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Abstract

Rotating relativistic stars have been studied extensively in recent years,
both theoretically and observationally, because of the information they
might yield about the equation of state of matter at extremely high den-
sities and because they are considered to be promising sources of gravi-
tational waves. The latest theoretical understanding of rotating stars in
relativity is reviewed in this updated article. The sections on the equilib-
rium properties and on the nonaxisymmetric instabilities in f -modes and
r-modes have been updated and several new sections have been added on
analytic solutions for the exterior spacetime, rotating stars in LMXBs,
rotating strange stars, and on rotating stars in numerical relativity.
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5 Rotating Stars in Relativity

1 Introduction

Rotating relativistic stars are of fundamental interest in physics. Their bulk
properties constrain the proposed equations of state for densities greater than
nuclear density. Accreted matter in their gravitational fields undergoes high-
frequency oscillations that could become a sensitive probe for general relativistic
effects. Temporal changes in the rotational period of millisecond pulsars can
also reveal a wealth of information about important physical processes inside
the stars or of cosmological relevance. In addition, rotational instabilities can
produce gravitational waves, the detection of which would initiate a new field
of observational asteroseismology of relativistic stars.

There exist several independent numerical codes for obtaining accurate mod-
els of rotating neutron stars in full general relativity, including one that is freely
available. One recent code achieves near machine accuracy even for uniform den-
sity models near the mass-shedding limit. The uncertainty in the high-density
equation of state still allows numerically constructed maximum mass models to
differ by as much as a factor of two in mass, radius and angular velocity, and a
factor of eight in the moment of inertia. Given these uncertainties, an absolute
upper limit on the rotation of relativistic stars can be obtained by imposing
causality as the only requirement on the equation of state. It then follows that
gravitationally bound stars cannot rotate faster than 0.28 ms.

In rotating stars, nonaxisymmetric perturbations have been studied in the
Newtonian and post-Newtonian approximations, in the slow rotation limit and
in the Cowling approximation, but fully relativistic quasi-normal modes (ex-
cept for neutral modes) have yet to be obtained. A new method for obtaining
such frequencies is the time evolution of the full set of nonlinear equations.
Frequencies of quasi-radial modes have already been obtained this way. Time
evolutions of the linearized equations have also improved our understanding of
the spectrum of axial and hybrid modes in relativistic stars.

Nonaxisymmetric instabilities in rotating stars can be driven by the emission
of gravitational waves (CFS instability) or by viscosity. Relativity strengthens
the former, but weakens the latter. Nascent neutron stars can be subject to
the l = 2 bar mode CFS instability, which would turn them into a strong
gravitational wave source.

Axial fluid modes in rotating stars (r-modes) have received considerable
attention since it was discovered that they are generically unstable to the emis-
sion of gravitational waves. The r-mode instability could slow down newly-born
relativistic stars and limit their spin during accretion-induced spin-up, which
would explain the absence of millisecond pulsars with rotational periods less
than ∼ 1.5 ms. Gravitational waves from the r-mode instability could become
detectable if the amplitude of r-modes is of order unity. Recent 3D simulations
show that this is possible on dynamical timescales, but nonlinear effects seem to
set a much smaller saturation amplitude on longer timescales. Still, if the signal
persists for a long time (as has been found to be the case for strange stars) even
a small amplitude could become detectable.

Recent advances in numerical relativity have enabled the long-term dynam-
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ical evolution of rotating stars. Several interesting phenomena, such as dynam-
ical instabilities, pulsation modes, and neutron star and black hole formation
in rotating collapse have now been studied in full general relativity. The cur-
rent studies are limited to relativistic polytropes, but new 3D simulations with
realistic equations of state should be expected in the near future.

The goal of this article is to present a summary of theoretical and numerical
methods that are used to describe the equilibrium properties of rotating rela-
tivistic stars, their oscillations and their dynamical evolution. It focuses on the
most recently available preprints, in order to rapidly communicate new meth-
ods and results. At the end of some sections, the reader is directed to papers
that could not be presented in detail here, or to other review articles. As new
developments in the field occur, updated versions of this article will appear.

Living Reviews in Relativity (2003-3)
http://relativity.livingreviews.org

http://relativity.livingreviews.org


7 Rotating Stars in Relativity

2 The Equilibrium Structure of Rotating Rela-
tivistic Stars

2.1 Assumptions

A relativistic star can have a complicated structure (such as a solid crust, mag-
netic field, possible superfluid interior, possible quark core, etc.). Still, its bulk
properties can be computed with reasonable accuracy by making several sim-
plifying assumptions.

The matter can be modeled to be a perfect fluid because observations of
pulsar glitches have shown that the departures from a perfect fluid equilibrium
(due to the presence of a solid crust) are of order 10−5 (see [112]). The tem-
perature of a cold neutron star does not affect its bulk properties and can be
assumed to be 0 K, because its thermal energy (� 1 MeV ∼ 1010 K) is much
smaller than Fermi energies of the interior (> 60 MeV). One can then use a
zero-temperature, barotropic equation of state (EOS) to describe the matter:

ε = ε(P ), (1)

where ε is the energy density and P is the pressure. At birth, a neutron star
is expected to be rotating differentially, but as the neutron star cools, several
mechanisms can act to enforce uniform rotation. Kinematical shear viscosity is
acting against differential rotation on a timescale that has been estimated to
be [101, 102, 78]

τ ∼ 18
(

ρ

1015 g cm−3

)−5/4(
T

109 K

)2(
R

106 cm

)
yr, (2)

where ρ, T and R are the central density, temperature, and radius of the
star. It has also been suggested that convective and turbulent motions may
enforce uniform rotation on a timescale of the order of days [153]. In recent
work, Shapiro [267] suggests that magnetic braking of differential rotation by
Alfvén waves could be the most effective damping mechanism, acting on short
timescales of the order of minutes.

Within roughly a year after its formation, the temperature of a neutron star
becomes less than 109 K and its outer core is expected to become superfluid
(see [227] and references therein). Rotation causes superfluid neutrons to form
an array of quantized vortices, with an intervortex spacing of

dn ∼ 3.4× 10−3Ω−1/2
2 cm, (3)

where Ω2 is the angular velocity of the star in 102 s−1. On scales much larger
than the intervortex spacing, e.g. on the order of 1 cm, the fluid motions can
be averaged and the rotation can be considered to be uniform [285]. With such
an assumption, the error in computing the metric is of order(

1 cm
R

)2

∼ 10−12, (4)
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assuming R ∼ 10 km to be a typical neutron star radius.
The above arguments show that the bulk properties of an isolated rotat-

ing relativistic star can be modeled accurately by a uniformly rotating, zero-
temperature perfect fluid. Effects of differential rotation and of finite tempera-
ture need only be considered during the first year (or less) after the formation
of a relativistic star.

2.2 Geometry of spacetime

In general relativity, the spacetime geometry of a rotating star in equilibrium
can be described by a stationary and axisymmetric metric gab of the form

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2µ(dr2 + r2dθ2), (5)

where ν, ψ, ω and µ are four metric functions that depend on the coordinates r
and θ only (see e.g. Bardeen and Wagoner [26]). Unless otherwise noted, we will
assume c = G = 1. In the exterior vacuum, it is possible to reduce the number
of metric functions to three, but as long as one is interested in describing the
whole spacetime (including the source-region of nonzero pressure), four different
metric functions are required. It is convenient to write eψ in the the form

eψ = r sin θBe−ν , (6)

where B is again a function of r and θ only [24].
One arrives at the above form of the metric assuming that i) the space-

time has a timelike Killing vector field ta and a second Killing vector field φa

corresponding to axial symmetry, ii) the spacetime is asymptotically flat, i.e.
tat

a = −1, φaφa = +∞ and taφa = 0 at spatial infinity. According to a theorem
by Carter [57], the two Killing vectors commute and one can choose coordinates
x0 = t and x3 = φ (where xa, a = 0, . . . , 3 are the coordinates of the spacetime),
such that ta and φa are coordinate vector fields. If, furthermore, the source of
the gravitational field satisfies the circularity condition (absence of meridional
convective currents), then another theorem [58] shows that the 2-surfaces or-
thogonal to ta and φa can be described by the remaining two coordinates x1

and x2. A common choice for x1 and x2 are quasi-isotropic coordinates, for
which grθ = 0 and gθθ = r2grr (in spherical polar coordinates), or g$z = 0 and
gzz = r2g$$ (in cylindrical coordinates). In the slow rotation formalism by
Hartle [143], a different form of the metric is used, requiring gθθ = gφφ/ sin2 θ.

The three metric functions ν, ψ and ω can be written as invariant combina-
tions of the two Killing vectors ta and φa, through the relations

tat
a = gtt, (7)

φaφ
a = gφφ, (8)

taφ
a = gtφ, (9)

while the fourth metric function µ determines the conformal factor e2µ that
characterizes the geometry of the orthogonal 2-surfaces.
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9 Rotating Stars in Relativity

There are two main effects that distinguish a rotating relativistic star from
its nonrotating counterpart: The shape of the star is flattened by centrifugal
forces (an effect that first appears at second order in the rotation rate), and the
local inertial frames are dragged by the rotation of the source of the gravitational
field. While the former effect is also present in the Newtonian limit, the latter
is a purely relativistic effect. The study of the dragging of inertial frames in the
spacetime of a rotating star is assisted by the introduction of the local Zero-
Angular-Momentum-Observers (ZAMO) [23, 24]. These are observers whose
worldlines are normal to the t = const. hypersurfaces, and they are also called
Eulerian observers. Then, the metric function ω is the angular velocity of the
local ZAMO with respect to an observer at rest at infinity. Also, e−ν is the time
dilation factor between the proper time of the local ZAMO and coordinate time
t (proper time at infinity) along a radial coordinate line. The metric function
ψ has a geometrical meaning: eψ is the proper circumferential radius of a circle
around the axis of symmetry. In the nonrotating limit, the metric (5) reduces
to the metric of a nonrotating relativistic star in isotropic coordinates (see [321]
for the definition of these coordinates).

In rapidly rotating models, an ergosphere can appear, where gtt > 0. In
this region, the rotational frame-dragging is strong enough to prohibit counter-
rotating time-like or null geodesics to exist, and particles can have negative
energy with respect to a stationary observer at infinity. Radiation fields (scalar,
electromagnetic, or gravitational) can become unstable in the ergosphere [108],
but the associated growth time is comparable to the age of the universe [68].

The asymptotic behaviour of the metric functions ν and ω is

ν ∼ −M
r

+
Q

r3
P2(cos θ),

ω ∼ 2J
r3
,

(10)

whereM , J andQ are the gravitational mass, angular momentum and quadrupole
moment of the source of the gravitational field (see Section 2.5 for definitions).
The asymptotic expansion of the dragging potential ω shows that it decays
rapidly far from the star, so that its effect will be significant mainly in the
vicinity of the star.

2.3 The rotating fluid

When sources of non-isotropic stresses (such as a magnetic field or a solid state
of parts of the star), viscous stresses, and heat transport are neglected in con-
structing an equilibrium model of a relativistic star, then the matter can be
modeled as a perfect fluid, described by the stress-energy tensor

T ab = (ε+ P )uaub + Pgab, (11)
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where ua is the fluid’s 4-velocity. In terms of the two Killing vectors ta and φa,
the 4-velocity can be written as

ua =
e−ν√
1− v2

(ta + Ωφa), (12)

where v is the 3-velocity of the fluid with respect to a local ZAMO, given by

v = (Ω− ω)eψ−ν , (13)

and Ω ≡ uφ/ut = dφ/dt is the angular velocity of the fluid in the coordinate
frame, which is equivalent to the angular velocity of the fluid as seen by an ob-
server at rest at infinity. Stationary configurations can be differentially rotating,
while uniform rotation (Ω = const.) is a special case (see Section 2.5).

2.4 Equations of structure

Having specified an equation of state of the form ε = ε(P ), the structure of the
star is determined by solving four components of Einstein’s gravitational field
equations

Rab = 8π
(
Tab −

1
2
gabT

)
, (14)

(where Rab is the Ricci tensor and T = Ta
a) and the equation of hydrostationary

equilibrium. Setting ζ = µ + ν, one common choice for the gravitational field
equations is [55]

∇ · (B∇ν) =
1
2
r2 sin2 θB3e−4ν∇ω · ∇ω (15)

+4πBe2ζ−2ν

[
(ε+ P )(1 + v2)

1− v2
+ 2P

]
, (16)

∇ · (r2 sin2 θB3e−4ν∇ω) = −16πr sin θB2e2ζ−4ν (ε+ P )v
1− v2

, (17)

∇ · (r sin θ∇B) = 16πr sin θBe2ζ−2νP, (18)

supplemented by a first order differential equation for ζ (see [55]). Above, ∇
is the 3-dimensional derivative operator in a flat 3-space with spherical polar
coordinates r, θ, φ.

Thus, three of the four gravitational field equations are elliptic, while the
fourth equation is a first order partial differential equation, relating only metric
functions. The remaining nonzero components of the gravitational field equa-
tions yield two more elliptic equations and one first order partial differential
equation, which are consistent with the above set of four equations.

The equation of hydrostationary equilibrium follows from the projection of
the conservation of the stress-energy tensor normal to the 4-velocity (δcb +
ucub)∇aT ab = 0, and is written as

P,i + (ε+ P )
[
ν,i +

1
1− v2

(
−vv,i +v2 Ω,i

Ω− ω

)]
= 0, (19)
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11 Rotating Stars in Relativity

where a comma denotes partial differentiation and i = 1, . . . , 3. When the
equation of state is barotropic then the hydrostationary equilibrium equation
has a first integral of motion∫ P

0

dP

ε+ P
− ln(ua∇at) +

∫ Ω

Ωc

F (Ω)dΩ = constant. = ν|pole, (20)

where F (Ω) = uφu
t is some specifiable function of Ω only, and Ωc is the angular

velocity on the symmetry axis. In the Newtonian limit, the assumption of a
barotropic equation of state implies that the differential rotation is necessarily
constant on cylinders, and the existence of the integral of motion (20) is a
direct consequence of the Poincaré–Wavre theorem (which implies that when
the rotation is constant on cylinders, the effective gravity can be derived from
a potential; see [302]).

2.5 Rotation law and equilibrium quantities

A special case of rotation law is uniform rotation (uniform angular velocity in
the coordinate frame), which minimizes the total mass-energy of a configuration
for a given baryon number and total angular momentum [49, 147]. In this case,
the term involving F (Ω) in (20) vanishes.

More generally, a simple choice of a differential-rotation law is

F (Ω) = A2(Ωc − Ω) =
(Ω− ω)r2 sin2 θ e2(β−ν)

1− (Ω− ω)2r2 sin2 θ e2(β−ν)
, (21)

where A is a constant [184, 185]. When A → ∞, the above rotation law re-
duces to the uniform rotation case. In the Newtonian limit and when A → 0,
the rotation law becomes a so-called j-constant rotation law (specific angular
momentum constant in space), which satisfies the Rayleigh criterion for local
dynamical stability against axisymmetric disturbances (j should not decrease
outwards, dj/dΩ < 0). The same criterion is also satisfied in the relativistic
case [185]. It should be noted that differentially rotating stars may also be
subject to a shear instability that tends to suppress differential rotation [335].

The above rotation law is a simple choice that has proven to be computa-
tionally convenient. More physically plausible choices must be obtained through
numerical simulations of the formation of relativistic stars.

Equilibrium quantities for rotating stars, such as gravitational mass, baryon
mass, or angular momentum, for example, can be obtained as integrals over the
source of the gravitational field. A list of the most important equilibrium quan-
tities that can be computed for axisymmetric models, along with the equations
that define them, is displayed in Table 1. There, ρ is the rest-mass density,
u = ε−ρc2 is the internal energy density, n̂a = ∇at/|∇bt∇bt|1/2 is the unit nor-
mal vector field to the t = const. spacelike hypersurfaces, and dV =

√
|3g| d3x

is the proper 3-volume element (with 3g being the determinant of the 3-metric).
It should be noted that the moment of inertia cannot be computed directly as
an integral quantity over the source of the gravitational field. In addition, there
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circumferential radius R = eψ

gravitational mass M =
∫

(Tab − 1
2gabT )tan̂bdV

baryon mass M0 =
∫
ρuan̂

adV

internal energy U =
∫
uuan̂

adV

proper mass Mp = M0 + U

gravitational binding energy W = M −Mp − T
angular momentum J =

∫
Tabφ

an̂bdV

moment of inertia I = J/Ω

kinetic energy T = 1
2JΩ

Table 1: Equilibrium properties.

exists no unique generalization of the Newtonian definition of the moment of
inertia in general relativity and I = J/Ω is a common choice.

2.6 Equations of state

2.6.1 Relativistic polytropes

An analytic equation of state that is commonly used to model relativistic stars
is the adiabatic, relativistic polytropic EOS of Tooper [312]:

P = KρΓ, (22)

ε = ρc2 +
P

Γ− 1
, (23)

where K and Γ are the polytropic constant and polytropic exponent, respec-
tively. Notice that the above definition is different from the form P = KεΓ

(also due to Tooper [311]) that has also been used as a generalization of the
Newtonian polytropic EOS. Instead of Γ, one often uses the polytropic index
N , defined through

Γ = 1 +
1
N
. (24)

For the above equation of state, the quantity c(Γ−2)/(Γ−1)
√
K1/(Γ−1)/G has

units of length. In gravitational units (c = G = 1), one can thus use KN/2 as a
fundamental length scale to define dimensionless quantities. Equilibrium models
are then characterized by the polytropic index N and their dimensionless central
energy density. Equilibrium properties can be scaled to different dimensional
values, using appropriate values for K. For N < 1.0 (N > 1.0) one obtains stiff
(soft) models, while for N ∼ 0.5 – 1.0, one obtains models with bulk properties
that are comparable to those of observed neutron star radii and masses.
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13 Rotating Stars in Relativity

Notice that for the above polytropic EOS, the polytropic index Γ coincides
with the adiabatic index of a relativistic isentropic fluid

Γ = Γad ≡
ε+ P

P

dP

dε
. (25)

This is not the case for the polytropic equation of state P = KεΓ, which satis-
fies (25) only in the Newtonian limit.

2.6.2 Hadronic equations of state

The true equation of state that describes the interior of compact stars is,
still, largely unknown. This comes as a consequence of our inability to ver-
ify experimentally the different theories that describe the strong interactions
between baryons and the many-body theories of dense matter, at densities
larger than about twice the nuclear density (i.e. at densities larger than about
5× 1014 g cm−3).

Many different so-called realistic EOSs have been proposed to date that all
produce neutron star models that satisfy the currently available observational
constraints. The two most accurate constraints are that the EOS must admit
nonrotating neutron stars with gravitational mass of at least 1.44M� and allow
rotational periods at least as small as 1.56 ms (see [243, 187]). Recently, the
first direct determination of the gravitational redshift of spectral lines produced
in the neutron star photosphere has been obtained [74]. This determination
(in the case of the low-mass X-ray binary EXO 0748-676) yielded a redshift of
z = 0.35 at the surface of the neutron star, corresponding to a mass to radius
ratio of M/R = 0.23 (in gravitational units), which is compatible with most
normal nuclear matter EOSs and incompatible with some exotic matter EOSs.

The theoretically proposed EOSs are qualitatively and quantitatively very
different from each other. Some are based on relativistic many-body theories
while others use nonrelativistic theories with baryon-baryon interaction poten-
tials. A classic collection of early proposed EOSs was compiled by Arnett and
Bowers [20], while recent EOSs are used in Salgado et al. [261] and in [84]. A
review of many modern EOSs can be found in a recent article by Haensel [138].
Detailed descriptions and tables of several modern EOSs, especially EOSs with
phase transitions, can be found in Glendenning’s book [125].

High density equations of state with pion condensation have been proposed
by Migdal [228] and Sawyer and Scalapino [264]. The possibility of kaon con-
densation is discussed by Brown and Bethe [51] (but see also Pandharipande et
al. [241]). Properties of rotating Skyrmion stars have been computed in [237].

The realistic EOSs are supplied in the form of an energy density vs. pressure
table and intermediate values are interpolated. This results in some loss of accu-
racy because the usual interpolation methods do not preserve thermodynamical
consistency. Swesty [301] devised a cubic Hermite interpolation scheme that
does preserve thermodynamical consistency and the scheme has been shown to
indeed produce higher accuracy neutron star models in Nozawa et al. [236].
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Usually, the interior of compact stars is modeled as a one-component ideal
fluid. When neutron stars cool below the superfluid transition temperature,
the part of the star that becomes superfluid can be described by a two-fluid
model and new effects arise. Andersson and Comer [9] have recently used such
a description in a detailed study of slowly rotating superfluid neutron stars in
general relativity, while the first rapidly rotating models are presented in [248].

2.6.3 Strange quark equations of state

Strange quark stars are likely to exist, if the ground state of matter at large
atomic number is in the form of a quark fluid, which would then be composed of
about equal numbers of up, down, and strange quarks together with electrons,
which give overall charge neutrality [38, 98]. The strangeness per unit baryon
number is ' −1. The first relativistic models of stars composed of quark mat-
ter were computed by Ipser, Kislinger, and Morley [157] and by Brecher and
Caporaso [50], while the first extensive study of strange quark star properties is
due to Witten [325].

The strange quark matter equation of state can be represented by the fol-
lowing linear relation between pressure and energy density:

P = a(ε− ε0), (26)

where ε0 is the energy density at the surface of a bare strange star (neglecting
a possible thin crust of normal matter). The MIT bag model of strange quark
matter involves three parameters, the bag constant, B = ε0/4, the mass of
the strange quark, ms, and the QCD coupling constant, αc. The constant a
in (26) is equal to 1/3 if one neglects the mass of the strange quark, while it
takes the value of a = 0.289 for ms = 250 MeV. When measured in units of
B60 = B/(60 MeV fm−3), the constant B is restricted to be in the range

0.9821 < B60 < 1.525, (27)

assuming ms = 0. The lower limit is set by the requirement of stability of
neutrons with respect to a spontaneous fusion into strangelets, while the upper
limit is determined by the energy per baryon of 56Fe at zero pressure (930.4
MeV). For other values of ms the above limits are modified somewhat.

A more recent attempt to describe deconfined strange quark matter is the
Dey et al. EOS [87], which has asymptotic freedom built in. It describes decon-
fined quarks at high densities and confinement at zero pressure. The Dey et al.
EOS can be approximated by a linear relation of the same form as the MIT bag
model strange star EOS (26). In such a linear approximation, typical values of
the constant a are 0.45–0.46 [128].

Going further A review of strange quark star properties can be found in [320].
Hybrid stars that have a mixed-phase region of quark and hadronic matter, have
also been proposed (see e.g. [125]). A study of the relaxation effect in dissipative
relativistic fluid theories is presented in [200].
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2.7 Numerical schemes

All available methods for solving the system of equations describing the equilib-
rium of rotating relativistic stars are numerical, as no analytical self-consistent
solution for both the interior and exterior spacetime has been found. The first
numerical solutions were obtained by Wilson [323] and by Bonazzola and Schnei-
der [48]. Here, we will review the following methods: Hartle’s slow rotation
formalism, the Newton–Raphson linearization scheme due to Butterworth and
Ipser [55], a scheme using Green’s functions by Komatsu et al. [184, 185], a min-
imal surface scheme due to Neugebauer and Herold [235], and spectral-method
schemes by Bonazzola et al. [47, 46] and by Ansorg et al. [19]. Below we give a
description of each method and its various implementations (codes).

2.7.1 Hartle

To order O(Ω2), the structure of a star changes only by quadrupole terms and
the equilibrium equations become a set of ordinary differential equations. Har-
tle’s [143, 148] method computes rotating stars in this slow rotation approxima-
tion, and a review of slowly rotating models has been compiled by Datta [82].
Weber et al. [317, 319] also implement Hartle’s formalism to explore the rota-
tional properties of four new EOSs.

Weber and Glendenning [318] improve on Hartle’s formalism in order to
obtain a more accurate estimate of the angular velocity at the mass-shedding
limit, but their models still show large discrepancies compared to corresponding
models computed without the slow rotation approximation [261]. Thus, Har-
tle’s formalism is appropriate for typical pulsar (and most millisecond pulsar)
rotational periods, but it is not the method of choice for computing models of
rapidly rotating relativistic stars near the mass-shedding limit.

2.7.2 Butterworth and Ipser (BI)

The BI scheme [55] solves the four field equations following a Newton–Raphson-
like linearization and iteration procedure. One starts with a nonrotating model
and increases the angular velocity in small steps, treating a new rotating model
as a linear perturbation of the previously computed rotating model. Each lin-
earized field equation is discretized and the resulting linear system is solved.
The four field equations and the hydrostationary equilibrium equation are solved
separately and iteratively until convergence is achieved.

Space is truncated at a finite distance from the star and the boundary con-
ditions there are imposed by expanding the metric potentials in powers of 1/r.
Angular derivatives are approximated by high-accuracy formulae and models
with density discontinuities are treated specially at the surface. An equilibrium
model is specified by fixing its rest mass and angular velocity.

The original BI code was used to construct uniform density models and
polytropic models [55, 54]. Friedman et al. [113, 114] (FIP) extend the BI code
to obtain a large number of rapidly rotating models based on a variety of realistic
EOSs. Lattimer et al. [196] used a code that was also based on the BI scheme
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to construct rotating stars using “exotic” and schematic EOSs, including pion
or kaon condensation and strange quark matter.

2.7.3 Komatsu, Eriguchi, and Hachisu (KEH)

In the KEH scheme [184, 185], the same set of field equations as in BI is used,
but the three elliptic-type field equations are converted into integral equations
using appropriate Green’s functions. The boundary conditions at large distance
from the star are thus incorporated into the integral equations, but the region
of integration is truncated at a finite distance from the star. The fourth field
equation is an ordinary first order differential equation. The field equations
and the equation of hydrostationary equilibrium are solved iteratively, fixing
the maximum energy density and the ratio of the polar radius to the equatorial
radius, until convergence is achieved. In [184, 185, 95] the original KEH code is
used to construct uniformly and differentially rotating stars for both polytropic
and realistic EOSs.

Cook, Shapiro, and Teukolsky (CST) improve on the KEH scheme by in-
troducing a new radial variable that maps the semi-infinite region [0,∞) to the
closed region [0, 1]. In this way, the region of integration is not truncated and
the model converges to a higher accuracy. Details of the code are presented
in [69] and polytropic and realistic models are computed in [71] and [70].

Stergioulas and Friedman (SF) implement their own KEH code following the
CST scheme. They improve on the accuracy of the code by a special treatment
of the second order radial derivative that appears in the source term of the first
order differential equation for one of the metric functions. This derivative was
introducing a numerical error of 1–2% in the bulk properties of the most rapidly
rotating stars computed in the original implementation of the KEH scheme. The
SF code is presented in [295] and in [293]. It is available as a public domain
code, named rns, and can be downloaded from [292].

2.7.4 Bonazzola et al. (BGSM)

In the BGSM scheme [47], the field equations are derived in the 3+1 formulation.
All four chosen equations that describe the gravitational field are of elliptic type.
This avoids the problem with the second order radial derivative in the source
term of the ODE used in BI and KEH. The equations are solved using a spectral
method, i.e. all functions are expanded in terms of trigonometric functions in
both the angular and radial directions and a Fast Fourier Transform (FFT) is
used to obtain coefficients. Outside the star a redefined radial variable is used,
which maps infinity to a finite distance.

In [261, 262] the code is used to construct a large number of models based
on recent EOSs. The accuracy of the computed models is estimated using
two general relativistic virial identities, valid for general asymptotically flat
spacetimes [132, 43] (see Section 2.7.7).

While the field equations used in the BI and KEH schemes assume a perfect
fluid, isotropic stress-energy tensor, the BGSM formulation makes no assump-
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tion about the isotropy of Tab. Thus, the BGSM code can compute stars with
a magnetic field, a solid crust, or a solid interior, and it can also be used to
construct rotating boson stars.

2.7.5 Lorene/rotstar

Bonazzola et al. [46] have improved the BGSM spectral method by allowing
for several domains of integration. One of the domain boundaries is chosen to
coincide with the surface of the star and a regularization procedure is introduced
for the divergent derivatives at the surface (that appear in the density field
when stiff equations of state are used). This allows models to be computed that
are nearly free of Gibbs phenomena at the surface. The same method is also
suitable for constructing quasi-stationary models of binary neutron stars. The
new method has been used in [133] for computing models of rapidly rotating
strange stars and it has also been used in 3D computations of the onset of the
viscosity-driven instability to bar-mode formation [129].

2.7.6 Ansorg et al. (AKM)

A new multi-domain spectral method has been introduced in [19, 18]. The
method can use several domains inside the star, one for each possible phase
transition. Surface-adapted coordinates are used and approximated by a two-
dimensional Chebyshev expansion. Requiring transition conditions to be satis-
fied at the boundary of each domain, the field and fluid equations are solved as
a free boundary value problem by a Newton–Raphson method, starting from an
initial guess. The field equations are simplified by using a corotating reference
frame. Applying this new method to the computation of rapidly rotating homo-
geneous relativistic stars, Ansorg et al. achieve near machine accuracy, except
for configurations at the mass-shedding limit (see Section 2.7.8)! The code has
been used in a systematic study of uniformly rotating homogeneous stars in
general relativity [265].

2.7.7 The virial identities

Equilibrium configurations in Newtonian gravity satisfy the well-known virial
relation

2T + 3(Γ− 1)U +W = 0. (28)

This can be used to check the accuracy of computed numerical solutions. In
general relativity, a different identity, valid for a stationary and axisymmetric
spacetime, was found in [40]. More recently, two relativistic virial identities,
valid for general asymptotically flat spacetimes, have been derived by Bonaz-
zola and Gourgoulhon [132, 43]. The 3-dimensional virial identity (GRV3) [132]
is the extension of the Newtonian virial identity (28) to general relativity. The
2-dimensional (GRV2) [43] virial identity is the generalization of the identity
found in [40] (for axisymmetric spacetimes) to general asymptotically flat space-
times. In [43], the Newtonian limit of GRV2, in axisymmetry, is also derived.
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Previously, such a Newtonian identity had only been known for spherical con-
figurations [59].

The two virial identities are an important tool for checking the accuracy of
numerical models and have been repeatedly used by several authors [47, 261,
262, 236, 19].

2.7.8 Direct comparison of numerical codes

The accuracy of the above numerical codes can be estimated, if one constructs
exactly the same models with different codes and compares them directly. The
first such comparison of rapidly rotating models constructed with the FIP and
SF codes is presented by Stergioulas and Friedman in [295]. Rapidly rotating
models constructed with several EOSs agree to 0.1–1.2% in the masses and
radii and to better than 2% in any other quantity that was compared (angular
velocity and momentum, central values of metric functions, etc.). This is a very
satisfactory agreement, considering that the BI code was using relatively few grid
points, due to limitations of computing power at the time of its implementation.

In [295], it is also shown that a large discrepancy between certain rapidly
rotating models (constructed with the FIP and KEH codes) that was reported
by Eriguchi et al. [95], resulted from the fact that Eriguchi et al. and FIP used
different versions of a tabulated EOS.

Nozawa et al. [236] have completed an extensive direct comparison of the
BGSM, SF, and the original KEH codes, using a large number of models and
equations of state. More than twenty different quantities for each model are
compared and the relative differences range from 10−3 to 10−4 or better, for
smooth equations of state. The agreement is also excellent for soft polytropes.
These checks show that all three codes are correct and successfully compute the
desired models to an accuracy that depends on the number of grid points used
to represent the spacetime.

If one makes the extreme assumption of uniform density, the agreement is
at the level of 10−2. In the BGSM code this is due to the fact that the spectral
expansion in terms of trigonometric functions cannot accurately represent func-
tions with discontinuous first order derivatives at the surface of the star. In the
KEH and SF codes, the three-point finite-difference formulae cannot accurately
represent derivatives across the discontinuous surface of the star.

The accuracy of the three codes is also estimated by the use of the two virial
identities. Overall, the BGSM and SF codes show a better and more consistent
agreement than the KEH code with BGSM or SF. This is largely due to the
fact that the KEH code does not integrate over the whole spacetime but within
a finite region around the star, which introduces some error in the computed
models.

A new direct comparison of different codes is presented by Ansorg et al. [19].
Their multi-domain spectral code is compared to the BGSM, KEH, and SF codes
for a particular uniform density model of a rapidly rotating relativistic star. An
extension of the detailed comparison in [19], which includes results obtained
by the Lorene/rotstar code in [129] and by the SF code with higher resolution
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than the resolution used in [236], is shown in Table 2. The comparison confirms
that the virial identity GRV3 is a good indicator for the accuracy of each code.
For the particular model in Table 2, the AKM code achieves nearly double-
precision accuracy, while the Lorene/rotstar code has a typical relative accuracy
of 2 × 10−4 to 7 × 10−6 in various quantities. The SF code at high resolution
comes close to the accuracy of the Lorene/rotstar code for this model. Lower
accuracies are obtained with the SF, BGSM, and KEH codes at the resolutions
used in [236].

The AKM code converges to machine accuracy when a large number of
about 24 expansion coefficients are used at a high computational cost. With
significantly fewer expansion coefficients (and comparable computational cost
to the SF code at high resolution) the achieved accuracy is comparable to the
accuracy of the Lorene/rotstar and SF codes. Moreover, at the mass-shedding
limit, the accuracy of the AKM code reduces to about 5 digits (which is still
highly accurate, of course), even with 24 expansion coefficients, due to the
nonanalytic behaviour of the solution at the surface. Nevertheless, the AKM
method represents a great achievement, as it is the first method to converge to
machine accuracy when computing rapidly rotating stars in general relativity.

Going further A review of spectral methods in general relativity can be found
in [42]. A formulation for nonaxisymmetric, uniformly rotating equilibrium
configurations in the second post-Newtonian approximation is presented in [22].
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2.8 Analytic approximations to the exterior spacetime

The exterior metric of a rapidly rotating neutron star differs considerably from
the Kerr metric. The two metrics agree only to lowest order in the rotational
velocity [149]. At higher order, the multipole moments of the gravitational
field created by a rapidly rotating compact star are different from the multipole
moments of the Kerr field. There have been many attempts in the past to find
analytic solutions to the Einstein equations in the stationary, axisymmetric case,
that could describe a rapidly rotating neutron star. An interesting solution has
been found recently by Manko et al. [220, 221]. For non-magnetized sources
of zero net charge, the solution reduces to a 3-parameter solution, involving
the mass, specific angular momentum, and a parameter that depends on the
quadrupole moment of the source. Although this solution depends explicitly
only on the quadrupole moment, it approximates the gravitational field of a
rapidly rotating star with higher nonzero multipole moments. It would be in-
teresting to determine whether this analytic quadrupole solution approximates
the exterior field of a rapidly rotating star more accurately than the quadrupole,
O(Ω2), slow rotation approximation.

The above analytic solution and an earlier one that was not represented in
terms of rational functions [219] have been used in studies of energy release
during disk accretion onto a rapidly rotating neutron star [279, 280]. In [276],
a different approximation to the exterior spacetime, in the form of a multipole
expansion far from the star, has been used to derive approximate analytic ex-
pressions for the location of the innermost stable circular orbit (ISCO). Even
though the analytic solutions in [276] converge slowly to an exact numerical
solution at the surface of the star, the analytic expressions for the location and
angular velocity at the ISCO are in good agreement with numerical results.

2.9 Properties of equilibrium models

2.9.1 Bulk properties of equilibrium models

Neutron star models constructed with various realistic EOSs have considerably
different bulk properties, due to the large uncertainties in the equation of state
at high densities. Very compressible (soft) EOSs produce models with small
maximum mass, small radius, and large rotation rate. On the other hand, less
compressible (stiff) EOSs produce models with a large maximum mass, large
radius, and low rotation rate.

The gravitational mass, equatorial radius, and rotational period of the max-
imum mass model constructed with one of the softest EOSs (EOS B) (1.63M�,
9.3 km, 0.4 ms) are a factor of two smaller than the mass, radius, and period
of the corresponding model constructed by one of the stiffest EOSs (EOS L)
(3.27M�, 18.3 km, 0.8 ms). The two models differ by a factor of 5 in central
energy density and by a factor of 8 in the moment of inertia!

Not all properties of the maximum mass models between proposed EOSs
differ considerably, at least not within groups of similar EOSs. For example,
most realistic hadronic EOSs predict a maximum mass model with a ratio of
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rotational to gravitational energy T/W of 0.11± 0.02, a dimensionless angular
momentum cJ/GM2 of 0.64 ± 0.06, and an eccentricity of 0.66 ± 0.04 [112].
Hence, within the set of realistic hadronic EOSs, some properties are directly
related to the stiffness of the EOS while other properties are rather insensitive
to stiffness. On the other hand, if one considers strange quark EOSs, then for
the maximum mass model T/W can become a factor of about two larger than
for hadronic EOSs.

ε c
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Figure 1: 2D surface of equilibrium models for EOS L. The surface is bounded
by the nonrotating (J = 0) and mass-shedding (Ω = ΩK) limits and formed
by constant J and constant M0 sequences (solid lines). The projection of these
sequences in the J–M plane are shown as long-dashed lines. Also shown are the
axisymmetric instability sequence (short-dashed line). The projection of the 2D
surface in the J–M plane shows an overlapping (see dotted lines). (Figure 7 of
Stergioulas and Friedman [295].)

Compared to nonrotating stars, the effect of rotation is to increase the equa-
torial radius of the star and also to increase the mass that can be sustained
at a given central energy density. As a result, the mass of the maximum mass
rotating model is roughly 15–20% higher than the mass of the maximum mass
nonrotating model, for typical realistic hadronic EOSs. The corresponding in-
crease in radius is 30–40%. The effect of rotation in increasing the mass and
radius becomes more pronounced in the case of strange quark EOSs (see Sec-
tion 2.9.8).

The deformed shape of a rapidly rotating star creates a distortion, away from
spherical symmetry, in its gravitational field. Far from the star, the dominant
multipole moment of the rotational distortion is measured by the quadrupole-
moment tensor Qab. For uniformly rotating, axisymmetric, and equatorially
symmetric configurations, one can define a scalar quadrupole moment Q, which
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can be extracted from the asymptotic expansion of the metric function ν at
large r, as in Equation (10).

Laarakkers and Poisson [188] numerically compute the scalar quadrupole
moment Q for several equations of state, using the rotating neutron star code
rns [292]. They find that for fixed gravitational mass M , the quadrupole mo-
ment is given as a simple quadratic fit,

Q = −a J2

Mc2
, (29)

where J is the angular momentum of the star and a is a dimensionless quantity
that depends on the equation of state. The above quadratic fit reproduces Q
with remarkable accuracy. The quantity a varies between a ∼ 2 for very soft
EOSs and a ∼ 8 for very stiff EOSs, for M = 1.4M� neutron stars. This is
considerably different from a Kerr black hole, for which a = 1 [305].

For a given zero-temperature EOS, the uniformly rotating equilibrium mod-
els form a 2-dimensional surface in the 3-dimensional space of central energy
density, gravitational mass, and angular momentum [295], as shown in Figure 1
for EOS L. The surface is limited by the nonrotating models (J = 0) and by the
models rotating at the mass-shedding (Kepler) limit, i.e. at the maximum al-
lowed angular velocity (above which the star sheds mass at the equator). Cook
et al. [69, 71, 70] have shown that the model with maximum angular velocity
does not coincide with the maximum mass model, but is generally very close to
it in central density and mass. Stergioulas and Friedman [295] show that the
maximum angular velocity and maximum baryon mass equilibrium models are
also distinct. The distinction becomes significant in the case where the EOS has
a large phase transition near the central density of the maximum mass model;
otherwise the models of maximum mass, baryon mass, angular velocity, and
angular momentum can be considered to coincide for most purposes.

Going further Although rotating relativistic stars are nearly perfectly ax-
isymmetric, a small degree of asymmetry (e.g. frozen into the solid crust during
its formation) can become a source of gravitational waves. A recent review of
this can be found in [165].

2.9.2 Mass-shedding limit and the empirical formula

Mass-shedding occurs when the angular velocity of the star reaches the angular
velocity of a particle in a circular Keplerian orbit at the equator, i.e. when

Ω = ΩK, (30)

where

ΩK =
ω′

2ψ′
+ eν−ψ

[
c2
ν′

ψ′
+
(
ω′

2ψ′
eψ−ν

)2
]1/2

+ ω. (31)

In differentially rotating stars, even a small amount of differential rotation can
significantly increase the angular velocity required for mass-shedding. Thus,

Living Reviews in Relativity (2003-3)
http://relativity.livingreviews.org

http://relativity.livingreviews.org


N. Stergioulas 24

a newly-born, hot, differentially rotating neutron star or a massive, compact
object created in a binary neutron star merger could be sustained (temporarily)
in equilibrium by differential rotation, even if a uniformly rotating configuration
with the same rest mass does not exist.

In the Newtonian limit the maximum angular velocity of uniformly rotating
polytropic stars is approximately Ωmax ' (2/3)3/2(GM/R3)1/2 (this is derived
using the Roche model, see [268]). For relativistic stars, the empirical for-
mula [142, 114, 109]

Ωmax = 0.67

√
GMmax

R3
max

(32)

gives the maximum angular velocity in terms of the mass and radius of the
maximum mass nonrotating model with an accuracy of 5–7%, without actually
having to construct rotating models. A revised empirical formula, using a large
set of EOSs, has been computed in [141].

The empirical formula results from universal proportionality relations that
exist between the mass and radius of the maximum mass rotating model and
those of the maximum mass nonrotating model for the same EOS. Lasota et
al. [193] find that, for most EOSs, the coefficient in the empirical formula is an
almost linear function of the parameter

χs =
2GMmax

Rmaxc2
. (33)

The Lasota et al. empirical formula

Ωmax = C(χs)

√
GMmax

R3
max

, (34)

with C(χs) = 0.468 + 0.378χs, reproduces the exact values with a relative error
of only 1.5%.

Weber and Glendenning [317, 318] derive analytically a similar empirical
formula in the slow rotation approximation. However, the formula they obtain
involves the mass and radius of the maximum mass rotating configuration, which
is different from what is involved in (32).

2.9.3 Upper limits on mass and rotation: Theory vs. observation

The maximum mass and minimum period of rotating relativistic stars computed
with realistic hadronic EOSs from the Arnett and Bowers collection [20] are
about 3.3M� (EOS L) and 0.4 ms (EOS B), while 1.4M� neutron stars, rotating
at the Kepler limit, have rotational periods between 0.53 ms (EOS B) and
1.7 ms (EOS M) [70]. The maximum, accurately measured, neutron star mass is
currently still 1.44M� (see e.g. [314]), but there are also indications for 2.0M�
neutron stars [167]. Core collapse simulations have yielded a bi-modal mass
distribution of the remnant, with peaks at about 1.3M� and 1.7M� [310] (the
second peak depends on the assumption for the high-density EOS – if a soft
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EOS is assumed, then black hole formation of this mass is implied). Compact
stars of much higher mass, created in a neutron star binary merger, could be
temporarily supported against collapse by strong differential rotation [30].

When magnetic field effects are ignored, conservation of angular momentum
can yield very rapidly rotating neutron stars at birth. Recent simulations of the
rotational core collapse of evolved rotating progenitors [151, 119] have demon-
strated that rotational core collapse can easily result in the creation of neutron
stars with rotational periods of the order of 1 ms (and similar initial rotation
periods have been estimated for neutron stars created in the accretion-induced
collapse of a white dwarf [212]). The existence of a magnetic field may compli-
cate this picture. Spruit and Phinney [288] have presented a model in which
a strong internal magnetic field couples the angular velocity between core and
surface during most evolutionary phases. The core rotation decouples from the
rotation of the surface only after central carbon depletion takes place. Neutron
stars born in this way would have very small initial rotation rates, even smaller
than the ones that have been observed in pulsars associated with supernova
remnants. In this model, an additional mechanism is required to spin up the
neutron star to observed periods. On the other hand, Livio and Pringle [213]
argue for a much weaker rotational coupling between core and surface by a mag-
netic field, allowing for the production of more rapidly rotating neutron stars
than in [288]. A new investigation by Heger et al., yielding intermediate initial
rotation rates, is presented in [152]. Clearly, more detailed computations are
needed to resolve this important question.

The minimum observed pulsar period is still 1.56 ms [187], which is close
to the experimental sensitivity of most pulsar searches. New pulsar surveys, in
principle sensitive down to a few tenths of a millisecond, have not been able to
detect a sub-millisecond pulsar [52, 81, 75, 94]. This is not too surprising, as
there are several explanations for the absence of sub-millisecond pulsars. In one
model, the minimum rotational period of pulsars could be set by the occurrence
of the r-mode instability in accreting neutron stars in Low Mass X-ray Bina-
ries (LMXBs) [12]. Other models are based on the standard magnetospheric
model for accretion-induced spin-up [322] or on the idea that gravitational ra-
diation (produced by accretion-induced quadrupole deformations of the deep
crust) balances the spin-up torque [35, 313]. It has also been suggested [53] that
the absence of sub-millisecond pulsars in all surveys conducted so far could be
a selection effect: Sub-millisecond pulsars could be found more likely only in
close systems (of orbital period Porb ∼ 1 hr), however the current pulsar sur-
veys are still lacking the required sensitivity to easily detect such systems. The
absence of sub-millisecond pulsars in wide systems is suggested to be due to the
turning-on of the accreting neutron stars as pulsars, in which case the pulsar
wind is shown to halt further spin-up.

Going further A review by J.L. Friedman concerning the upper limit on the
rotation of relativistic stars can be found in [110].
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2.9.4 The upper limit on mass and rotation set by causality

If one is interested in obtaining upper limits on the mass and rotation rate,
independently of the proposed EOSs, one has to rely on fundamental physical
principles. Instead of using realistic EOSs, one constructs a set of schematic
EOSs that satisfy only a minimal set of physical constraints, which represent
what we know about the equation of state of matter with high confidence. One
then searches among all these EOSs to obtain the one that gives the maximum
mass or minimum period. The minimal set of constraints that have been used
in such searches are that

1. the high density EOS matches to the known low density EOS at some
matching energy density εm, and

2. the matter at high densities satisfies the causality constraint (the speed of
sound is less than the speed of light).

In relativistic perfect fluids, the speed of sound is the characteristic velocity
of the evolution equations for the fluid, and the causality constraint translates
into the requirement

dP/dε ≤ 1. (35)

(see [120]). It is assumed that the fluid will still behave as a perfect fluid when
it is perturbed from equilibrium.

For nonrotating stars, Rhoades and Ruffini showed that the EOS that satis-
fies the above two constraints and yields the maximum mass consists of a high
density region as stiff as possible (i.e. at the causal limit, dP/dε = 1), that
matches directly to the known low density EOS. For a chosen matching density
εm, they computed a maximum mass of 3.2M�. However, this is not the theo-
retically maximum mass of nonrotating neutron stars, as is often quoted in the
literature. Hartle and Sabbadini [146] point out that Mmax is sensitive to the
matching energy density and Hartle [144] computes Mmax as a function of εm:

Mmax = 4.8
(2× 1014 g cm−3

ε m

)1/2

M�. (36)

In the case of rotating stars, Friedman and Ipser [111] assume that the
absolute maximum mass is obtained by the same EOS as in the nonrotating
case and compute Mmax as a function of matching density, assuming the BPS
EOS holds at low densities. A more recent computation [186] uses the FPS EOS
at low densities, arriving at a similar result as in [111]:

M rot
max = 6.1

(2× 1014 g cm−3

ε m

)1/2

M�, (37)

where 2× 1014 g cm−3 is roughly nuclear saturation density for the FPS EOS.
A first estimate of the absolute minimum period of uniformly rotating, gravi-

tationally bound stars was computed by Glendenning [124] by constructing non-
rotating models and using the empirical formula (32) to estimate the minimum
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period. Koranda, Stergioulas, and Friedman [186] improve on Glendenning’s
results by constructing accurate, rapidly rotating models; they show that Glen-
denning’s results are accurate to within the accuracy of the empirical formula.

Furthermore, they show that the EOS satisfying the minimal set of con-
straints and yielding the minimum period star consists of a high density region
at the causal limit (CL EOS), P = (ε− εc), (where εc is the lowest energy den-
sity of this region), which is matched to the known low density EOS through an
intermediate constant pressure region (that would correspond to a first order
phase transition). Thus, the EOS yielding absolute minimum period models is
as stiff as possible at the central density of the star (to sustain a large enough
mass) and as soft as possible in the crust, in order to have the smallest possible
radius (and rotational period).

The absolute minimum period of uniformly rotating stars is an (almost lin-
ear) function of the maximum observed mass of nonrotating neutron stars,

Pmin = 0.28 ms + 0.2 (Mnonrot
max /M� − 1.44) ms, (38)

and is rather insensitive to the matching density εm (the above result was com-
puted for a matching number density of 0.1 fm−3). In [186], it is also shown that
an absolute limit on the minimum period exists even without requiring that the
EOS matches to a known low density EOS, i.e. if the CL EOS, P = (ε − εc),
terminates at a surface energy density of εc. This is not so for the causal limit
on the maximum mass. Thus, without matching to a low-density EOS, the
causality limit on Pmin is lowered by only 3%, which shows that the currently
known part of the nuclear EOS plays a negligible role in determining the ab-
solute upper limit on the rotation of uniformly rotating, gravitationally bound
stars.

The above results have been confirmed in [139], where it is shown that the
CL EOS has χs = 0.7081, independent of εc, and the empirical formula (34)
reproduces the numerical result (38) to within 2%.

2.9.5 Supramassive stars and spin-up prior to collapse

Since rotation increases the mass that a neutron star of given central density
can support, there exist sequences of neutron stars with constant baryon mass
that have no nonrotating member. Such sequences are called supramassive, as
opposed to normal sequences that do have a nonrotating member. A nonrotating
star can become supramassive by accreting matter and spinning-up to large
rotation rates; in another scenario, neutron stars could be born supramassive
after a core collapse. A supramassive star evolves along a sequence of constant
baryon mass, slowly losing angular momentum. Eventually, the star reaches a
point where it becomes unstable to axisymmetric perturbations and collapses
to a black hole.

In a neutron star binary merger, prompt collapse to a black hole can be
avoided if the equation of state is sufficiently stiff and/or the equilibrium is
supported by strong differential rotation. The maximum mass of differentially
rotating supramassive neutron stars can be significantly larger than in the case of
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uniform rotation. A detailed study of this mass-increase has recently appeared
in [215].

Cook et al. [69, 71, 70] have discovered that a supramassive relativistic star
approaching the axisymmetric instability will actually spin up before collapse,
even though it loses angular momentum. This potentially observable effect is in-
dependent of the equation of state and it is more pronounced for rapidly rotating
massive stars. Similarly, stars can spin up by loss of angular momentum near
the mass-shedding limit, if the equation of state is extremely stiff or extremely
soft.

If the equation of state features a phase transition, e.g. to quark matter,
then the spin-up region is very large, and most millisecond pulsars (if supra-
massive) would need to be spinning up [289]; the absence of spin-up in known
millisecond pulsars indicates that either large phase transitions do not occur, or
that the equation of state is sufficiently stiff so that millisecond pulsars are not
supramassive.

2.9.6 Rotating magnetized neutron stars

The presence of a magnetic field has been ignored in the models of rapidly rotat-
ing relativistic stars that were considered in the previous sections. The reason
is that the observed surface dipole magnetic field strength of pulsars ranges
between 108 G and 2 × 1013 G. These values of the magnetic field strength
imply a magnetic field energy density that is too small, compared to the energy
density of the fluid, to significantly affect the structure of a neutron star. How-
ever, one cannot exclude the existence of neutron stars with higher magnetic
field strengths or the possibility that neutron stars are born with much stronger
magnetic fields, which then decay to the observed values (of course, there are
also many arguments against magnetic field decay in neutron stars [243]). In
addition, even though moderate magnetic field strengths do not alter the bulk
properties of neutron stars, they may have an effect on the damping or growth
rate of various perturbations of an equilibrium star, affecting its stability. For
these reasons, a fully relativistic description of magnetized neutron stars is de-
sirable and, in fact, Bocquet et al. [37] achieved the first numerical computation
of such configurations. Following we give a brief summary of their work.

A magnetized relativistic star in equilibrium can be described by the coupled
Einstein–Maxwell field equations for stationary, axisymmetric rotating objects
with internal electric currents. The stress-energy tensor includes the electro-
magnetic energy density and is non-isotropic (in contrast to the isotropic perfect
fluid stress-energy tensor). The equilibrium of the matter is given not only by
the balance between the gravitational force, centrifugal force, and the pressure
gradient; the Lorentz force due to the electric currents also enters the balance.
For simplicity, Bocquet et al. consider only poloidal magnetic fields that preserve
the circularity of the spacetime. Also, they only consider stationary configura-
tions, which excludes magnetic dipole moments non-aligned with the rotation
axis, since in that case the star emits electromagnetic and gravitational waves.
The assumption of stationarity implies that the fluid is necessarily rigidly ro-
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tating (if the matter has infinite conductivity) [47]. Under these assumptions,
the electromagnetic field tensor F ab is derived from a potential four-vector Aa
with only two non-vanishing components, At and Aφ, which are solutions of a
scalar Poisson and a vector Poisson equation respectively. Thus, the two equa-
tions describing the electromagnetic field are of similar type as the four field
equations that describe the gravitational field.

For magnetic field strengths larger than about 1014 G, one observes signifi-
cant effects, such as a flattening of the equilibrium configuration. There exists a
maximum value of the magnetic field strength of the order of 1018 G, for which
the magnetic field pressure at the center of the star equals the fluid pressure.
Above this value no stationary configuration can exist.

A strong magnetic field allows a maximum mass configuration with larger
Mmax than for the same EOS with no magnetic field and this is analogous to
the increase of Mmax induced by rotation. For nonrotating stars, the increase
in Mmax due to a strong magnetic field is 13–29%, depending on the EOS.
Correspondingly, the maximum allowed angular velocity, for a given EOS, also
increases in the presence of a strong magnetic field.

Another application of general relativistic E/M theory in neutron stars is
the study of the evolution of the magnetic field during pulsar spin-down. A
detailed analysis of the evolution equations of the E/M field in a slowly rotating
magnetized neutron star has revealed that effects due to the spacetime curvature
and due to the rotational frame-dragging are present in the induction equations,
when one assumes finite electrical conductivity (see [252] and references therein).
Numerical solutions of the evolution equations of the E/M have shown, however,
that for realistic values of the electrical conductivity, the above relativistic effects
are small, even in the case of rapid rotation [336].

Going further An O(Ω) slow rotation approach for the construction of ro-
tating magnetized relativistic stars is presented in [137].

2.9.7 Rapidly rotating proto-neutron stars

Following the gravitational collapse of a massive stellar core, a proto-neutron
star (PNS) is born. Initially it has a large radius of about 100 km and a
temperature of 50–100 MeV. The PNS may be born with a large rotational
kinetic energy and initially it will be differentially rotating. Due to the vi-
olent nature of the gravitational collapse, the PNS pulsates heavily, emitting
significant amounts of gravitational radiation. After a few hundred pulsational
periods, bulk viscosity will damp the pulsations significantly. Rapid cooling
due to deleptonization transforms the PNS, shortly after its formation, into a
hot neutron star of T ∼ 10 MeV. In addition, viscosity or other mechanisms
(see Section 2.1) enforce uniform rotation and the neutron star becomes quasi-
stationary. Since the details of the PNS evolution determine the properties of
the resulting cold NSs, proto-neutron stars need to be modeled realistically in
order to understand the structure of cold neutron stars.

Hashimoto et al. [150] and Goussard et al. [134] construct fully relativistic
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Figure 2: Iso-energy density lines of a differentially rotating proto-neutron star
at the mass-shedding limit, of rest mass M0 = 1.5M�. (Figure 5a of Goussard,
Haensel and Zdunik [135]; used with permission.)

models of rapidly rotating, hot proto-neutron stars. The authors use finite-
temperature EOSs [239, 195] to model the interior of PNSs. Important (but
largely unknown) parameters that determine the local state of matter are the
lepton fraction Yl and the temperature profile. Hashimoto et al. consider only
the limiting case of zero lepton fraction, Yl = 0, and classical isothermality, while
Goussard et al. consider several nonzero values for Yl and two different limiting
temperature profiles – a constant entropy profile and a relativistic isothermal
profile. In both [150] and [239], differential rotation is neglected to a first ap-
proximation.

The construction of numerical models with the above assumptions shows
that, due to the high temperature and the presence of trapped neutrinos, PNSs
have a significantly larger radius than cold NSs. These two effects give the
PNS an extended envelope which, however, contains only roughly 0.1% of the
total mass of the star. This outer layer cools more rapidly than the interior
and becomes transparent to neutrinos, while the core of the star remains hot
and neutrino opaque for a longer time. The two regions are separated by the
“neutrino sphere”.

Compared to the T = 0 case, an isothermal EOS with temperature of 25 MeV
has a maximum mass model of only slightly larger mass. In contrast, an isen-
tropic EOS with a nonzero trapped lepton number features a maximum mass
model that has a considerably lower mass than the corresponding model in the
T = 0 case and, therefore, a stable PNS transforms to a stable neutron star. If,
however, one considers the hypothetical case of a large amplitude phase transi-
tion that softens the cold EOS (such as a kaon condensate), then Mmax of cold
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neutron stars is lower than the Mmax of PNSs, and a stable PNS with maximum
mass will collapse to a black hole after the initial cooling period. This scenario
of delayed collapse of nascent neutron stars has been proposed by Brown and
Bethe [51] and investigated by Baumgarte et al. [31].

An analysis of radial stability of PNSs [127] shows that, for hot PNSs, the
maximum angular velocity model almost coincides with the maximum mass
model, as is also the case for cold EOSs.

Because of their increased radius, PNSs have a different mass-shedding limit
than cold NSs. For an isothermal profile, the mass-shedding limit proves to be
sensitive to the exact location of the neutrino sphere. For the EOSs considered
in [150] and [134], PNSs have a maximum angular velocity that is considerably
less than the maximum angular velocity allowed by the cold EOSs. Stars that
have nonrotating counterparts (i.e. that belong to a normal sequence) contract
and speed up while they cool down. The final star with maximum rotation is
thus closer to the mass-shedding limit of cold stars than was the hot PNS with
maximum rotation. Surprisingly, stars belonging to a supramassive sequence
exhibit the opposite behavior. If one assumes that a PNS evolves without losing
angular momentum or accreting mass, then a cold neutron star produced by the
cooling of a hot PNS has a smaller angular velocity than its progenitor. This
purely relativistic effect was pointed out in [150] and confirmed in [134].

It should be noted here that a small amount of differential rotation signifi-
cantly affects the mass-shedding limit, allowing more massive stars to exist than
uniform rotation allows. Taking differential rotation into account, Goussard et
al. [135] suggest that proto-neutron stars created in a gravitational collapse can-
not spin faster than 1.7 ms. A similar result has been obtained by Strobel et
al. [298]. The structure of a differentially rotating proto-neutron star at the
mass-shedding limit is shown in Figure 2. The outer layers of the star form an
extended disk-like structure.

The above stringent limits on the initial period of neutron stars are obtained
assuming that the PNS evolves in a quasi-stationary manner along a sequence
of equilibrium models. It is not clear whether these limits will remain valid
if one studies the early evolution of PNS without the above assumption. It is
conceivable that the thin hot envelope surrounding the PNS does not affect the
dynamics of the bulk of the star. If the bulk of the star rotates faster than the
(stationary) mass-shedding limit of a PNS model, then the hot envelope will
simply be shed away from the star in the equatorial region (if it cannot remain
bounded to the star even when differentially rotating). Such a fully dynamical
study is needed to obtain an accurate upper limit on the rotation of neutron
stars.

Going further The thermal history and evolutionary tracks of rotating PNSs
(in the second order slow rotation approximation) have been studied recently
in [300].
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2.9.8 Rotating strange quark stars

Most rotational properties of strange quark stars differ considerably from the
properties of rotating stars constructed with hadronic EOSs. First models of
rapidly rotating strange quark stars were computed by Friedman ([107], quoted
in [123, 122]) and by Lattimer et al. [196]. Colpi and Miller [66] use the O(Ω2)
approximation and find that the spin of strange stars (newly-born, or spun-
up by accretion) may be limited by the CFS instability to the l = m = 2
f -mode, since rapidly rotating strange stars tend to have T/W > 0.14. Rapidly
rotating strange stars at the mass-shedding limit have been computed first by
Gourgoulhon et al. [133], and the structure of a representative model is displayed
in Figure 3.

Figure 3: Meridional plane cross section of a rapidly rotating strange star at the
mass-shedding limit, obtained with a multi-domain spectral code. The various
lines are isocontours of the log-enthalpy H, as defined in [133]. Solid lines
indicate a positive value of H and dashed lines a negative value (vacuum). The
thick solid line denotes the stellar surface. The thick dot-dashed line denotes the
boundary between the two computational domains. (Figure 4 of Gourgoulhon,
Haensel, Livine, Paluch, Bonazzola, and Marck [133]; used with permission.)

Nonrotating strange stars obey scaling relations with the constant B in the
MIT bag model of the strange quark matter EOS (Section 2.6.3); Gourgoulhon
et al. [133] also obtain scaling relations for the model with maximum rotation
rate. The maximum angular velocity scales as

Ωmax = 9.92× 103
√
B60 s−1, (39)

while the allowed range of B implies an allowed range of 0.513 ms < Pmin <
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0.640 ms. The empirical formula (32) also holds for rotating strange stars with
an accuracy of better than 2%. A derivation of the empirical formula in the case
of strange stars, starting from first principles, has been presented by Cheng and
Harko [62], who found that some properties of rapidly rotating strange stars can
be reproduced by approximating the exterior spacetime by the Kerr metric.

Since both the maximum mass nonrotating and maximum mass rotating
models obey similar scalings with B, the ratios

M rot
max

M stat
max

= 1.44,
Rrot

max

Rstat
max

= 1.54, (40)

are independent of B (where Rmax is the radius of the maximum mass model).
The maximum mass increases by 44% and the radius of the maximum mass
model by 54%, while the corresponding increase for hadronic stars is, at best,
∼ 20% and ∼ 40%, correspondingly. The rotational properties of strange star
models that are based on the Dey et al. EOS [87] are similar to those of the
MIT bag model EOS [38, 325, 98], but some quantitative differences exist [128].

Accreting strange stars in LMXBs will follow different evolutionary paths
than do accreting hadronic stars in a mass vs. central energy density dia-
gram [341]. When (and if) strange stars reach the mass-shedding limit, the
ISCO still exists [297] (while it disappears for most hadronic EOSs). Stergioulas,
Kluźniak, and Bulik [297] show that the radius and location of the ISCO for the
sequence of mass-shedding models also scales as B−1/2, while the angular veloc-
ity of particles in circular orbit at the ISCO scales as B1/2. Additional scalings
with the constant a in the strange quark EOS (that were proposed in [196]) are
found to hold within an accuracy of better than ∼ 9% for the mass-shedding
sequence

M ∝ a1/2, R ∝ a1/4, Ω ∝ a−1/8. (41)

In addition, it is found that models at mass-shedding can have T/W as large as
0.28 for M = 1.34 M�.

As strange quark stars are very compact, the angular velocity at the ISCO
can become very large. If the 1066 Hz upper QPO frequency in 4U 1820-30
(see [167] and references therein) is the frequency at the ISCO, then it rules
out most models of slowly rotating strange stars in LMXBs. However, in [297]
it is shown that rapidly rotating bare strange stars are still compatible with
this observation, as they can have ISCO frequencies < 1 kHz even for 1.4 M�
models. On the other hand, if strange stars have a thin solid crust, the ISCO
frequency at the mass-shedding limit increases by about 10% (compared to a
bare strange star of the same mass), and the above observational requirement is
only satisfied for slowly rotating models near the maximum nonrotating mass,
assuming some specific values of the parameters in the strange star EOS [342,
340]. Moderately rotating strange stars, with spin frequencies around 300 Hz
can also be accommodated for some values of the coupling constant αc [338]
(see also [131] for a detailed study of the ISCO frequency for rotating strange
stars). The 1066 Hz requirement for the ISCO frequency depends, of course, on
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the adopted model of kHz QPOs in LMXBs, and other models exist (see next
section).

If strange stars can have a solid crust, then the density at the bottom of
the crust is the neutron drip density εnd ' 4.1 × 1011 g cm−3, as neutrons are
absorbed by strange quark matter. A strong electric field separates the nuclei
of the crust from the quark plasma. In general, the mass of the crust that a
strange star can support is very small, of the order of 10−5M�. Rapid rotation
increases by a few times the mass of the crust and the thickness at the equator
becomes much larger than the thickness at the poles [340]. Zdunik, Haensel,
and Gourgoulhon [340] also find that the mass Mcrust and thickness tcrust of the
crust can be expanded in powers of the spin frequency ν3 = ν/(103 Hz) as

Mcrust = Mcrust,0 (1 + 0.24 ν2
3 + 0.16 ν8

3), (42)
tcrust = tcrust,0 (1 + 0.4 ν2

3 + 0.3 ν6
3), (43)

where a subscript “0” denotes nonrotating values. For ν ≤ 500 Hz, the above
expansion agrees well with the quadratic expansion derived previously by Glen-
denning and Weber [126]. In a spinning down magnetized strange quark star
with crust, parts of the crust will gradually dissolve into strange quark mat-
ter, in a strongly exothermic process. In [340], it is estimated that the heating
due to deconfinement may exceed the neutrino luminosity from the core of a
strange star older than ∼ 1000 yr and may therefore influence the cooling of
this compact object (see also [334]).

2.10 Rotating relativistic stars in LMXBs

2.10.1 Particle orbits and kHz quasi-periodic oscillations

In the last few years, X-ray observations of accreting sources in LMXBs have
revealed a rich phenomenology that is waiting to be interpreted correctly and
could lead to significant advances in our understanding of compact objects
(see [192, 168, 249]). The most important feature of these sources is the obser-
vation of (in most cases) twin kHz quasi-periodic oscillations (QPOs). The high
frequency of these variabilities and their quasi-periodic nature are evidence that
they are produced in high-velocity flows near the surface of the compact star.
To date, there exist a large number of different theoretical models that attempt
to explain the origin of these oscillations. No consensus has been reached, yet,
but once a credible explanation is found, it will lead to important constraints
on the properties of the compact object that is the source of the gravitational
field in which the kHz oscillations take place. The compact stars in LMXBs
are spun up by accretion, so that many of them may be rotating rapidly; there-
fore, the correct inclusion of rotational effects in the theoretical models for kHz
QPOs is important. Under simplifying assumptions for the angular momentum
and mass evolution during accretion, one can use accurate rapidly rotating rel-
ativistic models to follow the possible evolutionary tracks of compact stars in
LMXBs [72, 341].
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In most theoretical models, one or both kHz QPO frequencies are associated
with the orbital motion of inhomogeneities or blobs in a thin accretion disk. In
the actual calculations, the frequencies are computed in the approximation of
an orbiting test particle, neglecting pressure terms. For most equations of state,
stars that are massive enough possess an ISCO, and the orbital frequency at
the ISCO has been proposed to be one of the two observed frequencies. To first
order in the rotation rate, the orbital frequency at the prograde ISCO is given
by (see Kluźniak, Michelson, and Wagoner [171])

fISCO ' 2210 (1 + 0.75j)
(

1M�
M

)
Hz, (44)

where j = J/M2. At larger rotation rates, higher order contributions of j as
well as contributions from the quadrupole moment Q become important and an
approximate expression has been derived by Shibata and Sasaki [276], which,
when written as above and truncated to the lowest order contribution of Q and
to O(j2), becomes

fISCO ' 2210 (1 + 0.75j + 0.78j2 − 0.23Q2)
(

1M�
M

)
Hz, (45)

where Q2 = −Q/M3.
Notice that, while rotation increases the orbital frequency at the ISCO, the

quadrupole moment has the opposite effect, which can become important for
rapidly rotating models. Numerical evaluations of fISCO for rapidly rotating
stars have been used in [229] to arrive at constraints on the properties of the
accreting compact object.

In other models, orbits of particles that are eccentric and slightly tilted with
respect to the equatorial plane are involved. For eccentric orbits, the periastron
advances with a frequency νpa that is the difference between the Keplerian fre-
quency of azimuthal motion νK and the radial epicyclic frequency νr. On the
other hand, particles in slightly tilted orbits fail to return to the initial displace-
ment ψ from the equatorial plane, after a full revolution around the star. This
introduces a nodal precession frequency νpa, which is the difference between νK

and the frequency of the motion out of the orbital plane (meridional frequency)
νψ. Explicit expressions for the above frequencies, in the gravitational field of
a rapidly rotating neutron star, have been derived recently by Marković [222],
while in [223] highly eccentric orbits are considered. Morsink and Stella [231]
compute the nodal precession frequency for a wide range of neutron star masses
and equations of state and (in a post-Newtonian analysis) separate the preces-
sion caused by the Lense–Thirring (frame-dragging) effect from the precession
caused by the quadrupole moment of the star. The nodal and periastron pre-
cession of inclined orbits have also been studied using an approximate analytic
solution for the exterior gravitational field of rapidly rotating stars [278]. These
precession frequencies are relativistic effects and have been used in several mod-
els to explain the kHz QPO frequencies [291, 250, 2, 169, 5].

Living Reviews in Relativity (2003-3)
http://relativity.livingreviews.org

http://relativity.livingreviews.org


N. Stergioulas 36

It is worth mentioning that it has recently been found that an ISCO also
exists in Newtonian gravity, for models of rapidly rotating low-mass strange
stars. The instability in the circular orbits is produced by the large oblateness
of the star [170, 339, 5].

2.10.2 Angular momentum conservation during burst oscillations

Some sources in LMXBs show signatures of type I X-ray bursts, which are
thermonuclear flashes on the surface of the compact star [198]. Such bursts
show nearly-coherent oscillations in the range 270–620 Hz (see [168, 299] for
recent reviews). One interpretation of the burst oscillations is that they are
the result of rotational modulation of surface asymmetries during the burst.
In such a case, the oscillation frequency should be nearly equal to the spin
frequency of the star. This model currently has difficulties in explaining some
observed properties, such as the oscillations seen in the tail of the burst, the
frequency increase during the burst, and the need for two anti-podal hot spots
in some sources that ignite at the same time. Alternative models also exist (see
e.g. [249]).

In the spin-frequency interpretation, the increase in the oscillation frequency
by a few Hz during the burst is explained as follows: The burning shell is sup-
posed to first decouple from the neutron star and then gradually settle down
onto the surface. By angular momentum conservation, the shell spins up, giving
rise to the observed frequency increase. Cumming et al. [76] compute the ex-
pected spin-up in full general relativity and taking into account rapid rotation.
Assuming that the angular momentum per unit mass is conserved, the change
in angular velocity with radius is given by

d ln Ω
d ln r

= −2
[(

1− v2

2
− R

2
∂ν

∂r

)(
1− ω

Ω

)
− R

2Ω
∂ω

∂r

]
, (46)

where R is the equatorial radius of the star and all quantities are evaluated at
the equator. The slow rotation limit of the above result was derived previously
by Abramowicz et al. [3]. The fractional change in angular velocity during
spin-up can then be estimated as

∆Ω
Ω

=
d ln Ω
d ln r

(
∆r
R

)
, (47)

where ∆r is the coordinate expansion of the burning shell, a quantity that
depends on the shell’s composition. Cumming et al. find that the spin down
expected if the atmosphere rotates rigidly is a factor of two to three times
smaller than observed values. More detailed modeling is needed to fully explain
the origin and properties of burst oscillations.

Going further A very interesting topic is the modeling of the expected X-ray
spectrum of an accretion disk in the gravitational field of a rapidly rotating
neutron star as it could lead to observational constraints on the source of the
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gravitational field. See e.g. [303, 279, 280, 34, 33], where work initiated by
Kluzniak and Wilson [172] in the slow rotation limit is extended to rapidly
rotating relativistic stars.
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3 Oscillations and Stability

The study of oscillations of relativistic stars is motivated by the prospect of
detecting such oscillations in electromagnetic or gravitational wave signals. In
the same way that helioseismology is providing us with information about the
interior of the Sun, the observational identification of oscillation frequencies of
relativistic stars could constrain the high-density equation of state [13]. The
oscillations could be excited after a core collapse or during the final stages of
a neutron star binary merger. Rapidly rotating relativistic stars can become
unstable to the emission of gravitational waves.

When the oscillations of an equilibrium star are of small magnitude com-
pared to its radius, it will suffice to approximate them as linear perturbations.
Such perturbations can be described in two equivalent ways. In the Lagrangian
approach, one studies the changes in a given fluid element as it oscillates about
its equilibrium position. In the Eulerian approach, one studies the change in
fluid variables at a fixed point in space. Both approaches have their strengths
and weaknesses.

In the Newtonian limit, the Lagrangian approach has been used to de-
velop variational principles [216, 118], but the Eulerian approach proved to
be more suitable for numerical computations of mode frequencies and eigen-
functions [162, 218, 158, 160, 159]. Clement [64] used the Lagrangian approach
to obtain axisymmetric normal modes of rotating stars, while nonaxisymmetric
solutions were obtained in the Lagrangian approach by Imamura et al. [156]
and in the Eulerian approach by Managan [218] and Ipser and Lindblom [158].
While a lot has been learned from Newtonian studies, in the following we will
focus on the relativistic treatment of oscillations of rotating stars.

3.1 Quasi-normal modes of oscillation

A general linear perturbation of the energy density in a static and spherically
symmetric relativistic star can be written as a sum of quasi-normal modes that
are characterized by the indices (l,m) of the spherical harmonic functions Y ml
and have angular and time dependence of the form

δε ∼ f(r)Pml (cos θ)ei(mφ+ωit), (48)

where δ indicates the Eulerian perturbation of a quantity, ωi is the angular
frequency of the mode as measured by a distant inertial observer, f(r) represents
the radial dependence of the perturbation, and Pml (cos θ) are the associated
Legendre polynomials. Normal modes of nonrotating stars are degenerate in m
and it suffices to study the axisymmetric (m = 0) case.

The Eulerian perturbation in the fluid 4-velocity δua can be expressed in
terms of vector harmonics, while the metric perturbation δgab can be expressed
in terms of spherical, vector, and tensor harmonics. These are either of “polar”
or “axial” parity. Here, parity is defined to be the change in sign under a
combination of reflection in the equatorial plane and rotation by π. A polar
perturbation has parity (−1)l, while an axial perturbation has parity (−1)l+1.
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Because of the spherical background, the polar and axial perturbations of a
nonrotating star are completely decoupled.

A normal mode solution satisfies the perturbed gravitational field equations,

δ(Gab − 8πT ab) = 0, (49)

and the perturbation of the conservation of the stress-energy tensor,

δ(∇aT ab) = 0, (50)

with suitable boundary conditions at the center of the star and at infinity.
The latter equation is decomposed into an equation for the perturbation in
the energy density δε and into equations for the three spatial components of
the perturbation in the 4-velocity δua. As linear perturbations have a gauge
freedom, at most six components of the perturbed field equations (49) need to
be considered.

For a given pair (l,m), a solution exists for any value of the frequency ωi,
consisting of a mixture of ingoing and outgoing wave parts. Outgoing quasi-
normal modes are defined by the discrete set of eigenfrequencies for which there
are no incoming waves at infinity. These are the modes that will be excited in
various astrophysical situations.

The main modes of pulsation that are known to exist in relativistic stars
have been classified as follows (f0 and τ0 are typical frequencies and damping
times of the most important modes in the nonrotating limit):

1. Polar fluid modes are slowly damped modes analogous to the Newtonian
fluid pulsations:

• f(undamental)-modes: surface modes due to the interface between
the star and its surroundings (f0 ∼ 2 kHz, τ0 < 1 s),

• p(ressure)-modes: nearly radial (f0 > 4 kHz, τ0 > 1 s),

• g(ravity)-modes: nearly tangential, only exist in stars that are non-
isentropic or that have a composition gradient or first order phase
transition (f0 < 500 Hz, τ0 > 5 s).

2. Axial and hybrid fluid modes:

• inertial modes: degenerate at zero frequency in nonrotating stars. In
a rotating star, some inertial modes are generically unstable to the
CFS instability; they have frequencies from zero to kHz and growth
times inversely proportional to a high power of the star’s angular
velocity. Hybrid inertial modes have both axial and polar parts even
in the limit of no rotation.

• r(otation)-modes: a special case of inertial modes that reduce to the
classical axial r-modes in the Newtonian limit. Generically unstable
to the CFS instability with growth times as short as a few seconds
at high rotation rates.
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3. Polar and axial spacetime modes:

• w(ave)-modes: Analogous to the quasi-normal modes of a black hole
(very weak coupling to the fluid). High frequency, strongly damped
modes (f0 > 6 kHz, τ0 ∼ 0.1 ms).

For a more detailed description of various types of oscillation modes, see [179,
178, 225, 56, 177].

3.2 Effect of rotation on quasi-normal modes

In a continuous sequence of rotating stars that includes a nonrotating member,
a quasi-normal mode of index l is defined as the mode which, in the nonrotating
limit, reduces to the quasi-normal mode of the same index l. Rotation has
several effects on the modes of a corresponding nonrotating star:

1. The degeneracy in the index m is removed and a nonrotating mode of
index l is split into 2l + 1 different (l,m) modes.

2. Prograde (m < 0) modes are now different from retrograde (m > 0) modes.

3. A rotating “polar” l-mode consists of a sum of purely polar and purely
axial terms [293], e.g. for l = m,

P rot
l ∼

∞∑
l′=0

(Pl+2l′ +Al+2l′±1), (51)

that is, rotation couples a polar l-term to an axial l±1 term (the coupling
to the l + 1 term is, however, strongly favoured over the coupling to the
l − 1 term [61]). Similarly, for a rotating “axial” mode with l = m,

Arot
l ∼

∞∑
l′=0

(Al+2l′ + Pl+2l′±1). (52)

4. Frequencies and damping times are shifted. In general, frequencies (in
the inertial frame) of prograde modes increase, while those of retrograde
modes decrease with increasing rate of rotation.

5. In rapidly rotating stars, apparent intersections between higher order modes
of different l can occur. In such cases, the shape of the eigenfunction is
used in the mode classification.

In rotating stars, quasi-normal modes of oscillation have been studied only in
the slow rotation limit, in the post-Newtonian, and in the Cowling approxima-
tions. The solution of the fully relativistic perturbation equations for a rapidly
rotating star is still a very challenging task and only recently have they been
solved for zero-frequency (neutral) modes [293, 296]. First frequencies of quasi-
radial modes have now been obtained through 3D numerical time evolutions of
the nonlinear equations [105].
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Going further The equations that describe oscillations of the solid crust of
a rapidly rotating relativistic star are derived by Priou in [247]. The effects of
superfluid hydrodynamics on the oscillations of neutron stars have been inves-
tigated by several authors, see e.g. [203, 67, 8, 10] and references therein.

3.3 Axisymmetric perturbations

3.3.1 Secular and dynamical axisymmetric instability

Along a sequence of nonrotating relativistic stars with increasing central energy
density, there is always a model for which the mass becomes maximum. The
maximum-mass turning point marks the onset of an instability in the funda-
mental radial pulsation mode of the star.

Applying the turning point theorem provided by Sorkin [286], Friedman,
Ipser, and Sorkin [115] show that in the case of rotating stars a secular axisym-
metric instability sets in when the mass becomes maximum along a sequence
of constant angular momentum. An equivalent criterion (implied in [115]) is
provided by Cook et al. [69]: The secular axisymmetric instability sets in when
the angular momentum becomes minimum along a sequence of constant rest
mass. The instability first develops on a secular timescale that is set by the
time required for viscosity to redistribute the star’s angular momentum. This
timescale is long compared to the dynamical timescale and comparable to the
spin-up time following a pulsar glitch. Eventually, the star encounters the on-
set of dynamical instability and collapses to a black hole (see [274] for recent
numerical simulations). Thus, the onset of the secular instability to axisym-
metric perturbations separates stable neutron stars from neutron stars that will
collapse to a black hole.

Goussard et al. [134] extend the stability criterion to hot proto-neutron stars
with nonzero total entropy. In this case, the loss of stability is marked by the
configuration with minimum angular momentum along a sequence of both con-
stant rest mass and total entropy. In the nonrotating limit, Gondek et al. [127]
compute frequencies and eigenfunctions of radial pulsations of hot proto-neutron
stars and verify that the secular instability sets in at the maximum mass turning
point, as is the case for cold neutron stars.

3.3.2 Axisymmetric pulsation modes

Axisymmetric (m = 0) pulsations in rotating relativistic stars could be excited
in a number of different astrophysical scenarios, such as during core collapse, in
star quakes induced by the secular spin-down of a pulsar or during a large phase
transition, or in the merger of two relativistic stars in a binary system, among
others. Due to rotational couplings, the eigenfunction of any axisymmetric
mode will involve a sum of various spherical harmonics Y 0

l , so that even the
quasi-radial modes (with lowest order l = 0 contribution) would, in principle,
radiate gravitational waves.

Quasi-radial modes in rotating relativistic stars have been studied by Hartle
and Friedman [145] and by Datta et al. [83] in the slow rotation approximation.
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Figure 4: Apparent intersection (due to avoided crossing) of the axisymmet-
ric first quasi-radial overtone (H1) and the first overtone of the l = 4 p-mode
(in the Cowling approximation). Frequencies are normalized by

√
ρc/4π, where

ρc is the central energy density of the star. The rotational frequency frot at the
mass-shedding limit is 0.597 (in the above units). Along continuous sequences of
computed frequencies, mode eigenfunctions are exchanged at the avoided cross-
ing. Defining quasi-normal mode sequences by the shape of their eigenfunction,
the H1 sequence (filled boxes) appears to intersect with the 4p1 sequence (tri-
angle), but each sequence shows a discontinuity, when the region of apparent
intersection is well resolved. (Figure 3 of Yoshida and Eriguchi [330]; used with
permission.)
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Yoshida and Eriguchi [330] study quasi-radial modes of rapidly rotating stars
in the relativistic Cowling approximation and find that apparent intersections
between quasi-radial and other axisymmetric modes can appear near the mass-
shedding limit (see Figure 4). These apparent intersections are due to avoided
crossings between mode sequences, which are also known to occur for axisym-
metric modes of rotating Newtonian stars. Along a continuous sequence of
computed mode frequencies an avoided crossing occurs when another sequence
is encountered. In the region of the avoided crossing, the eigenfunctions of the
two modes become of mixed character. Away from the avoided crossing and
along the continuous sequences of computed mode frequencies, the eigenfunc-
tions are exchanged. However, each “quasi-normal mode” is characterized by
the shape of its eigenfunction and thus, the sequences of computed frequen-
cies that belong to particular quasi-normal modes are discontinuous at avoided
crossings (see Figure 4 for more details). The discontinuities can be found in
numerical calculations, when quasi-normal mode sequences are well resolved in
the region of avoided crossings. Otherwise, quasi-normal mode sequences will
appear as intersecting.

Several axisymmetric modes have recently been computed for rapidly rotat-
ing relativistic stars in the Cowling approximation, using time evolutions of the
nonlinear hydrodynamical equations [104] (see [106] for a description of the 2D
numerical evolution scheme). As in [330], Font et al. [104] find that apparent
mode intersections are common for various higher order axisymmetric modes
(see Figure 5). Axisymmetric inertial modes also appear in the numerical evo-
lutions.

The first fully relativistic frequencies of quasi-radial modes for rapidly ro-
tating stars (without assuming the Cowling approximation) have been obtained
recently, again through nonlinear time evolutions [105] (see Section 4.2).

Going further The stabilization, by an external gravitational field, of a rela-
tivistic star that is marginally stable to axisymmetric perturbations is discussed
in [308].

3.4 Nonaxisymmetric perturbations

3.4.1 Nonrotating limit

Thorne, Campolattaro, and Price, in a series of papers [309, 245, 304], initiated
the computation of nonradial modes by formulating the problem in the Regge–
Wheeler (RW) gauge [251] and numerically computing nonradial modes for a
number of neutron star models. A variational method for obtaining eigenfre-
quencies and eigenfunctions has been constructed by Detweiler and Ipser [85].
Lindblom and Detweiler [202] explicitly reduced the system of equations to four
first order ordinary differential equations and obtained more accurate eigenfre-
quencies and damping times for a larger set of neutron star models. They later
realized that their system of equations is sometimes singular inside the star and
obtained an improved set of equations, which is free of this singularity [86].
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Figure 5: Frequencies of several axisymmetric modes along a sequence of rapidly
rotating relativistic polytropes of N = 1.0, in the Cowling approximation. On
the horizontal axis, the angular velocity of each model is scaled to the angu-
lar velocity of the model at the mass-shedding limit. Lower order modes are
weakly affected by rapid rotation, while higher order modes show apparent mode
intersections. (Figure 10 of Font, Dimmelmeier, Gupta, and Stergioulas [104].)
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Chandrasekhar and Ferrari [61] expressed the nonradial pulsation problem in
terms of a fifth order system in a diagonal gauge, which is formally independent
of fluid variables. Thus, they reformulate the problem in a way analogous to
the scattering of gravitational waves off a black hole. Ipser and Price [163] show
that in the RW gauge, nonradial pulsations can be described by a system of
two second order differential equations, which can also be independent of fluid
variables. In addition, they find that the diagonal gauge of Chandrasekhar and
Ferrari has a remaining gauge freedom which, when removed, also leads to a
fourth order system of equations [246].

In order to locate purely outgoing wave modes, one has to be able to dis-
tinguish the outgoing wave part from the ingoing wave part at infinity. This is
typically achieved using analytic approximations of the solution at infinity.

W -modes pose a more challenging numerical problem because they are strong-
ly damped and the techniques used for f - and p-modes fail to distinguish the
outgoing wave part. The first accurate numerical solutions were obtained by
Kokkotas and Schutz [181], followed by Leins, Nollert, and Soffel [197]. Ander-
sson, Kokkotas, and Schutz [15] successfully combine a redefinition of variables
with a complex-coordinate integration method, obtaining highly accurate com-
plex frequencies for w modes. In this method, the ingoing and outgoing solutions
are separated by numerically calculating their analytic continuations to a place
in the complex-coordinate plane, where they have comparable amplitudes. Since
this approach is purely numerical, it could prove to be suitable for the computa-
tion of quasi-normal modes in rotating stars, where analytic solutions at infinity
are not available.

The non-availability of asymptotic solutions at infinity in the case of rotating
stars is one of the major difficulties for computing outgoing modes in rapidly
rotating relativistic stars. A method that may help to overcome this problem,
at least to an acceptable approximation, has been found by Lindblom, Mendell,
and Ipser [206].

The authors obtain approximate near-zone boundary conditions for the out-
going modes that replace the outgoing wave condition at infinity and that enable
one to compute the eigenfrequencies with very satisfactory accuracy. First, the
pulsation equations of polar modes in the Regge–Wheeler gauge are reformu-
lated as a set of two second order radial equations for two potentials – one
corresponding to fluid perturbations and the other to the perturbations of the
spacetime. The equation for the spacetime perturbation reduces to a scalar
wave equation at infinity and to Laplace’s equation for zero-frequency solu-
tions. From these, an approximate boundary condition for outgoing modes is
constructed and imposed in the near zone of the star (in fact, on its surface)
instead of at infinity. For polytropic models, the near-zone boundary condi-
tion yields f -mode eigenfrequencies with real parts accurate to 0.01–0.1% and
imaginary parts with accuracy at the 10–20% level, for the most relativistic
stars. If the near zone boundary condition can be applied to the oscillations of
rapidly rotating stars, the resulting frequencies and damping times should have
comparable accuracy.
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3.4.2 Slow rotation approximation

The slow rotation approximation is useful for obtaining a first estimate of the
effect of rotation on the pulsations of relativistic stars. To lowest order in
rotation, a polar l-mode of an initially nonrotating star couples to an axial l±1
mode in the presence of rotation. Conversely, an axial l-mode couples to a polar
l ± 1 mode as was first discussed by Chandrasekhar and Ferrari [61].

The equations of nonaxisymmetric perturbations in the slow rotation limit
are derived in a diagonal gauge by Chandrasekhar and Ferrari [61], and in
the Regge–Wheeler gauge by Kojima [173, 175], where the complex frequencies
σ = σR + iσI for the l = m modes of various polytropes are computed. For
counterrotating modes, both σR and σI decrease, tending to zero, as the rotation
rate increases (when σ passes through zero, the star becomes unstable to the
CFS instability). Extrapolating σR and σI to higher rotation rates, Kojima
finds a large discrepancy between the points where σR and σI go through zero.
This shows that the slow rotation formalism cannot accurately determine the
onset of the CFS instability of polar modes in rapidly rotating neutron stars.

In [174], it is shown that, for slowly rotating stars, the coupling between
polar and axial modes affects the frequency of f - and p-modes only to second
order in rotation, so that, in the slow rotation approximation, to O(Ω), the
coupling can be neglected when computing frequencies.

The linear perturbation equations in the slow rotation approximation have
recently been derived in a new gauge by Ruoff, Stavridis, and Kokkotas [257].
Using the ADM formalism, a first order hyperbolic evolution system is obtained,
which is suitable for numerical integration without further manipulations (as
was required in the Regge–Wheeler gauge). In this gauge (which is related to a
gauge introduced for nonrotating stars in [27]), the symmetry between the polar
and axial equations becomes directly apparent.

The case of relativistic inertial modes is different, as these modes have both
axial and polar parts at order O(Ω), and the presence of continuous bands in
the spectrum (at this order in the rotation rate) has led to a series of detailed
investigations of the properties of these modes (see [180] for a review). In a
recent paper, Ruoff, Stavridis, and Kokkotas [258] finally show that the inclusion
of both polar and axial parts in the computation of relativistic r-modes, at
order O(Ω), allows for discrete modes to be computed, in agreement with post-
Newtonian [214] and nonlinear, rapid-rotation [294] calculations.

3.4.3 Post-Newtonian approximation

A step toward the solution of the perturbation equations in full general relativity
has been taken by Cutler and Lindblom [77, 79, 199], who obtain frequencies
for the l = m f -modes in rotating stars in the first post-Newtonian (1-PN)
approximation. The perturbation equations are derived in the post-Newtonian
formalism (see [36]), i.e. the equations are separated into equations of consistent
order in 1/c.

Cutler and Lindblom show that in this scheme, the perturbation of the 1-PN
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correction of the four-velocity of the fluid can be obtained analytically in terms
of other variables; this is similar to the perturbation in the three-velocity in the
Newtonian Ipser–Managan scheme. The perturbation in the 1-PN corrections
are obtained by solving an eigenvalue problem, which consists of three second
order equations, with the 1-PN correction to the eigenfrequency of a mode ∆ω
as the eigenvalue.

Cutler and Lindblom obtain a formula that yields ∆ω if one knows the 1-PN
stationary solution and the solution to the Newtonian perturbation equations.
Thus, the frequency of a mode in the 1-PN approximation can be obtained
without actually solving the 1-PN perturbation equations numerically. The 1-
PN code was checked in the nonrotating limit and it was found to reproduce
the exact general relativistic frequencies for stars with M/R = 0.2, obeying an
N = 1 polytropic EOS, with an accuracy of 3–8%.

Along a sequence of rotating stars, the frequency of a mode is commonly
described by the ratio of the frequency of the mode in the comoving frame to
the frequency of the mode in the nonrotating limit. For an N = 1 polytrope
and for M/R = 0.2, this frequency ratio is reduced by as much as 12% in the 1-
PN approximation compared to its Newtonian counterpart (for the fundamental
l = m modes) which is representative of the effect that general relativity has on
the frequency of quasi-normal modes in rotating stars.

3.4.4 Cowling approximation

In several situations, the frequency of pulsations in relativistic stars can be
estimated even if one completely neglects the perturbation in the gravitational
field, i.e. if one sets δgab = 0 in the perturbation equations [226]. In this
approximation, the pulsations are described only by the perturbation in the
fluid variables, and the scheme works quite well for f , p, and r-modes [209]. A
different version of the Cowling approximation, in which δgtr is kept nonzero
in the perturbation equations, has been suggested to be more suitable for g-
modes [99], since these modes could have large fluid velocities, even though the
variation in the gravitational field is weak.

Yoshida and Kojima [331] examine the accuracy of the relativistic Cowling
approximation in slowly rotating stars. The first order correction to the fre-
quency of a mode depends only on the eigenfrequency and eigenfunctions of
the mode in the absence of rotation and on the angular velocity of the star.
The eigenfrequencies of f , p1, and p2 modes for slowly rotating stars with M/R
between 0.05 and 0.2 are computed (assuming polytropic EOSs with N = 1 and
N = 1.5) and compared to their counterparts in the slow rotation approxima-
tion.

For the l = 2 f -mode, the relative error in the eigenfrequency because of the
Cowling approximation is 30% for weakly relativistic stars (M/R = 0.05) and
about 15% for stars with M/R = 0.2; the error decreases for higher l-modes.
For the p1 and p2 modes the relative error is similar in magnitude but it is
smaller for less relativistic stars. Also, for p-modes, the Cowling approximation
becomes more accurate for increasing radial mode number.
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As an application, Yoshida and Eriguchi [328, 329] use the Cowling approx-
imation to estimate the onset of the f -mode CFS instability in rapidly rotating
relativistic stars and to compute frequencies of f -modes for several realistic
equations of state (see Figure 6).
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Figure 6: Eigenfrequencies (in the Cowling approximation) of f-modes along
a M = 1.8M� sequence of models, constructed with the WFF3-NV EOS. The
vertical line corresponds to the frequency of rotation of the model at the mass-
shedding limit of the sequence. (Figure 1 of Yoshida and Eriguchi [329]; used
with permission.)

3.5 Nonaxisymmetric instabilities

3.5.1 Introduction

Rotating cold neutron stars, detected as pulsars, have a remarkably stable ro-
tation period. But, at birth or during accretion, rapidly rotating neutron stars
can be subject to various nonaxisymmetric instabilities, which will affect the
evolution of their rotation rate.

If a proto-neutron star has a sufficiently high rotation rate (so that, e.g.
T/W > 0.27 in the case of Maclaurin spheroids), it will be subject to a dynam-
ical instability driven by hydrodynamics and gravity. Through the l = 2 mode,
the instability will deform the star into a bar shape. This highly nonaxisym-
metric configuration will emit strong gravitational waves with frequencies in the
kHz regime. The development of the instability and the resulting waveform have
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been computed numerically in the context of Newtonian gravity by Houser et
al. [155] and in full general relativity by Shibata et al. [274] (see Section 4.1.3).

At lower rotation rates, the star can become unstable to secular nonaxisym-
metric instabilities, driven by gravitational radiation or viscosity. Gravitational
radiation drives a nonaxisymmetric instability when a mode that is retrograde
in a frame corotating with the star appears as prograde to a distant inertial
observer, via the Chandrasekhar-Friedman-Schutz (CFS) mechanism [60, 118]:
A mode that is retrograde in the corotating frame has negative angular momen-
tum, because the perturbed star has less angular momentum than the unper-
turbed one. If, for a distant observer, the mode is prograde, it removes positive
angular momentum from the star, and thus the angular momentum of the mode
becomes increasingly negative.

The instability evolves on a secular timescale, during which the star loses
angular momentum via the emitted gravitational waves. When the star rotates
more slowly than a critical value, the mode becomes stable and the instabil-
ity proceeds on the longer timescale of the next unstable mode, unless it is
suppressed by viscosity.

Neglecting viscosity, the CFS instability is generic in rotating stars for both
polar and axial modes. For polar modes, the instability occurs only above some
critical angular velocity, where the frequency of the mode goes through zero in
the inertial frame. The critical angular velocity is smaller for increasing mode
number l. Thus, there will always be a high enough mode number l for which
a slowly rotating star will be unstable. Many of the hybrid inertial modes (and
in particular the relativistic r-mode) are generically unstable in all rotating
stars, since the mode has zero frequency in the inertial frame when the star is
nonrotating [6, 117].

The shear and bulk viscosity of neutron star matter is able to suppress the
growth of the CFS instability except when the star passes through a certain
temperature window. In Newtonian gravity, it appears that the polar mode
CFS instability can occur only in nascent neutron stars that rotate close to the
mass-shedding limit [160, 159, 161, 326, 204], but the computation of neutral f -
modes in full relativity [293, 296] shows that relativity enhances the instability,
allowing it to occur in stars with smaller rotation rates than previously thought.

Going further A numerical method for the analysis of the ergosphere instabil-
ity in relativistic stars, which could be extended to nonaxisymmetric instabilities
of fluid modes, is presented by Yoshida and Eriguchi in [327].

3.5.2 CFS instability of polar modes

The existence of the CFS instability in rotating stars was first demonstrated
by Chandrasekhar [60] in the case of the l = 2 mode in uniformly rotating,
uniform density Maclaurin spheroids. Friedman and Schutz [118] show that
this instability also appears in compressible stars and that all rotating, self-
gravitating perfect fluid configurations are generically unstable to the emission
of gravitational waves. In addition, they find that a nonaxisymmetric mode
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becomes unstable when its frequency vanishes in the inertial frame. Thus, zero-
frequency outgoing modes in rotating stars are neutral (marginally stable).
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Figure 7: The l = m neutral f-mode sequences for EOS A. Shown are the ratio of
rotational to gravitational energy T/W (upper panel) and the ratio of the critical
angular velocity Ωc to the angular velocity at the mass-shedding limit for uniform
rotation (lower panel) as a function of gravitational mass. The solid curves are
the neutral mode sequences for l = m = 2, 3, 4, and 5 (from top to bottom), while
the dashed curve in the upper panel corresponds to the mass-shedding limit for
uniform rotation. The l = m = 2 f-mode becomes CFS-unstable even at 85% of
the mass-shedding limit, for 1.4M� models constructed with this EOS. (Figure 2
of Morsink, Stergioulas, and Blattning [230].)

In the Newtonian limit, neutral modes have been determined for several
polytropic EOSs [156, 218, 158, 326]. The instability first sets in through l =
m modes. Modes with larger l become unstable at lower rotation rates, but
viscosity limits the interesting ones to l ≤ 5. For an N = 1 polytrope, the
critical values of T/W for the l = 3, 4, and 5 modes are 0.079, 0.058, and 0.045,
respectively, and these values become smaller for softer polytropes. The l =
m = 2 “bar” mode has a critical T/W ratio of 0.14 that is almost independent
of the polytropic index. Since soft EOSs cannot produce models with high T/W
values, the bar mode instability appears only for stiff Newtonian polytropes of
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N ≤ 0.808 [164, 283]. In addition, the viscosity-driven bar mode appears at the
same critical T/W ratio as the bar mode driven by gravitational radiation [162]
(we will see later that this is no longer true in general relativity).

The post-Newtonian computation of neutral modes by Cutler and Lind-
blom [79, 199] has shown that general relativity tends to strengthen the CFS
instability. Compared to their Newtonian counterparts, critical angular velocity
ratios Ωc/Ω0 (where Ω0 = (3M0/4R3

0)1/2, and M0, R0 are the mass and radius
of the nonrotating star in the sequence) are lowered by as much as 10% for stars
obeying the N = 1 polytropic EOS (for which the instability occurs only for
l = m ≥ 3 modes in the post-Newtonian approximation).

In full general relativity, neutral modes have been determined for polytropic
EOSs of N ≥ 1.0 by Stergioulas and Friedman [293, 296], using a new numerical
scheme. The scheme completes the Eulerian formalism developed by Ipser and
Lindblom in the Cowling approximation (where δgab was neglected) [161], by
finding an appropriate gauge in which the time independent perturbation equa-
tions can be solved numerically for δgab. The computation of neutral modes for
polytropes of N = 1.0, 1.5, and 2.0 shows that relativity significantly strength-
ens the instability. For the N = 1.0 polytrope, the critical angular velocity ratio
Ωc/ΩK, where ΩK is the angular velocity at the mass-shedding limit at same
central energy density, is reduced by as much as 15% for the most relativistic
configuration (see Figure 7). A surprising result (which was not found in com-
putations that used the post-Newtonian approximation) is that the l = m = 2
bar mode is unstable even for relativistic polytropes of index N = 1.0. The clas-
sical Newtonian result for the onset of the bar mode instability (Ncrit < 0.808)
is replaced by

Ncrit < 1.3 (53)

in general relativity. For relativistic stars, it is evident that the onset of the
gravitational-radiation-driven bar mode does not coincide with the onset of the
viscosity-driven bar mode, which occurs at larger T/W [39]. The computation
of the onset of the CFS instability in the relativistic Cowling approximation
by Yoshida and Eriguchi [328] agrees qualitatively with the conclusions in [293,
296].

Morsink, Stergioulas, and Blattning [230] extend the method presented in [296]
to a wide range of realistic equations of state (which usually have a stiff high
density region, corresponding to polytropes of index N = 0.5 − 0.7) and find
that the l = m = 2 bar mode becomes unstable for stars with gravitational mass
as low as 1.0 – 1.2M�. For 1.4M� neutron stars, the mode becomes unstable at
80–95% of the maximum allowed rotation rate. For a wide range of equations of
state, the l = m = 2 f -mode becomes unstable at a ratio of rotational to grav-
itational energies T/W ∼ 0.08 for 1.4M� stars and T/W ∼ 0.06 for maximum
mass stars. This is to be contrasted with the Newtonian value of T/W ∼ 0.14.
The empirical formula

(T/W )2 = 0.115 – 0.048
M

M sph
max

, (54)
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where M sph
max is the maximum mass for a spherical star allowed by a given equa-

tion of state, gives the critical value of T/W for the bar f -mode instability, with
an accuracy of 4–6%, for a wide range of realistic EOSs.

Figure 8: Eigenfrequencies (in the Cowling approximation) of the m = 2 mode
as a function of the parameter β = T/|W | for three different sequences of dif-
ferentially rotating neutron stars (the A−1

R = 0.0 line corresponding to uniform
rotation). The filled circle indicates the neutral stability point of a uniformly ro-
tating star computed in full general relativity (Stergioulas and Friedman [296]).
Differential rotation shifts the neutral point to higher rotation rates. (Figure 1
of Yoshida, Rezzolla, Karino, and Eriguchi [333]; used with permission.)

In newly-born neutron stars the CFS instability could develop while the
background equilibrium star is still differentially rotating. In that case, the
critical value of T/W , required for the instability in the f -mode to set in, is
larger than the corresponding value in the case of uniform rotation [333] (Fig-
ure 8). The mass-shedding limit for differentially rotating stars also appears
at considerably larger T/W than the mass-shedding limit for uniform rotation.
Thus, Yoshida et al. [333] suggest that differential rotation favours the instabil-
ity, since the ratio (T/W )critical/(T/W )shedding decreases with increasing degree
of differential rotation.
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3.5.3 CFS instability of axial modes

In nonrotating stars, axial fluid modes are degenerate at zero frequency, but
in rotating stars they have nonzero frequency and are called r-modes in the
Newtonian limit [242, 260]. To order O(Ω), their frequency in the inertial frame
is

ωi = −mΩ
(

1− 2
l(l + 1)

)
, (55)

while the radial eigenfunction of the perturbation in the velocity can be deter-
mined at order Ω2 [176]. According to Equation (55), r-modes with m > 0
are prograde (ωi < 0) with respect to a distant observer but retrograde (ωr =
ωi +mΩ > 0) in the comoving frame for all values of the angular velocity. Thus,
r-modes in relativistic stars are generically unstable to the emission of gravita-
tional waves via the CFS instability, as was first discovered by Andersson [6] for
the case of slowly rotating, relativistic stars. This result was proved rigorously
by Friedman and Morsink [117], who showed that the canonical energy of the
modes is negative.
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Figure 9: The r-mode instability window for a strange star of M = 1.4M�
and R = 10 km (solid line). Dashed curves show the corresponding instability
windows for normal npe fluid and neutron stars with a crust. The instability
window is compared to i) the inferred spin-periods for accreting stars in LMBXs
[shaded box], and ii) the fastest known millisecond pulsars (for which observa-
tional upper limits on the temperature are available) [horizontal lines]. (Figure 1
of Andersson, Jones, and Kokkotas [11]; used with permission.)

Two independent computations in the Newtonian Cowling approximation
[208, 16] showed that the usual shear and bulk viscosity assumed to exist for
neutron star matter is not able to damp the r-mode instability, even in slowly
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rotating stars. In a temperature window of 105 K < T < 1010 K, the growth
time of the l = m = 2 mode becomes shorter than the shear or bulk viscosity
damping time at a critical rotation rate that is roughly one tenth the maxi-
mum allowed angular velocity of uniformly rotating stars. The gravitational
radiation is dominated by the mass current quadrupole term. These results
suggested that a rapidly rotating proto-neutron star will spin down to Crab-like
rotation rates within one year of its birth, because of the r-mode instability.
Due to uncertainties in the actual viscous damping times and because of other
dissipative mechanisms, this scenario also is consistent with somewhat higher
initial spins, such as the suggested initial spin period of several milliseconds for
the X-ray pulsar in the supernova remnant N157B [224]. Millisecond pulsars
with periods less than a few milliseconds can then only form after the accretion-
induced spin-up of old pulsars and not in the accretion-induced collapse of a
white dwarf.
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Figure 10: Relativistic r-mode frequencies for a range of the compactness ratio
M/R. The coupling of polar and axial terms, even in the order O(Ω) slow ro-
tation approximation has a dramatic impact on the continuous frequency bands
(shaded areas), allowing the r-mode to exist even in highly compact stars. The
Newtonian value of the r-mode frequency is plotted as a dashed-dotted line. (Fig-
ure 3 of Ruoff, Stavridis, and Kokkotas [258]; used with permission.)

The precise limit on the angular velocity of newly-born neutron stars will
depend on several factors, such as the strength of the bulk viscosity, the cool-
ing process, superfluidity, the presence of hyperons, and the influence of a solid
crust. In the uniform density approximation, the r-mode instability can be
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studied analytically to O(Ω2) in the angular velocity of the star [182]. A study
on the issue of detectability of gravitational waves from the r-mode instability
was presented in [238] (see Section 3.5.5), while Andersson, Kokkotas, and Ster-
gioulas [17] and Bildsten [35] proposed that the r-mode instability is limiting
the spin of millisecond pulsars spun-up in LMXBs and it could even set the
minimum observed spin period of ∼ 1.5 ms (see [12]). This scenario is also com-
patible with observational data, if one considers strange stars instead of neutron
stars [11] (see Figure 9).

Figure 11: Projected trajectories of several fiducial fluid elements (as seen in
the corotating frame) for an l = m = 2 Newtonian r-mode. All of the fluid
elements are initially positioned on the φ0 = 0 meridian at different latitudes
(indicated with stars). Blue dots indicate the position of the fluid elements
after each full oscillation period. The r-mode induces a kinematical, differential
drift. (Figure 2c of Rezzolla, Lamb, Marković, and Shapiro [253]; used with
permission.)

Since the discovery of the r-mode instability, a large number of authors have
studied in more detail the development of the instability and its astrophysical
consequences. Unlike in the case of the f -mode instability, many different as-
pects and interactions have been considered. This intense focus on the detailed
physics has been very fruitful and we now have a much more complete under-
standing of the various physical processes that are associated with pulsations
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in rapidly rotating relativistic stars. The latest understanding of the r-mode
instability is that it may not be a very promising gravitational wave source
(as originally thought), but the important astrophysical consequences, such as
the limits of the spin of young and of recycled neutron stars are still consid-
ered plausible. The most crucial factors affecting the instability are magnetic
fields [287, 255, 253, 254], possible hyperon bulk viscosity [166, 207, 140] and
nonlinear saturation [294, 210, 211, 21]. The question of the possible existence
of a continuous spectrum has also been discussed by several authors, but the
most recent analysis suggests that higher order rotational effects still allow for
discrete r-modes in relativistic stars [332, 258] (see Figure 10).

Magnetic fields can affect the r-mode instability, as the r-mode velocity field
creates differential rotation, which is both kinematical and due to gravitational
radiation reaction (see Figure 11). Under differential rotation, an initially weak
poloidal magnetic field is wound-up, creating a strong toroidal field, which causes
the r-mode amplitude to saturate. If neutron stars have hyperons in their cores,
the associated bulk viscosity is so strong that it could completely prevent the
growth of the r-mode instability. However, hyperons are predicted only by
certain equations of state and the relativistic mean field theory is not universally
accepted. Thus, our ignorance of the true equation of state still leaves a lot of
room for the r-mode instability to be considered viable.
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Figure 12: Evolution of the axial velocity in the equatorial plane for a relativistic
r-mode in a rapidly rotating N = 1.0 polytrope (in the Cowling approximation).
Since the initial data used to excite the mode are not exact, the evolution is a
superposition of (mainly) the l = m = 2 r-mode and several inertial modes.
The amplitude of the oscillation decreases due to numerical (finite-differencing)
viscosity of the code. A beating between the l = m = 2 r-mode and another
inertial mode can also be seen. (Figure 2 of Stergioulas and Font [294].)
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The detection of gravitational waves from r-modes depends crucially on the
nonlinear saturation amplitude. A first study by Stergioulas and Font [294]
suggests that r-modes can exist at large amplitudes of order unity for dozens of
rotational periods in rapidly rotating relativistic stars (Figure 12). The study
used 3D relativistic hydrodynamical evolutions in the Cowling approximation.
This result was confirmed by Newtonian 3D simulations of nonlinear r-modes
by Lindblom, Tohline, and Vallisneri [207, 210]. Lindblom et al. went further,
using an accelerated radiation reaction force to artificially grow the r-mode am-
plitude on a hydrodynamical (instead of the secular) timescale. At the end
of the simulations, the r-mode grew so large that large shock waves appeared
on the surface of the star, while the amplitude of the mode subsequently col-
lapsed. Lindblom et al. suggested that shock heating may be the mechanism
that saturates the r-modes at a dimensionless amplitude of α ∼ 3.

More recent studies of nonlinear couplings between the r-mode and higher
order inertial modes [21] and new 3D nonlinear Newtonian simulations [136]
seem to suggest a different picture. The r-mode could be saturated due to
mode couplings or due to a hydrodynamical instability at amplitudes much
smaller than the amplitude at which shock waves appeared in the simulations
by Lindblom et al. Such a low amplitude, on the other hand, modifies the
properties of the r-mode instability as a gravitational wave source, but is not
necessarily bad news for gravitational wave detection, as a lower spin-down rate
also implies a higher event rate for the r-mode instability in LMXBs in our
own Galaxy [11, 154]. The 3D simulations need to achieve significantly higher
resolutions before definite conclusions can be reached, while the Arras et al.
work could be extended to rapidly rotating relativistic stars (in which case the
mode frequencies and eigenfunctions could change significantly, compared to
the slowly rotating Newtonian case, which could affect the nonlinear coupling
coefficients). Spectral methods can be used for achieving high accuracy in mode
calculations; first results have been obtained by Villain and Bonazzolla [316] for
inertial modes of slowly rotating stars in the relativistic Cowling approximation.

For a more extensive coverage of the numerous articles on the r-mode insta-
bility that appeared in recent years, the reader is referred to several excellent
recent review articles [14, 116, 201, 180, 7].

Going further If rotating stars with very high compactness exist, then w-
modes can also become unstable, as was recently found by Kokkotas, Ruoff,
and Andersson [183]. The possible astrophysical implications are still under
investigation.

3.5.4 Effect of viscosity on the CFS instability

In the previous sections, we have discussed the growth of the CFS instability
driven by gravitational radiation in an otherwise nondissipative star. The effect
of neutron star matter viscosity on the dynamical evolution of nonaxisymmetric
perturbations can be considered separately, when the timescale of the viscosity
is much longer than the oscillation timescale. If τgr is the computed growth
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rate of the instability in the absence of viscosity, and τs, τb are the timescales
of shear and bulk viscosity, then the total timescale of the perturbation is

1
τ

=
1
τgr

+
1
τs

+
1
τb
. (56)

Since τgr < 0 and τb, τs > 0, a mode will grow only if τgr is shorter than the
viscous timescales, so that 1/τ < 0.

In normal neutron star matter, shear viscosity is dominated by neutron–
neutron scattering with a temperature dependence of T−2 [101], and compu-
tations in the Newtonian limit and post-Newtonian approximation show that
the CFS instability is suppressed for T < 106 K–107 K [160, 159, 326, 199]. If
neutrons become a superfluid below a transition temperature Ts, then mutual
friction, which is caused by the scattering of electrons off the cores of neutron
vortices could significantly suppress the f -mode instability for T < Ts [204],
but the r-mode instability remains unaffected [205]. The superfluid transition
temperature depends on the theoretical model for superfluidity and lies in the
range 108 K–6× 109 K [240].

In a pulsating fluid that undergoes compression and expansion, the weak in-
teraction requires a relatively long time to re-establish equilibrium. This creates
a phase lag between density and pressure perturbations, which results in a large
bulk viscosity [263]. The bulk viscosity due to this effect can suppress the CFS
instability only for temperatures for which matter has become transparent to
neutrinos [191, 41]. It has been proposed that for T > 5×109 K, matter will be
opaque to neutrinos and the neutrino phase space could be blocked ([191]; see
also [41]). In this case, bulk viscosity will be too weak to suppress the instability,
but a more detailed study is needed.

In the neutrino transparent regime, the effect of bulk viscosity on the insta-
bility depends crucially on the proton fraction xp. If xp is lower than a critical
value (∼ 1/9), only modified URCA processes are allowed. In this case bulk vis-
cosity limits, but does not completely suppress, the instability [160, 159, 326].
For most modern EOSs, however, the proton fraction is larger than ∼ 1/9 at
sufficiently high densities [194], allowing direct URCA processes to take place.
In this case, depending on the EOS and the central density of the star, the bulk
viscosity could almost completely suppress the CFS instability in the neutrino
transparent regime [337]. At high temperatures, T > 5× 109 K, even if the star
is opaque to neutrinos, the direct URCA cooling timescale to T ∼ 5 × 109 K
could be shorter than the growth timescale of the CFS instability.

3.5.5 Gravitational radiation from CFS instability

Conservation of angular momentum and the inferred initial period (assuming
magnetic braking) of a few milliseconds for the X-ray pulsar in the supernova
remnant N157B [224] suggests that a fraction of neutron stars may be born with
very large rotational energies. The f -mode bar CFS instability thus appears as
a promising source for the planned gravitational wave detectors [191]. It could
also play a role in the rotational evolution of merged binary neutron stars, if
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the post-merger angular momentum exceeds the maximum allowed to form a
Kerr black hole [28] or if differential rotation temporarily stabilizes the merged
object.

Lai and Shapiro [191] have studied the development of the f -mode insta-
bility using Newtonian ellipsoidal models [189, 190]. They consider the case
when a rapidly rotating neutron star is created in a core collapse. After a brief
dynamical phase, the proto-neutron star becomes secularly unstable. The in-
stability deforms the star into a nonaxisymmetric configuration via the l = 2
bar mode. Since the star loses angular momentum via the emission of gravita-
tional waves, it spins down until it becomes secularly stable. The frequency of
the waves sweeps downward from a few hundred Hz to zero, passing through
LIGO’s ideal sensitivity band. A rough estimate of the wave amplitude shows
that, at ∼ 100 Hz, the gravitational waves from the CFS instability could be
detected out to the distance of 140 Mpc by the advanced LIGO detector. This
result is very promising, especially since for relativistic stars the instability will
be stronger than the Newtonian estimate [296]. Whether r-modes should also
be considered a promising gravitational wave source depends crucially on their
nonlinear saturation amplitude (see Section 3.5.3).

Going further The possible ways for neutron stars to emit gravitational
waves and their detectability are reviewed in [44, 45, 121, 100, 307, 266, 80].

3.5.6 Viscosity-driven instability

A different type of nonaxisymmetric instability in rotating stars is the insta-
bility driven by viscosity, which breaks the circulation of the fluid [256, 164].
The instability is suppressed by gravitational radiation, so it cannot act in the
temperature window in which the CFS instability is active. The instability sets
in when the frequency of an l = −m mode goes through zero in the rotating
frame. In contrast to the CFS instability, the viscosity-driven instability is not
generic in rotating stars. The m = 2 mode becomes unstable at a high rotation
rate for very stiff stars, and higher m-modes become unstable at larger rotation
rates.

In Newtonian polytropes, the instability occurs only for stiff polytropes of
index N < 0.808 [164, 283]. For relativistic models, the situation for the instabil-
ity becomes worse, since relativistic effects tend to suppress the viscosity-driven
instability (while the CFS instability becomes stronger). According to recent
results by Bonazzola et al. [39], for the most relativistic stars, the viscosity-
driven bar mode can become unstable only if N < 0.55. For 1.4M� stars, the
instability is present for N < 0.67.

These results are based on an approximate computation of the instability in
which one perturbs an axisymmetric and stationary configuration, and studies
its evolution by constructing a series of triaxial quasi-equilibrium configurations.
During the evolution only the dominant nonaxisymmetric terms are taken into
account. The method presented in [39] is an improvement (taking into account
nonaxisymmetric terms of higher order) of an earlier method by the same au-
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thors [41]. Although the method is approximate, its results indicate that the
viscosity-driven instability is likely to be absent in most relativistic stars, unless
the EOS turns out to be unexpectedly stiff.

An investigation by Shapiro and Zane [269] of the viscosity-driven bar mode
instability, using incompressible, uniformly rotating triaxial ellipsoids in the
post-Newtonian approximation, finds that the relativistic effects increase the
critical T/W ratio for the onset of the instability significantly. More recently,
new post-Newtonian [88] and fully relativistic calculations for uniform density
stars [129] show that the viscosity-driven instability is not as strongly suppressed
by relativistic effects as suggested in [269]. The most promising case for the onset
of the viscosity-driven instability (in terms of the critical rotation rate) would
be rapidly rotating strange stars [130], but the instability can only appear if its
growth rate is larger than the damping rate due to the emission of gravitational
radiation – a corresponding detailed comparison is still missing.
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4 Rotating Stars in Numerical Relativity

Recently, the dynamical evolution of rapidly rotating stars has become possible
in numerical relativity. In the framework of the 3+1 split of the Einstein equa-
tions [284], a stationary axisymmetric star can be described by a metric of the
standard form

ds2 = −(α2 − βiβi)dt2 + 2βidxidt+ γijdx
idxj , (57)

where α is the lapse function, βi is the shift three-vector, and γij is the spatial
three-metric, with i = 1 . . . 3. The spacetime has the following properties:

• The metric function ω in (5) describing the dragging of inertial frames by
rotation is related to the shift vector through βφ = −ω. This shift vector
satisfies the minimal distortion shift condition.

• The metric satisfies the maximal slicing condition, while the lapse function
is related to the metric function ν in (5) through α = eν .

• The quasi-isotropic coordinates are suitable for numerical evolution, while
the radial-gauge coordinates [25] are not suitable for nonspherical sources
(see [47] for details).

• The ZAMOs are the Eulerian observers, whose worldlines are normal to
the t = const. hypersurfaces.

• Uniformly rotating stars have Ω = const. in the coordinate frame. This
can be shown by requiring a vanishing rate of shear.

• Normal modes of pulsation are discrete in the coordinate frame and their
frequencies can be obtained by Fourier transforms (with respect to coor-
dinate time t) of evolved variables at a fixed coordinate location [106].

Crucial ingredients for the successful long-term evolutions of rotating stars in
numerical relativity are the conformal ADM schemes for the spacetime evolution
(see [234, 277, 32, 4]) and hydrodynamical schemes that have been shown to
preserve well the sharp rotational profile at the surface of the star [106, 294, 105].

4.1 Numerical evolution of equilibrium models

4.1.1 Stable equilibrium

The long-term stable evolution of rotating relativistic stars in 3D simulations has
become possible through the use of High-Resolution Shock-Capturing (HRSC)
methods (see [103] for a review). Stergioulas and Font [294] evolve rotating
relativistic stars near the mass-shedding limit for dozens of rotational periods
(evolving only the equations of hydrodynamics) (see Figure 13), while accurately
preserving the rotational profile, using the 3rd order PPM method [65]. This
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Figure 13: Time evolution of the rotational velocity profile for a stationary,
rapidly rotating relativistic star (in the Cowling approximation), using the 3rd
order PPM scheme and a 1163 grid. The initial rotational profile is preserved
to a high degree of accuracy, even after 20 rotational periods. (Figure 1 of
Stergioulas and Font [294].)

method was shown to be superior to other, commonly used methods, in 2D
evolutions of rotating relativistic stars [106].

Fully coupled hydrodynamical and spacetime evolutions in 3D have been
obtained by Shibata [270] and by Font et al. [105]. In [270], the evolution of
approximate (conformally flat) initial data is presented for about two rotational
periods, and in [105] the simulations extend to several full rotational periods
(see Figure 14), using numerically exact initial data and a monotonized central
difference (MC) slope limiter [315]. The MC slope limiter is somewhat less
accurate in preserving the rotational profile of equilibrium stars than the 3rd
order PPM method, but, on the other hand, it is easier to implement in a
numerical code.

New evolutions of uniformly and differentially rotating stars in 3D, using
different gauges and coordinate systems, are presented in [93], while new 2D
evolutions are presented in [273].

4.1.2 Instability to collapse

Shibata, Baumgarte, and Shapiro [275] study the stability of supramassive neu-
tron stars rotating at the mass-shedding limit, for a Γ = 2 polytropic EOS. Their
3D simulations in full general relativity show that stars on the mass-shedding
sequence, with central energy density somewhat larger than that of the maxi-
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Figure 14: Still from a movie showing the simulation of a stationary, rapidly
rotating neutron star model in full general relativity, for 3 rotational peri-
ods (shown are iso-density contours, in dimensionless units). The stationary
shape is well preserved at a resolution of 1293. Simulation by Font, Goodale,
Iyer, Miller, Rezzolla, Seidel, Stergioulas, Suen, and Tobias. Visualization by
W. Benger and L. Rezzolla at the Albert Einstein Institute, Golm [1]. (To
see the movie, please go to the electronic version of this review article at
http: // www. livingreviews. org/ lrr-2003-3/ .)
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mum mass model, are dynamically unstable to collapse. Thus, the dynamical
instability of rotating neutron stars to axisymmetric perturbations is close to the
corresponding secular instability. The initial data for these simulations are ap-
proximate, conformally flat axisymmetric solutions, but their properties are not
very different from exact axisymmetric solutions even near the mass-shedding
limit [73]. It should be noted that the approximate minimal distortion (AMD)
shift condition does not prove useful in the numerical evolution, once a horizon
forms. Instead, modified shift conditions are used in [275]. In the above simula-
tions, no massive disk around the black hole is formed, as the equatorial radius
of the initial model is inside the radius which becomes the ISCO of the final
black hole. This could change if a different EOS is chosen.

4.1.3 Dynamical bar-mode instability

Shibata, Baumgarte, and Shapiro [274] study the dynamical bar-mode instabil-
ity in differentially rotating neutron stars, in fully relativistic 3D simulations.
They find that stars become unstable when rotating faster than a critical value
of β ≡ T/W ∼ 0.24 – 0.25. This is only somewhat smaller than the Newtonian
value of β ∼ 0.27. Models with rotation only somewhat above critical become
differentially rotating ellipsoids, while models with β much larger than critical
also form spiral arms, leading to mass ejection (see Figures 15, 16, and 17).
In any case, the differentially rotating ellipsoids formed during the bar-mode
instability have β > 0.2, indicating that they will be secularly unstable to bar-
mode formation (driven by gravitational radiation or viscosity). The decrease
of the critical value of β for dynamical bar formation due to relativistic effects
has been confirmed by post-Newtonian simulations [259].

4.2 Pulsations of rotating stars

Pulsations of rotating relativistic stars are traditionally studied (when possi-
ble) as a time independent, linear eigenvalue problem, but recent advances in
numerical relativity also allow the study of such pulsations via numerical time
evolutions. The first quasi-radial mode frequencies of rapidly rotating stars
in full general relativity have been recently obtained in [105], something that
has not been achieved yet with linear perturbation theory. The fundamental
quasi-radial mode in full general relativity has a similar rotational dependence
as in the relativistic Cowling approximation, and an empirical relation between
the full GR computation and the Cowling approximation can be constructed
(Figure 18). For higher order modes, apparent intersections of mode sequences
near the mass-shedding limit do not allow for such empirical relations to be
constructed.

In the relativistic Cowling approximation, 2D time evolutions have yielded
frequencies for the l = 0 to l = 3 axisymmetric modes of rapidly rotating rel-
ativistic polytropes with N = 1.0 [104]. The higher order overtones of these
modes show characteristic apparent crossings near mass-shedding (as was ob-
served for the quasi-radial modes in [330]).
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Figure 15: Density contours and velocity flow for a neutron star model that has
developed spiral arms, due to the dynamical bar-mode instability. The computa-
tion was done in full General Relativity. (Figure 4 of Shibata, Baumgarte, and
Shapiro [274]; used with permission).

Figure 16: Still from a movie showing the development of the dynamical bar-
mode instability in a rapidly rotating relativistic star. Spiral arms form within a
few rotational periods. The different colors correspond to different values of the
density, while the computation was done in full general relativity. Movie pro-
duced at the University of Illinois by T.W. Baumgarte, S.L. Shapiro, and M. Shi-
bata, with the assistance of the Illinois Undergraduate Research Team [29]; used
with permission. (To see the movie, please go to the electronic version of this
review article at http: // www. livingreviews. org/ lrr-2003-3/ .)
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Figure 17: Still from a movie showing the gravitational wave emission dur-
ing the development of the dynamical bar-mode instability in a rapidly ro-
tating relativistic star. The gravitational wave amplitude in a plane con-
taining the rotation axis is shown. At large distances, the waves assume a
quadrupole-like angular dependence. Movie produced at the University of Illi-
nois by T.W. Baumgarte, S.L. Shapiro, and M. Shibata, with the assistance
of the Illinois Undergraduate Research Team [29]; used with permission. (To
see the movie, please go to the electronic version of this review article at
http: // www. livingreviews. org/ lrr-2003-3/ .)

Numerical relativity has also enabled the first study of nonlinear r-modes in
rapidly rotating relativistic stars (in the Cowling approximation) by Stergioulas
and Font [294]. For several dozen dynamical timescales, the study shows that
nonlinear r-modes with amplitudes of order unity can exist in a star rotating
near mass-shedding. However, on longer timescales, nonlinear effects may limit
the r-mode amplitude to smaller values (see Section 3.5.3).

4.3 Rotating core collapse

4.3.1 Collapse to a rotating black hole

Black hole formation in relativistic core collapse was first studied in axisymmetry
by Nakamura [232, 233], using the (2+1)+1 formalism [217]. The outcome of
the simulation depends on the rotational parameter

q ≡ J/M2. (58)

A rotating black hole is formed only if q < 1, indicating that cosmic censorship
holds. Stark and Piran [290, 244] use the 3+1 formalism and the radial gauge of
Bardeen–Piran [25] to study black hole formation and gravitational wave emis-
sion in axisymmetry. In this gauge, two metric functions used in determining
gθθ and gφφ can be chosen such that at large radii they tend directly to h+ and
h× (the even and odd transverse traceless amplitudes of the gravitational waves,
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Figure 18: The first fully relativistic, quasi-radial pulsation frequencies for a se-
quence of rapidly rotating stars (solid lines). The frequencies of the fundamental
mode F (filled squares) and of the first overtone H1 (filled circles) are obtained
through coupled hydrodynamical and spacetime evolutions. The corresponding
frequencies obtained from computations in the relativistic Cowling approxima-
tion [104] are shown as dashed lines. (Figure 16 of Font, Goodale, Iyer, Miller,
Rezzolla, Seidel, Stergioulas, Suen, and Tobias [105].)
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with 1/r fall-off at large radii; note that h+ defined in [290] has the opposite sign
as that commonly used, e.g. in [306]). In this way, the gravitational waveform
is obtained at large radii directly in the numerical evolution. It is also easy to
compute the gravitational energy emitted, as a simple integral over a sphere
far from the source: ∆E ∼ r2

∫
dt(h2

+,r + h2
×,r). Using polar slicing, black hole

formation appears as a region of exponentially small lapse, when q < O(1). The
initial data consists of a nonrotating, pressure deficient TOV solution, to which
angular momentum is added by hand. The obtained waveform is nearly inde-
pendent of the details of the collapse: It consists of a broad initial peak (since
the star adjusts its initial spherical shape to a flattened shape, more consistent
with the prescribed angular momentum), the main emission (during the forma-
tion of the black hole), and an oscillatory tail, corresponding to oscillations of
the formed black hole spacetime. The energy of the emitted gravitational waves
during the axisymmetric core collapse is found not to exceed 7× 10−4M�c

2 (to
which the broad initial peak has a negligible contribution). The emitted energy
scales as q4, while the energy in the even mode exceeds that in the odd mode
by at least an order of magnitude.

More recently, Shibata [272] carried out axisymmetric simulations of rotating
stellar collapse in full general relativity, using a Cartesian grid, in which axisym-
metry is imposed by suitable boundary conditions. The details of the formalism
(numerical evolution scheme and gauge) are given in [271]. It is found that
rapid rotation can prevent prompt black hole formation. When q = O(1), a
prompt collapse to a black hole is prevented even for a rest mass that is 70–
80% larger than the maximum allowed mass of spherical stars, and this depends
weakly on the rotational profile of the initial configuration. The final configura-
tion is supported against collapse by the induced differential rotation. In these
axisymmetric simulations, shock formation for q < 0.5 does not result in a sig-
nificant heating of the core; shocks are formed at a spheroidal shell around the
high density core. In contrast, when the initial configuration is rapidly rotating
(q = O(1)), shocks are formed in a highly nonspherical manner near high den-
sity regions, and the resultant shock heating contributes in preventing prompt
collapse to a black hole. A qualitative analysis in [272] suggests that a disk can
form around a black hole during core collapse, provided the progenitor is nearly
rigidly rotating and q = O(1) for a stiff progenitor EOS. On the other hand,
q � 1 still allows for a disk formation if the progenitor EOS is soft. At present,
it is not clear how much the above conclusions depend on the restriction to
axisymmetry or on other assumptions – 3-dimensional simulations of the core
collapse of such initially axisymmetric configurations have still to be performed.

A new numerical code for axisymmetric gravitational collapse in the (2+1)+1
formalism is presented in [63].

4.3.2 Formation of rotating neutron stars

First attempts to study the formation of rotating neutron stars in axisymmet-
ric collapse were initiated by Evans [96, 97]. Recently, Dimmelmeier, Font and
Müller [90, 89] have successfully obtained detailed simulations of neutron star
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formation in rotating collapse. In the numerical scheme, HRSC methods are em-
ployed for the hydrodynamical evolution, while for the spacetime evolution the
conformal flatness approximation [324] is used. Surprisingly, the gravitational
waves obtained during the neutron star formation in rotating core collapse are
weaker in general relativity than in Newtonian simulations. The reason for this
result is that relativistic rotating cores bounce at larger central densities than in
the Newtonian limit (for the same initial conditions). The gravitational waves
are computed from the time derivatives of the quadrupole moment, which in-
volves the volume integration of ρr4. As the density profile of the formed neutron
star is more centrally condensed than in the Newtonian case, the corresponding
gravitational waves turn out to be weaker. Details of the numerical methods
and of the gravitational wave extraction used in the above studies can be found
in [91, 92].

New, fully relativistic axisymmetric simulations with coupled hydrodynam-
ical and spacetime evolution in the light-cone approach, have been obtained by
Siebel et al. [282, 281]. One of the advantages of the light-cone approach is that
gravitational waves can be extracted accurately at null infinity, without spuri-
ous contamination by boundary conditions. The code by Siebel et al. combines
the light-cone approach for the spacetime evolution with HRSC methods for
the hydrodynamical evolution. In [281] it is found that gravitational waves are
extracted more accurately using the Bondi news function than by a quadrupole
formula on the null cone.

A new 2D code for axisymmetric core collapse, also using HRSC methods,
has recently been introduced in [273].
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[171] Kluźniak, W., Michelson, P., and Wagoner, R.V., “Determining the prop-
erties of accretion-gap neutron stars”, Astrophys. J., 358, 538–544, (1990).
2.10.1
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