051𝑞

4032

)︂
𝑥5
}︂]︂

. (222)

We note that if we set 𝑦′ = 0, ⟨𝑑ℰ/𝑑𝑡⟩ and ⟨𝑑𝑙𝑧/𝑑𝑡⟩ agree, respectively, with the rate of emission of
the energy and the azimuthal angular momentum radiated to infinity, Equations (195) and (196)
in Section 5.5. We also note that by using the transformation from 𝑦 to 𝑦′, Equation (215), we
can directly show that Equations (202) and (203) in Section 5.6 agree respectively with ⟨𝑑ℰ/𝑑𝑡⟩
and ⟨𝑑𝑙𝑧/𝑑𝑡⟩ in Equations (220) and (221) with 𝑒 = 0.

5.9 Adiabatic evolution of constants of motion for orbits with generic
inclination angle and with small eccentricity around a Kerr black
hole

The calculation in Section 5.8 was extended to orbits with generic inclination angle by Ganz
et al. [48]. We specify the geodesics by the semi-latus rectum 𝑝 and the eccentricity 𝑒 and a
dimensionless inclination parameter 𝑦′. The outer and inner turning point of the radial motion is
here define as

𝑅(𝑝/(1− 𝑒)) = 0, 𝑅(𝑝/(1 + 𝑒)) = 0. (223)

The inclination parameter is defined by

𝑦′ = 𝐶/�̂�2𝑧 , (224)

which is the same as Equation (210). We define 𝑣 =
√︀
𝑀/𝑝. By solving these equations with

respect to ℰ̂ and �̂�𝑧, we obtain

ℰ̂ = 1− 1

2
𝑣2 +

3

8
𝑣4 − 𝑞𝑌 𝑣5 + 𝑒2

{︂
1

2
𝑣2 − 3

4
𝑣4 + 2𝑞𝑌 𝑣5

}︂
,
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�̂�𝑧
𝑝

= 𝑣𝑌 +
3𝑌

2
𝑣3 − 3𝑞𝑌 2𝑣4 +

(︂
𝑞2𝑌 3 +

27𝑌

8

)︂
𝑣5

+𝑒2
{︂
𝑌

2
𝑣3 − 𝑞𝑌 2𝑣4 +

(︂
𝑞2𝑌 3 +

9𝑌

4

)︂
𝑣5
}︂
, (225)

where

𝑌 ≡ 1√
1 + 𝑦′

=
�̂�𝑧

𝐶 + �̂�2𝑧
. (226)

The average rate of change of ℰ , 𝑙𝑧 and 𝐶 become up to 𝑂(𝑒2, 𝑣5),⟨
𝑑ℰ
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑣10(1− 𝑒2)3/2

[︂(︂
1 +

73

24
𝑒2
)︂
−
(︂
1247

336
+

9181

672
𝑒2
)︂
𝑣2

−
(︂
73𝑌

12
+

823𝑌

24
𝑒2
)︂
𝑞𝑣3 +

(︂
4 +

1375

48
𝑒2
)︂
𝜋𝑣3

−
(︂
44711

9072
+

172157

2592
𝑒2
)︂
𝑣4

−
(︂
329

96
− 527𝑌 2

96
+

{︂
4379

192
− 6533𝑌 2

192

}︂
𝑒2
)︂
𝑞2𝑣4

−
(︂
8191

672
+

44531

336
𝑒2
)︂
𝜋𝑣5 +

(︂
3749𝑌

336
+

1759𝑌

56
𝑒2
)︂
𝑞𝑣5
]︂
,⟨

𝑑𝑙𝑧
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑀𝑣7(1− 𝑒2)3/2

[︂(︂
𝑌 +

7𝑌

8
𝑒2
)︂
−
(︂
1247𝑌

336
+

425𝑌

336
𝑒2
)︂
𝑣2

+

(︂
61

24
− 61𝑌 2

8
+

{︂
63

8
− 91𝑌 2

4

}︂
𝑒2
)︂
𝑞𝑣3 +

(︂
4𝑌 +

97𝑌

8
𝑒2
)︂
𝜋𝑣3

−
(︂
44711𝑌

9072
+

302893𝑌

6048
𝑒2
)︂
𝑣4

−
(︂
57𝑌

16
− 45𝑌 3

8
+

{︂
201𝑌

16
− 37𝑌 3

2

}︂
𝑒2
)︂
𝑞2𝑣4

−
(︂
8191𝑌

672
+

48361𝑌

1344
𝑒2
)︂
𝜋𝑣5

−
(︂
2633

224
− 4301𝑌 2

224
+

{︂
66139

1344
− 18419𝑌 2

448

}︂
𝑒2
)︂
𝑞𝑣5
]︂
,⟨

𝑑𝒞
𝑑𝑡

⟩
= −64

5

(︁ 𝜇
𝑀

)︁3
𝑀3𝑣6(1− 𝑒2)3/2

(︀
1− 𝑌 2

)︀ [︂(︂
1 +

7

8
𝑒2
)︂

−
(︂
743

336
− 23

42
𝑒2
)︂
𝑣2 −

(︂
85𝑌

8
+

211𝑌

8
𝑒2
)︂
𝑞𝑣3

+

(︂
4 +

97

8
𝑒2
)︂
𝜋𝑣3 −

(︂
129193

18144
+

84035

1728
𝑒2
)︂
𝑣4

−
(︂
329

96
− 53𝑌 2

8
+

{︂
929

96
− 163𝑌 2

8

}︂
𝑒2
)︂
𝑞2𝑣4

+

(︂
2553𝑌

224
− 553𝑌

192
𝑒2
)︂
𝑞𝑣5 −

(︂
4159

672
+

21229

1344
𝑒2
)︂
𝜋𝑣5
]︂
. (227)

Here, a term (1 − 𝑒2)3/2 is factored out. We can express 𝑣 in terms of 𝑥 ≡ (𝑀Ω𝜙)
1/3 by using

Equation (3.15) in [48] as

𝑣 = 𝑥

[︂
1 + 𝑞𝑥3

(︂
−2

3
+ 𝑌

)︂
+ 𝑞2𝑥4

(︂
1

4
+
𝑌

2
− 3𝑌 2

4

)︂
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+𝑒2
(︂
1

2
− 𝑥2 + 𝑞𝑥3

(︂
−4

3
+ 3𝑌

)︂
+ 𝑥4

(︂
−3 + 𝑞2

(︂
5

8
+

5𝑌

4
− 19𝑌 2

8

)︂)︂
+𝑞𝑥5(3 + 3𝑌 )

)︀ ]︂
. (228)

The average rate of change of ℰ , 𝑙𝑧 and 𝐶 are rewritten as⟨
𝑑ℰ
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2 (︀
1− 𝑒2

)︀3/2
𝑥10
[︂
1 +

193𝑒2

24
+

(︂
−1247

336
− 30865𝑒2

672

)︂
𝑥2

+𝑥3
(︂
4𝜋 − 20𝑞

3
+

47𝑞𝑌

12
+ 𝑒2

(︂
2623𝜋

48
− 1145𝑞

18
+

379𝑞𝑌

12

)︂)︂
+𝑥4

(︂
−44711

9072
− 89𝑞2

96
+ 5𝑞2𝑌 − 193𝑞2𝑌 2

96

+𝑒2
(︂
−522439

6048
− 4165𝑞2

192
+

1205𝑞2𝑌

24
− 503𝑞2𝑌 2

64

)︂)︂
+𝑥5

(︂
−8191𝜋

672
+

1247𝑞

42
− 11215𝑞𝑌

336

+𝑒2
(︂
−370877𝜋

1344
+

17723𝑞

42
− 39199𝑞𝑌

96

)︂)︂]︂
. (229)

⟨
𝑑𝑙𝑧
𝑑𝑡

⟩
= −32

5

(︁ 𝜇
𝑀

)︁2
𝑀𝑥7

(︀
1− 𝑒2

)︀3/2 [︂
𝑌 +

35𝑒2𝑌

8
+ 𝑥2

(︂
−1247𝑌

336
− 16777𝑒2𝑌

672

)︂
+𝑥3

(︂
61𝑞

24
+ 4𝜋𝑌 − 14𝑞𝑌

3
− 5𝑞𝑌 2

8
+ 𝑒2

(︂
247𝑞
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+

257𝜋𝑌

8
− 329𝑞𝑌
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− 51𝑞𝑌 2

4

)︂)︂
+𝑥4

(︂
−44711𝑌

9072
− 29𝑞2𝑌

16
+

7𝑞2𝑌 2

2
+

3𝑞2𝑌 3

8

+𝑒2
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−83963𝑌

1296
− 21𝑞2𝑌 +

357𝑞2𝑌 2
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+

399𝑞2𝑌 3
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)︂)︂
+𝑥5

(︂
−2633𝑞

224
− 8191𝜋𝑌

672
+

1247𝑞𝑌

56
− 3181𝑞𝑌 2

224

+𝑒2
(︂
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448
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1344
+

10651𝑞𝑌

56
− 15065𝑞𝑌 2

448

)︂)︂]︂
. (230)

⟨
𝑑𝐶

𝑑𝑡

⟩
= −64

5

(︁ 𝜇
𝑀

)︁3
𝑀3𝑥6

(︀
1− 𝑒2

)︀3/2 (︀
1− 𝑌 2

)︀ [︂
1 +

31𝑒2

8
+

(︂
−743

336
− 1201𝑒2
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)︂
𝑥2

+𝑥3
(︂
4𝜋 − 4𝑞 − 37𝑞𝑌

8
+ 𝑒2

(︂
241𝜋

8
− 43𝑞

2
− 575𝑞𝑌

16

)︂)︂
+𝑥4

(︂
−129193

18144
− 185𝑞2

96
+ 3𝑞2𝑌 +

17𝑞2𝑌 2

8

+𝑒2
(︂
−438271

5184
− 18𝑞2 +

141𝑞2𝑌

8
+

385𝑞2𝑌 2

16

)︂)︂
+𝑥5

(︂
−4159𝜋

672
+

743𝑞

63
− 4229𝑞𝑌

672

+𝑒2
(︂
−19227𝜋

224
+

1799𝑞

18
+

3151𝑞𝑌

96

)︂)︂]︂
. (231)

If we assume that the inclination angle is small and 𝑌 = 1 − 𝑦′/2 + 𝑂(𝑦′2), we find that
Equations (229) – (231) reduce respectively to (220) – (222) in Section 5.8. As discussed in [48], in
the case of largely inclined orbits, the fundamental frequency of gravitational waves is expressed
not only with Ω𝜙 but also the frequency of 𝜃-ocillation, Ω𝜃.
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6 Conclusion

In this article, we described analytical approaches to calculate gravitational radiation from a parti-
cle of mass 𝜇 orbiting a black hole of mass𝑀 with𝑀 ≫ 𝜇, based upon the perturbation formalism
developed by Teukolsky. A review of this formalism was given in Section 2. The Teukolsky equa-
tion, which governs the gravitational perturbation of a black hole, is too complicated to be solved
analytically. Therefore, one has to adopt a certain approximation scheme. The scheme we em-
ployed is the post-Minkowski expansion, in which all the quantities are expanded in terms of a
parameter 𝜖 = 2𝑀𝜔 where 𝜔 is the Fourier frequency of the gravitational waves. For the source
term given by a particle in bound orbit, this naturally gives the post-Newtonian expansion.

In Section 3, we considered the case of a Schwarzschild background. For a Schwarzschild black
hole, one can transform the Teukolsky equation into the Regge–Wheeler equation. The advantage
of the Regge–Wheeler equation is that it reduces to the standard Klein–Gordon equation in the
flat-space limit, and hence it is easier to understand the post-Minkowskian or post-Newtonian
effects. Therefore, we adopted this method in the case of a Schwarzschild background. However,
the post-Minkowski expansion of the Regge–Wheeler equation is not quite systematic, and as one
goes to higher orders, the equations to be solved become increasingly complicated. Furthermore,
for a Kerr background, although one can perform a transformation similar to the Chandrasekhar
transformation, it can be done only at the expense of losing the reality of the equation. Thus, the
resulting equation is not quite suited for analytical treatments.

In Section 4, we described a different method, developed by Mano, Suzuki, and Takasugi [69, 68],
that directly deals with the Teukolsky equation, and we considered the case of a Kerr background
with this method. Although the method is mathematically rather complicated and it is hard to
obtain physical insights into relativistic effects, it has great advantage in that it allows a sys-
tematic post-Minkowski expansion of the Teukolsky equation, even on the Kerr background. We
gave a thorough review on how this method works and how it gives a systematic post-Minkowski
expansion.

Finally, in Section 5, we recapitulated the results of calculations of the gravitational waves for
various orbits that had been obtained by various authors using the methods described in Sections 3
and 4. These results are useful not only by themselves for the actual case of a compact star orbiting
a supermassive black hole, but also because they give us useful insights into higher order post-
Newtonian effects even for a system of equal-mass binaries.
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