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Abstract

There is now an enormously rich variety of experimental techniques
being brought to bear on experimental searches for dark matter, covering
a wide range of suggested forms for it. The existence of “dark matter”,
in some form or other, is inferred from a number of relatively simple
observations and the problem has been known for over half a century.
To explain “dark matter” is one of the foremost challenges today – the
answer will be of fundamental importance to cosmologists, astrophysicists,
particle physicists, and general relativists. In this article, I will give a brief
review of the observational evidence (concentrating on areas of current
significant activity), followed by anequally brief summary of candidate
solutions for the ‘dark matter’. I will then discuss experimental searches,
both direct and indirect. Finally, I will offer prospects for the future.
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1 Introduction

In the following section it will be seen that we do not yet understand what de-
termines the gravitational potentials within the Universe on scales from galaxies
upwards. One suggestion is that the Universe is full of material that does not
emit electromagnetic radiation and which is thus hard to ‘see’. There are a
tremendous number of ideas on offer to resolve the dark matter dilemma. These
ideas cover modifications to the laws of gravity, cold conventional matter, new
particles, neutrinos with non-zero mass, and exotic objects, to name just a few.
These will be discussed in more detail later. At the moment, there is no abso-
lutely clear solution, although a number of the possibilities do lend themselves to
experimental “searches’,” which are being carried out around the world. Some
of the experiments are designed to look for direct signatures, i.e. the physical
interaction of a dark matter particle in a detector, while others are looking for
indirect evidence, such as the neutrino or γ-ray flux due to dark matter particle
annihilations. In addition, other types of experiments are looking for circum-
stantial evidence, such as the measurement of a non-zero neutrino mass in the
right range, or confirmation of supersymmetry (SUSY). A number of the direct
and indirect searches will be digging deeply into theoretically very interesting
regions of parameter space over the next five years. Indeed there is, at this
time, one experimental result from a direct search that has a signal consistent
with the most optimistic SUSY predictions concerning neutralinos – which just
might be proven correct. While it is true to say that most activity is currently
targeted at what might be called the standard cosmological model, this model
is not without its difficulties as a theory, and experimental evidence from ded-
icated dark matter searches could be crucial in finally clarifying the situation.
Experimental searches probably are the only way to find out unambiguously
what the Milky Way is made of.

The evidence is reviewed in section 2, including subsection 2.2 on the stan-
dard cosmological model. The candidates are presented in section 3. This leads
to section 4 on direct and indirect detection requirements and techniques for
non-baryonic dark matter. Most experiments are being carried out in the con-
text of theoretical expectations for the neutralino, which most regard as the
best motivated of the particle candidates. Section 5 looks in detail at the re-
quirements for detection of the neutralino. A review of the current status of
projects world-wide will be given in section 6. Finally, in section 7 there is a
discussion of the next logical steps for experimental searches for dark matter.
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5 Experimental Searches for Dark Matter

2 The Evidence

2.1 Probes of Gravitational Wells

The existence of “dark matter” is inferred from astrophysical observations that
probe gravitational potentials. The mass content required to provide the derived
gravitational potential is then compared with the visible mass content. Several
types of observation allow this to be done and in most cases the mismatch
between the required mass and the observed mass is extreme. The following list
summarises some of the evidence that has been accumulated:

• Studies of the dynamics of stars in the local disk environment gave rise
to the first suggestion of ‘missing matter’ nearly 70 years ago [99, 100].
The kinetic energy associated with the motion of these stars normal to the
plane of the Milky Way gives a measure of the restraining gravitational
potential that binds them to the disk. Since the first work by Oort, a
number of further studies have given conflicting results. However, even if
present, this particular disk dark matter is not significant compared with
the halo component.

• Rotation curves for a large number of spiral galaxies have now been reliably
established and it is observed that the orbital velocities of objects (stars,
globular clusters, gas clouds, etc.) tend to a constant value, independent
of the radial position r, even for objects out toward, and even far beyond,
the edge of the visible disks. This is quite inconsistent with the 1/

√
r

behaviour expected from Newtonian mechanics, assuming most mass is in
the central part of the galaxies. According to Newtonian mechanics, the
mass density within these galaxies is only declining as ∼ r−2, leading to
a total mass that actually continues to increase proportional to r.

• Within the Local Group of galaxies, the Milky Way and Andromeda (M31)
are approaching each other at a much faster pace than can be explained
by gravitational attraction of the visible mass. To explain the approach
velocity, and indeed the fact that these two galaxies are not still moving
away from each other as part of the Hubble expansion, requires each to
have masses that are consistent with those deduced from their rotation
curves.

• Many clusters of galaxies show extended x-ray emission. This is usually
attributed to a thin plasma of hot gas. On the assumption that the hot
gas is gravitationally bound to the cluster and in equilibrium (i.e. we have
a virial system), the gravitational potential energy can be inferred from
the kinetic energy budget of the hot gas. The cluster mass determined in
this way is much higher than that seen either visibly or in the gas itself.

• Gravitational lensing by clusters of galaxies causes images of more dis-
tant galaxies to be distorted and often split into multiple images. The
gravitational mass of the lens (i.e. the cluster), and its distribution, can
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be recovered through detailed analysis of the image pattern surrounding
the cluster. The lenses show a far more extended spatial extent than the
visible cluster.

• Galaxy red-shift surveys have revealed large-scale galaxy-cluster streaming
motions superimposed on the Hubble expansion. Attempts to explain this
due to gravitational attraction resulting from the overall distribution of
galaxy superclusters give the right direction of motion but need more than
the observed visible masses in the superclusters to explain the speed of
motion.

The next four items are not really at the same level of “simple” observational
evidence as those above, as they require reliance on a more convoluted path to
determine masses involved. However, the first three of these have received a
great deal of effort and are now heavily used as a combined strong argument in
favour of the existence of “dark matter”, and indeed have resulted in a consensus
view of “standard cosmology” over the past few years.

• The large scale structure (LSS) of the Universe can be studied using large
surveys of distant galaxies, by measuring their spatial distribution and
peculiar motions. There is an extensive industry in N-body simulations
trying to explain the LSS and large-scale dynamics in terms of gravita-
tional growth of small perturbations present in the early Universe. The
only simulations that give reasonable agreement with observation are those
that use a matter density somewhat higher than currently thought al-
lowable in visible matter. Indeed, starting from the level of the COBE
observations of the density fluctuations (∼ 10−5) at the time of recombi-
nation (z=1000), for gravitational instability to lead to galaxy formation
on a reasonable timescale it seems necessary to invoke a significant dark
matter component, which only interacts gravitationally.

• Type Ia supernovae can be used as standard candles to determine dis-
tances, independently of red-shift to high red-shift galaxies in which they
occur. This allows the geometry of space-time to be studied at high red-
shift. The implications of the results will be discussed later, but consistent
cosmological models seem to require a dark matter component.

• The COBE satellite gave us the first measurement of the amplitude of
microwave background anisotropies at the time of recombination. It is
these perturbations which subsequently grow through gravitational insta-
bilities to form the large-scale structure seen today. COBE had a relatively
poor angular resolution. Recently, new results have determined the an-
gular power spectrum of the microwave background anisotropies at much
finer angular scales, where enhancements are expected due to acoustic
wave resonances in the early Universe. The position and amplitude of the
enhancement depends on parameters of the early Universe. A clear first
peak is seen in the data and its position favours a dark matter component.
Even second and third peaks look to be emerging and the amplitudes and
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positions of these provide constraints on various cosmological parameters
(this will be discussed in more detail in the following section).

• For those who believe in inflation, most surviving models naturally have a
density equal to the critical density, which exceeds that possible in visible
matter.

With such a large volume of evidence there can be no doubt that there is a real
mystery to be unravelled here. Ideally, it would be satisfying if there were a
single simple solution that explained all the above. This has proven elusive so
far, but recently there has been some convergence on models that address the
larger scale issues to do with the Universe as a whole, and this is discussed in
the next subsection. The main aim is to establish a consensus opinion on the
dark matter fraction, and more specifically the cold dark matter fraction, as
this motivates most of the experimental searches for dark matter. In doing this
we will see that a strong argument for a standard cosmology, with cold dark
matter as one of its components, is beginning to become established. However,
some issues clearly hint at aspects of the cosmology that have yet to be properly
resolved, and some of these do have potentially serious implications for the cold
dark matter component. These will be discussed in section 2.3.

2.2 Toward a Standard Cosmological Model?

Within the context of a big bang creation scenario in which an inflationary
phase is followed by expansion within the confines of General Relativity, there
are at least 11 parameters that define a cosmological model in the post inflation
era [36]. These 11+ parameters affect what happens in the first few minutes
during which nucleosynthesis of the lightest elements occurs (BBN), how the
geometry of space-time develops, and how structure forms through gravita-
tional enhancement of primordial density inhomogeneities which come out of
the inflationary phase. The density inhomogeneities will leave an imprint on
the microwave background radiation that survives from the era of recombina-
tion, some 300,000 years after the big bang. Subsequently, they grow through
gravitational instability to give rise to the structure we see in the distribution of
visible objects in the Universe today. Hence, by bringing together observations
that relate to BBN, space-time evolution, microwave background anisotropies,
and large-scale structure, it is possible to define inter-related regions of the 11
parameter phase space that are consistent with all the information. Tegmark,
Zalderriaga, and Hamilton [137] did this just after the first release of new CMB
data from BOOMERANG [41] and MAXIMA [67]. The parameter space used
was

(τ,Ωk,ΩΛ, ωd, ωb, fν , ns, nt, As, r, b) (1)

where τ is the reionisation optical depth, As, ns, r, nt are the primodial am-
plitudes and tilts of the scalar and tensor inhomogeneities, b is a bias factor
relating rms galaxy fluctuations to the underlying rms matter fluctuations, Ωk

Living Reviews in Relativity (2002-4)
http://www.livingreviews.org

http://www.livingreviews.org


T. J. Sumner 8

and ΩΛ are the contributions to the overall density from curvature and the cos-
mological constant, ωd and ωb are the physical densities of dark matter (both
hot and cold together) and baryonic matter, and finally fν is the fraction of
dark matter in the form of hot dark matter. The primary observational data
that they used were all available CMB data [54] and the recently released IRAS
Point Source Catalogue Redshift Survey (PSCz) [113] from which they derived
the large scale structure power spectrum. Simultaneous fits were then done to
these data allowing all 11 parameters to vary [136].

0.49 ≤ ΩΛ ≤ 0.74 0.49 ≤ ΩΛ ≤ 0.76

0.20 ≤ Ωm ≤ 0.50

0.11 ≤ h2Ωd ≤ 0.17 0.09 ≤ h2Ωd ≤ 0.17

0.00 ≤ h2Ωhdm ≤ 0.12

0.10 ≤ h2Ωcdm ≤ 0.32

0.020 ≤ h2Ωb ≤ 0.037 0.01 ≤ h2Ωb ≤ 0.03

Table 1: Allowable ranges of values of density parameters within the standard
cosmological model derived from the first release CMB data of BOOMERANG
and MAXIMA (left-hand column, [137]) with corresponding values (where
quoted) from the newest data sets (right-hand column, [143]). h is the Hubble
parameter and values of 0.74±0.08 and 0.72±0.08 were used in [137] and [143],
respectively.

Table 2.2 shows the acceptable range of values for the key parameters that
came out of those fits. In the table the matter density, Ωm = Ωb +Ωcdm +Ωhdm,
includes both baryonic matter and dark matter, and moreover the dark matter
can be classed either as “hot” or “cold” depending on whether it was relativistic
or not in the early Universe. The total dark matter density is Ωd = Ωhdm +
Ωcdm, and h2Ωd = ωd. Of particular note for this review were that the cold
dark matter density is non-zero and that the baryonic density has a range that
just accomodates the constraints from BBN [27] at its lowest end, but with
significantly better fits for higher values. The hot dark matter density can only
be a minor component.

Very recently there have been significant new CMB data released from
BOOMERANG [97], MAXIMA [64], DASI [77], and CBI [102]. These data have
given better definition to the second and third peaks in the CMB power spec-
trum. Wang, Tegmark and Zaldarriaga [143] subsequently repeated the above
analysis using a combination of these and previously available CMB data.

The two left-hand plots in the top row in Figure 1 are the most relevant
for the dark matter. We see that the dark matter density is again non-zero,
with a similar range of values as before, and that the fraction of dark matter
as “hot dark matter” is less than 35%, assuming no constraints on the hubble
parameter, h. The allowable fraction of hot dark matter drops to only 20% if the
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9 Experimental Searches for Dark Matter

Figure 1: Allowable parameter spaces for ΩΛ, Ωk, ωb, ωd, fν , τ and r. The
figure is taken from [143] and the dashed lines mark the 95% confidence limits.

preferred hubble parameter value is imposed. The right-hand column in table 2.2
lists the quoted 95% confidence limits for comparison with the earlier analysis.
The most striking difference is in the baryon density. While previously the
allowable range of Ωb was only just compatible with the upper limit derived from
BBN [27], it now comfortably embraces it. This is illustrated in the left-hand
panel in figure 2, which shows the combined constraints on the baryonic matter
and dark matter densities. The white central region is the allowed parameter
space when all constraints are applied, except for BBN of course. Relaxing the
constraints by not using the PSCz data enlarges the allowed region to include
the cyan coloured area. If, in addition, no assumptions are made about the
value of the Hubble constant, then the green area also becomes allowed. If all
constraints are accepted then figure 2 implies there is between 4.5 and 9 times
as much dark matter in the Universe as there is baryonic matter.

Constraints on cosmological models can also be derived from the observations
of high red-shift Type 1a supernovae [59]. When combined with data from
the CMB anisotropies, these limits give reasonable agreement with those cited
earlier in table 2.2. A recent result from de Bernardis et al. [42] is shown in the
right-hand panel in figure 2. This time what is shown are the joint constraints
on Ωλ and Ωm. The solid curves are the 1 to 3σ combined likelihood contours
and these can be compared with the values in the table. A somewhat weaker
constraint on the Hubble constant was used.

Hence, from the above, there does indeed seem to be a cosmological model
that can simultaneously satisfy all the observational evidence used. The ranges
of values for the key parameters relevant to dark matter searches have been
summarized in table 2.2. Rotation curves of galaxies can also be explained
with this type of cosmological model. Numerous N-body simulations have been
performed to verify whether structure formation occurs properly in a number
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Figure 2: The left-hand panel from [143] shows the joint constraints on the
baryonic matter and dark matter densities, together with the allowed band of
baryonic density from BBN models. The right-hand panel from [42] shows the
joint constraints on Ωλ and Ωm which result from combined use of CMB data
and high-redshift supernova data.

of different types of models. Gawiser and Silk [53] reviewed the situation with
regard to large-scale structure. Simulations of gravitational collapse on the scale
of galaxies have resulted in universal rotation curves that match reasonably well
those observed in a wide range of galaxies [94, 95].

From table 2.2 the main features of the emerging standard cosmology from
the point of view of dark matter are:

• A ΛCDM scenario where the dominant energy density is from ΩΛ.

• The matter density Ωm greatly exceeds that which can be present in a
baryonic form, and hence there is a significant dark matter component.

• The dark matter density Ωd is mostly comprised of cold dark matter.

• N-body simulations suggest that galaxies are comprised of similar mixes
of baryonic matter and dark matter as the universe as a whole.

The origin of ΩΛ remains a topic of current debate, with a great deal of interest
in quintessence [29, 9].

2.3 Discrepancies within the Standard Cosmological Model

Although the argument in section 2.2 is very persuasive and does present a
formally consistent picture there are a number of concerns that continue to
require attention.

Firstly, it can be seen from table 2.2 that, prior to the latest CMB data, the
consistency between BBN and the CMB and LSS constraints was marginal. As
a result of this a number of routes that allow for higher baryon density were
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explored. The most recent of these [48] invoked a degenerate BBN scenario
in which additional light neutrinos (either sterile or degenerate) are allowed.
Consistency with observed CMB anisotropies was obtained for 4 ≤ Nν ≤ 13
with 0.25 ≤ h2Ωb ≤ 0.35. Such a high baryon density would negate the need
for dark matter. While it is comforting (to some) to see the new CMB data
apparently removing this discrepancy, the data themselves are still not “high-
precision” and some aspects of the data reduction remain uncertain [143].

A second issue has arisen from high resolution N-body simulations [96, 57,
90]. These simulations seem to be showing a more peaked CDM enhancement
toward galaxy centres than the previous work [94, 95] and more sub-structure
in the CDM halos themselves [61]. There is increasing evidence that indeed
the predictions are incompatible with observational data [26, 112, 21, 43, 80].
Possible ways of softening the central profile include allowing the dark matter
to interact more readily, either with itself (self-interacting CDM [25]) or with
baryonic matter. Although the N-body simulations themselves appear robust
in general, in central regions where there are few “particles” there is the issue
of resolution and convergence [91].

Thirdly, it can be seen that the type Ia supernovae data are crucial in deter-
mining the value of ΩΛ. Central to this is the question of whether the optical
light-curves can really be used as standard candles, or whether reddening is
playing a role here, as quite small amounts of absorption could significantly
affect the results. Use of infrared light curves may well be more reliable [83].
This suggestion has been countered recently by the observation of a very high-
redshift (z∼1.7) supernova which is actually brighter than expected, even in a
“no-dust” scenario [108]. Its increased brightness is shown to be consistent with
an early deceleration phase of the Universe.

Finally, there is a class of model in which gravity itself is assumed to be
modified [86, 85]. A large number of effects attributed to dark matter have been
addressed using modified gravity [82] with the most recent being an analysis of
the latest CMB aniostropy data [81]. In this latest work it is claimed that
ΩΛ ∼ 1 with Ωb ∼ Ωm (consistent with standard BBN) is the favoured model.
However, the result rests heavily on the apparent absence of a second peak in the
CMB data from BOOMERANG [41]; MAXIMA-1 data [67] are not included.
At the moment the totality of CMB data does not constrain the second peak
sufficiently strongly to rule out a significant Ωcdm component.
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3 The Dark Matter Candidates

It was argued in section 2.2 that there is a clear need for dark matter. In
addition, it seems the baryonic density must be very close to the maximum
allowed by BBN. This last fact raises another interesting requirement in that
the current best estimate places the baryonic density in the visible content of
galaxies and cluster gas as [103] Ωv ∼ (2.2 + 0.6 h−1.5) × 10−3 ∼ 0.003. This
is well below the range given in table 2.2 and implies that there is a lot more
baryonic matter yet to be found. This missing baryonic matter is also generally
referred to as “dark matter”. In the following sections the possible forms of both
the baryonic and non-baryonic dark matter will be reviewed. Table 2, adapted
from Carr (1990) [30], summarizes some of the types of objects that have been
suggested as dark matter.

Non-baryonic Baryonic

Axions (10−5 eV) Snowballs ?
Neutrinos (∼ 10 eV) Brown dwarfs (≤ 0.08 M�)
WIMPs (1–103 GeV) M-dwarfs (0.1 M�)
Monopoles (1016 GeV) White dwarfs (1 M�)
Planck relics (1019 GeV) Neutron stars (2 M�)
Primordial black holes (> 1015 g) Stellar black holes (∼ 10 M�)
Quark nuggets (< 1020 g) Very Massive Objects (102–105 M�)
Shadow matter ? Super Massive Objects
Cosmic strings ? Cold diffuse gas

Table 2: Possible dark matter candidates (adapted from [30]).

Figure 3 illustrates the scale-lengths on which the various dark matter can-
didates might be significant. The white areas are the allowed ones. The dark
grey areas are strongly disallowed on theoretical grounds, whilst the lighter grey
areas are unlikely but not rigorously excluded. In the next two sections a very
brief discussion of the main baryonic and non-baryonic candidates is given. Carr
(2000) [31] and Turner (1999) [138] have given more detailed reviews.

3.1 Baryonic Dark Matter

According to the standard model, baryonic dark matter is required to make up
the difference between the visible matter density Ωv and the baryon density
Ωb required by standard BBN models. Exactly where these baryons might be
hiding depends on the nature of the objects being studied. For high redshifts
> 3, most of the baryons might still be in the form of an intergalactic medium
still in the process of collapse [144], while recent data from a large sample of
nearby x-ray emitting clusters of galaxies have shown that for these clusters
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13 Experimental Searches for Dark Matter

Figure 3: Possible scale-lengths where different types of dark matter might be
present, based on a similar representation which appeared in [30].

most of the baryon fraction f is in the surrounding hot gas of the intracluster
medium (ICM) [88]. Indeed, if it is assumed that the cluster matter has the
same fraction of baryonic matter as the universe as a whole, i.e. f ' Ωb/Ωm,
then it seems that the ICM accounts for baryons up to the required BBN levels
in these clusters. On the scale of individual galaxies the situation is much
less clear [31]. Rotation curves of galaxies imply the existence of dark-matter
centrally clustered halos. Λ-CDM N-body simulations (see figure 4) suggest
the halo composition should follow the underlying matter distribution of the
universe but with some enhancement of the baryonic proportion through more
efficient dissipative collapse.

This naturally leads to the conclusion that there is probably unseen baryonic
matter in galaxies, but that it is unlikely to be sufficient to entirely explain the
rotation curves. The brown dwarf (BD) candidate entry in figure 3 includes
any compact object with masses below 0.08 M�. Many searches have been car-
ried out looking for these MAssive Compact Halo Objects (MACHOs) using
microlensing data. These are reviewed in [31]. Although a number of candidate
microlensing events have been seen, the apparent mass determinations for the
lenses and their locations cast doubt on whether the lenses are indeed MACHOs
in the halo of the Milky Way. The most recent estimates put the most likely
MACHO contribution to the halo at 20% [8], and the masses of these objects
appear to be ∼ 0.5 M�. This suggests a population of white dwarfs and might
indicate an early epoch of star formation in the Galactic halo. To explain all
the dark matter with compact objects larger than brown dwarfs would have
produced too many heavy elements during their evolution as stars prior to col-
lapse and so these are still excluded as halo baryons in figure 3, at least as far
as providing the bulk of the Galactic dark matter. However, above ∼ 105 M�,
super massive objects (SMOs) might collapse immediately to black holes. SMOs
would still produce microlensing effects and would also give rise to dynamical
effects, such as the heating of disk stars and the disruption of globular clus-
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ters [32]. Finally, it remains possible in principle that cold clouds with masses
∼ 10−3 M� might provide some of the halo dark matter [104, 140, 141].

Figure 4: High-resolution N-body simulation of a galactic dark matter halo [90].

3.2 Non-baryonic Dark Matter

The non-baryonic candidates are classified as either hot or cold dark matter.
Hot implies the matter was relativistic in the early universe. An example of hot
dark matter is the neutrino. From table 2.2 it can be seen that the standard
model still allows for a small HDM component. The neutrino would fulfill this
if it had a non-zero mass, as suggested by recent experimental results from
Super-Kamiokande [51, 71]. However, most of the dark matter will be cold
dark matter (CDM). The best motivated of the various suggested candidates
are two particles that were already invoked for other reasons. These are the
axion and the lightest supersymmetric particle (neutralino), which is a member
of the generic family of weakly interacting massive particles (WIMPs).

Axions are particles invoked to resolve the strong CP violation problem [74].
Without these particles, the level of CP violation seen in the K0 decay would
give rise to a neutron electric dipole moment in excess of the limits already estab-
lished. The allowable mass range for the axion is constrained by astrophysical
arguments to 10−3 to 10−6 eV/c2.
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WIMPs are naturally predicted in supersymmetry theories in which a higher
level symmetry is obtained in the particle families by introducing new particles
to match each of the known particles. In the so-called minimal supersymme-
try models (MSSM), the lightest supersymmetric particle (LSP) is likely to be
a neutralino χ, which is a mixture of two neutral gauginos and two neutral
higgsinos [79]:

χ = χ0
1 = f11W

3 + f12B + f13H1 + f14H2. (2)

There are numerous parameters required to specify a particular MSSM config-
uration. It turns out that there is a wide range of parameter space in which the
production and annihilation rates in the early universe are such that ΩLSP '
Ωcdm [45]. The mass range for neutralinos is 46 GeV/c2 ≤ mχ ≤ 2000 GeV/c2,
where the lower limit comes from accelerator data from LEP [66].

3.3 Dark Matter in the Milky Way

Experimental searches for dark matter invariably are trying to detect cold dark
matter within our own galaxy. Thus, it is useful to review at this stage the cur-
rent thoughts about the distribution of cold dark matter within the Milky Way
and, for terrestrial based experiments, the likely cold dark matter presence near
Earth. Figure 5 shows both the observational data on the rotation curve [50]
and a recent determination of various mass components [72].
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Figure 5: The rotation curve of the Milky Way. In the left-hand panel are the
measured rotation speeds given by the average values from a number of measure-
ments on different objects [50]. The right hand panel shows the various mass
components that combine together to reproduce the observed curve between 5
and 25 kpc [72]. The dotted lines are the bulge and disk contributions, and the
short-dashed curve is the dark matter contribution. The solid curve shows the
combined effect of all three, and this is compared to the long-dashed curve which
approximates the measured data in the left-hand panel below 25 kpc.

At the position of the Sun, 7.5–8 kpc, it can be seen that the contributions
to the enclosed mass from the bulge, the disk, and the dark matter halo are
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comparable. In these types of studies, the dark matter halo is assumed to
be in a quasi-spherically symmetric distribution in virialised equilibrium. The
halo is usually taken to be non-rotating and the local density comes out as
∼ 0.3 GeV/cm3. The velocity distribution of the DM particles is assumed to
be Maxwellian with an upper cut-off at the Galactic escape velocity. Most
calculations of event rates and energy deposits in detectors are done assuming
this straight forward type of DM halo [78]. Possible modifications to this simple
DM geometry include:

• A modified radial CDM density profile giving a much lower CDM local
density. This has been implied recently by analysis of microlensing events
towards the Galactic bulge. A much larger number of events have been
seen than expected and this suggests an unseen stellar population within
the solar radius that can apparently account for the local rotation speeds
without the need for dark matter [56].

• Gravitational clustering of CDM particles at the centres of massive ob-
jects [124], such as the Sun, the Earth, or the galactic centre.

• CDM halos with non-zero angular momentum.

• Clumpy CDM galaxy halos [57, 90, 92].

• Non-equilibrium situations with on-going CDM infall into the Galaxy [116,
115].

• Non-equilibrium situations with on-going CDM infall into the local clus-
ter/supercluster.

• CDM scattered into stable orbits around the Sun [40].
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4 Non-Baryonic Dark Matter Detection

There are a number of previous reviews on general techniques used for dark
matter searches [105, 119, 131]. Two basic methods can be used, either direct
or indirect. Direct searches depend on dark matter particles actually passing
through detectors and physically interacting with them. Indirect searches look
for secondary products produced when dark matter particles annihilate each
other elsewhere. Direct searches can, in principle, be used to look for neutrinos,
axions and WIMPs, whereas only WIMPs are accessible indirectly.

4.1 Indirect Search Techniques

WIMP particle-antiparticle annihilations can produce neutrinos, γ-rays, an-
tiprotons, and positrons. Experiments have been proposed to detect all of
these [49]. For neutrinos and γ-rays the signal rates expected depend on the
WIMP–antiWIMP densities. SUSY neutralinos (the WIMPs on which most at-
tention is fixed) are their own antiparticles and the annihilation process can be
represented as χχ̄ → ff̄ or → W−W+ or → ZZ, where f = ν, τ, c, b, t with
c, b, t being quarks.

Neutrino signal rates can be enhanced by the trapping of WIMPs in massive
bodies, such as the Sun, Earth, or Galactic centre; the WIMP density builds
up until the annihilation rate equals the capture rate. For the Sun this equi-
librium situation has already been reached. For Earth this may not yet be the
case and annihilation fluxes may be only 10% of that expected in equilibrum.
The capture rate will depend on the scattering rates for WIMPs on the various
nuclear species in the body and the energy transfer per scatter. The scattering
rate on a particular species will depend on the abundance of the species and the
cross-section. The scattering cross-sections are usually calculated [49] within
MSSM constraints, abundances depend on which body the WIMPs are being
trapped in, and energy transfer per collision normally assumes elastic scattering
with the WIMPs starting out with a typical virial speed of ∼ 10−3c for par-
ticles bound to the Galaxy. Once capture rates, and hence annihilation rates,
have been derived, the neutrino flux is calculated from the branching ratios for
WIMP annihilations going into neutrinos. Neutrino products are typically in
the GeV energy range and are hence accessible to existing solar neutrino ex-
periments. However, for contained events (ones in which the muons produced
by the neutrinos are stopped in the detector) the predicted rates Rc are a few
events for kiloton of detector per year, while traversing signals (muons pro-
duced in surrounding rocks and passing through the detector) occur at a rate
Rt ∼ 0.1RcEν(A/106)−1 yr−1. A is the detector area in cm2. Results from this
type of experiment first appeared in the mid-1980s [46].

Early studies of γ-ray signatures from WIMP annihilation predicted both
continuum emission from π0 products, and line features from χχ̄ → γZ and
direct WIMP annihilation into photons χχ̄ → γγ [129, 130, 49]. Continuum
emission fluxes were predicted to be about two orders of magnitude lower than
the diffuse galactic background. However, some enhancement would be expected
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in the direction of the galactic centre. Line emission features should be much
easier to see above the background as long as good energy (∆E/E ∼ 1%) is
available.

Antiproton fluxes from WIMP annihilation were expected to produce mea-
surable enhancements above typical background fluxes in the low-energy an-
tiproton spectrum (< 1 GeV), which would be accessible to space instruments
such as AMS [4]. However, it is now thought that there will be additional
background fluxes that will make this type of measurement difficult.

Positron features around 50–100 GeV are expected from neutralino annihila-
tions. These may be visible as bumps in the otherwise smooth background spec-
trum due to cosmic-ray interactions with interstellar gas. Signals are expected
to be much below the background levels, and long-duration space missions will
be needed to collect sufficient statistics to observe the positrons [49].

4.2 Direct Search Techniques

Although there have been a number of suggestions for experiments to detect
neutrinos [119, 123] (residual primordial hot dark matter now gravitationally
bound to the galaxy), none can yet achieve sufficient sensitivity.

Axions, on the other hand, are amenable to direct detection [109], although it
is challenging to fully explore the whole of the theoretically available parameter
space. Among particles proposed to solve the CP violation problem, the axion
comes in two varieties, which have fairly well defined properties [75]. Axions
can be converted completely into photons in what is essentially a two-photon
interaction. In experiments to detect galactic dark-matter axions the second
photon is provided by an intense ambient electromagnetic field. The photon
created has an energy equal to the total energy of the axion (rest mass plus
kinetic energy). As noted earlier, the dark matter energy density at the position
of the Earth is about 0.3 GeV/cm3. The preferred mass range for the axion is
between 10−6 and 10−3 eV/c2, although there is a second window between 2
and 5 GeV/c2 [139]. The lower limit of the preferred mass range keeps Ωm ≤ 1,
while the upper limit prevents excessive energy-loss mechanisms in stars and
supernovae due to axion production and loss. If the galactic dark matter is
axions, then their local density is between 3× 1011 and 3× 1013 cm−3. With a
virial velocity distribution (∼ 10−3c), the flux through a terrestrial detector is
enormous, but unfortunately the two-photon conversion process is very weak. In
an ambient 6 Tesla field each axion has a conversion probability around 10−17

per second, and the photon produced has an energy in the microwave region
(2–200 GHz). Such an experiment requires a tuned high-Q cavity, tunable over
the projected axion mass/energy range, with a sensitivity of around 10−23 W.
Two early experiments of this type [93, 84, 63] have been followed by a number
of second generation instruments [109], and the preferred axion mass window
has been closed over a very small range at its lowest end (2.9 × 10−6 to 3.3 ×
10−6 eV/c2) at the 90% confidence level for KSVZ axions [62]. A variant on the
tuned cavity technique is to incorporate Rydberg atoms into the cavity where
the |n〉 to |n′〉 transition is also resonant with the cavity [145]. In addition
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to the direct dark matter axion searches, there are a number of experiments
looking for evidence of axion existence, such as axion telescopes pointed at the
Sun [87] and torsion balance instruments looking for short-range weak force
spin-coupling interactions of the type mediated by the axion [122, 98, 114, 134].
These have yet to achieve sufficient sensitivity.

Neutralinos have received by far the most attention and there are an enor-
mous range of techniques being used to search for these particles [119, 132, 6].
The basic questions that need to be addressed to assess the feasibility of detec-
tion of WIMPs in the halo of our Galaxy are:

• How often will scattering events occur?

• How much energy will they deposit?

• How easy will it be to separate any real signal from background and to
convincingly prove that a signal has been seen, i.e. what characteristic
signatures are expected?

Each of these three issues are dealt with in some detail for the neutralino of the
MSSM in the following sections.
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5 Neutralino Detection Principles and Techni-
ques

5.1 Expected Scattering Rates

The scattering rate per unit detector volume Rt depends on the local density of
dark matter particles Nw; their velocity distribution relative to a detector in a
terrestrial laboratory nw(v), and the velocity dependent scattering cross-section
σv, via the usual equation

Rt =
∫ ∞

0

nw(v)ntσt(v)vdv, (3)

where nt is the number density of nuclei of species t in the detector. The local
number density of WIMP particles is Nw =

∫∞
0

nw(v)dv = ρcdm/mw, where mw

is the WIMP mass and ρcdm is the assumed local cold dark matter density. The
WIMP velocity distribution and the cross-section both have a wide range of
uncertainty, which makes accurate predictions impossible. The preferred range
for mw in the context of the lightest stable neutralino within minimal MSSM is
20 to 200 GeV/c2 [110, 111], and Han and Hempfling [66] quote a lower mass
limit from LEP data as ∼ 46 GeV/c2. In the simplest models the dark matter
density distribution in the halo of the Galaxy is taken to be a spherical 1/r2

(at least for large r) distribution with a local density, at the position of the
solar system, of ∼ 0.3 GeV/cm3. The velocity distribution is taken to be a
Maxwellian, consistent with a virialised system but truncated above the Galac-
tic escape velocity. Models involving non-spherical density distributions [73],
rotating halos [44, 73], and/or non-virial velocity distributions, such as Galac-
tic in-fall components with cusps [116] or bound Solar-System Earth-crossing
components [40], can individually give factor-of-two differences in the predicted
scattering rates. The WIMP velocity distribution as seen by a terrestrial detec-
tor has a bias imposed by the Earth’s velocity through the halo and its spin. This
produces a temporal modulation of the apparent WIMP velocity distribution,
which results in an annual modulation of the WIMP scattering rate and recoil
spectrum, and daily and annual modulations in the directional distributions.

The scattering cross-section itself has a very wide range of possible val-
ues [45]. Different neutralino models, within MSSM or SUGRA (supergravity),
exhibit an enormous range of interaction strengths that can be pure axial in
nature (coupling only to nuclei with non-zero spin), pure coherent (coupling
to all nucleons), or any combination of the two. Figure 6 shows the allowed
range of parameter space for the scattering cross-sections. The plot [79] has
been produced using output from the DarkSusy [58] code, using up to 65 free
parameters. Even in this plot some ‘reasonable’ assumptions have been made
in allowing the parameters to vary; Ellis [45] relaxes some of these and, not
surprisingly, finds a wider range of resulting cross-sections. The cross-sections
are normalised to one nucleon; to calculate the total cross-section for a target
nucleus with N neutrons and nuclear spin J requires a scaling as ∼ (N/2)2 for
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the coherent spin-independent part of the cross-section and λ2
sJ(J + 1) for the

spin-dependent part. The value of λs depends on the target material [60].

Figure 6: Total neutralino elastic scattering cross-section normalised to one
nucleon for a range of neutralino models within MSSM and mSUGRA, taken
from [79]. The pink area corresponds to a neutralino in a dominantly bino
state, the green bounded area is dominantly higgsino. The cross-section includes
both spin-independent and spin-dependent contributions, and in general the spin-
dependent part is likely to be larger.

Form factor effects, which arise due to the finite size of the nucleus, are
significant for the heavier target nuclei, are different for axial and coherent
scattering, and again have uncertainties [47, 107]. Predicted event rates typically
range from 10−4 to 10 events/day/kg. To achieve sensitivity to such rare events
requires low-background instruments operating in well shielded underground
environments.
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5.2 Expected Energy Deposit

The predicted differential observable recoil spectrum, assuming a standard virial
Maxwellian velocity distribution, is of the form

dR

dE

∣∣∣∣
obs

∝ R0

fE0r
e−E/(fE0r)F 2(E), (4)

where f is the quenching factor which reflects the relative efficiency with which
the nuclear recoil energy is recorded in the signal channel compared to a γ-
ray of the same energy. E0 is the characteristic energy for the virialized WIMP
population, F is the form factor referred to previously, and r is a kinematic factor
dependent on the relative masses of the WIMP and target nuclei. Somewhat
more complex formulae result when modified velocity distributions are used
(e.g. incorporating a Galactic cut-off), or the rate is convolved through the
instrument response. A falling recoil spectrum with a maximum recoil energy
∼ 100 keV is expected. For larger target nuclei, such as iodine, the form factor
further suppresses the recoil spectrum above 50 keV.

Inelastic WIMP scattering (producing excited nuclear states) can also oc-
cur. γ-rays emitted from nuclear relaxation can be self-absorbed in the detector
producing characteristic spectral lines. Experiments of this sort have been per-
formed [15, 52, 18]; the cross-sections are much lower than the elastic ones and
the technique will not be discussed further.

5.3 WIMP Signatures

A crucial quality of instruments and techniques is their ability to look for the
signatures expected from WIMP scattering interactions. There are, in fact, a
number of specific characteristics to be looked for, including:

• A characteristic (but featureless) recoil spectrum (following equation (4))
that depends on target nuclear mass and spin.

• Events distributed uniformly throughout the detector.

• An expected annual modulation in both the event rate and the recoil spec-
trum (since a component of the Earth’s orbital velocity around the Sun
effectively adds to and subtracts from the Solar System orbital velocity
around the Galactic Centre).

• An expected daily modulation in the scattering rate due to WIMP scat-
tering by the Earth’s effectively shadowing the incident flux [68].

• A directional modulation in detector co-ordinates on daily and yearly bases
for detectors locked to the Earth’s surface.

• Site-independent WIMP parameters provided by the WIMP signal.
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• Characteristic “properties” for each scattering event, where the instru-
ments being used have an intrinsically different response to WIMP nuclear
recoil events as opposed to other backgrounds. For example:

– WIMP scattering should be single-site, whereas γ-ray and neutron
background can be multi-site. Anti-coincidence veto systems are of-
ten used by ionization/scintillation detectors to provide multi-site
signals.

– Nuclear recoil events characteristic of WIMP scattering produce dif-
ferent linear ionisation densities, which can result in different produc-
tion ratios and different rates at which subsequent secondary pro-
cesses occur. This can produce different pulse shapes for nuclear
recoils as opposed to x-ray and γ-ray background events. This tech-
nique is commonly used in scintillation type experiments.

– Similarly, the different linear ionisation densities can affect the rel-
ative efficiency with which energy propagates into different signal
channels. For example, the pulse height ratios between scintillation
and ionisation signals are often used.

– Similarly, higher linear ionization density implies a much shorter
range for the nucleus before it loses all its energy. Imaging scin-
tillation instruments or time projection chambers can make use of
this.

In the next section the various techniques on offer will be reviewed in order of
increasing complexity in their ability to exploit specific WIMP signatures.

From the above dicussion it can be seen that an ideal detector would have:

• Energy threshold < 1 keV.

• Good energy resolution, to be able to see subtle modulations in the recoil
spectrum.

• High ability to discriminate between nuclear recoil events and background
events.

• Low-background construction and site for operation.

• High target mass to ensure a sufficiently high WIMP count rate.

• Stable operation over a number of years.

5.4 Neutralino Direct Detection Techniques

5.4.1 Ionisation Detectors

The first instruments to be used for WIMP searches were solid state germa-
nium ionisation type detectors [28]. These recorded high-resolution background

Living Reviews in Relativity (2002-4)
http://www.livingreviews.org

http://www.livingreviews.org


T. J. Sumner 24

Figure 7: Background energy spectra for two Ge detectors of the
PNL/USC/Zaragoza group taken from [28] (a – upper panel). Coherent cross-
section upper limits from Ge detectors taken from [1] (b – lower panel).
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energy spectra, which were then compared to the expected WIMP recoil spec-
tra to establish upper limits on interaction cross-sections (assuming the Galactic
dark matter was indeed made of WIMPs in a straightforward spherical virialised
distribution). Figure 7 shows examples of such spectra [28] and the coherent
limits [1] obtained from a number of experiments of this type. The background
spectra can be coarsely characterised by two parameters, which are the thresh-
old and the count rate just below threshold. These approximately determine
how low in WIMP mass the instrument sensitivity extends and how low a cross-
section limit can be set respectively. This can be seen by comparing the Cosme
and Twin curves in the two panels of figure 7. The difference between the Cosme
and Twin background spectra is due to the use of freshly mined germanium in
the production of Twin, which consequently does not show the cosmogenically
activated line just below 9 keV. An alternative way of achieving the same sup-
pression of the cosmogenic lines is to use enriched germanium as done by the
Heidelberg/Moscow experiment [13]. The Sierra Grande curve in figure 7 is
from a long exposure germanium experiment in which a search for both daily
and annual modulation has been performed [1, 2], and the results from the daily
modulation search are shown in figure 8. No significant signals are seen. An
example of an annual modulation search is shown in the right-hand panel of
the figure. This is actually from a scintillator experiment [16] and this will be
discussed later. The next advance expected from germanium detectors of this
type will be from the Heidelberg group [12] who are developing a high-purity
natural germanium crystal surrounded by an active veto that also uses natu-
ral germanium. This will exploit the fact that any WIMP scattering events
will be single-site due to the very low scattering cross-section, while most other
background events will be multi-site (e.g. multiple elastic neutron scattering or
multiple compton scattering for γ-rays).

5.4.2 Scintillation Detectors

The next most common type of instrument in use is the scintillator, either as
a solid crystal or as a liquid. NaI has been used most effectively to date. The
predominantly non-zero nuclear spin of both natural Na and I make these de-
tectors much more sensitive to axial couplings than natural germanium. While
their energy thresholds and resolutions tend to be significantly worse than for
germanium detectors, scintillators offer an additional discriminatory power in
that the individual scintillation signals from nuclear recoil type WIMP interac-
tions are expected to show a different time profile from that of the background.
This has been studied in some detail by various authors [11, 55]. Figure 9
shows measured comparative differential pulse shapes from the UKDMC NaI
group [106, 118]. Figure 10 compares γ-ray and neutron induced nuclear recoil
calibration time constant distributions (using simple single exponential fits to
each pulse) with the background obtained from their working experiment. The
closer statistical match of the measured background to the γ-ray distribution
allows the upper limits to be reduced accordingly.

Another advantage of some scintillators over germanium is that it is much
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Figure 8: Background rate from 428.1 days of data binned in 10-minute intervals
and folded to look for daily modulation [1] (a – upper panel). Results of an
annual modulation search using ˜4 years of data from the DAMA experiment [16]
(lower panel).
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Figure 9: Differential pulse shapes from NaI for various radiation types. There
is a clear difference between the functional form for high dE/dx interactions,
such as nuclear recoil and alpha tracks, and γ-ray induced electron tracks.

Figure 10: Differential time constant distributions from the UK NaI experi-
ment [106, 118] showing the measured background (solid line + data points),
and neutron and γ-ray calibration distributions.
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easier to make large mass detectors out of them. This increases the event rate
and makes it feasible to look for any annual modulation signals, assuming ex-
periment systematics can be kept under control. This is the approach of the
DAMA group [19, 17, 20], who currently have some of the lowest axial and co-
herent limits, and who have claimed a positive annual modulation result [16] (see
right-hand panel in figure 8 and later discussion). Other ‘simple’ scintillators
that are in use include CaF2 and liquid xenon. Various other effects in scin-
tillators are also being studied as a means to provide additional discrimination
against non-nuclear recoil backgrounds. These include using the ratio of visible
to UV light emitted by cooled undoped NaI [127], looking for directional nu-
clear recoil effects in stilbene [128], and using pulse-shape analysis from a mixed
scintillator system(with fine grains of CaF2 in an organic liquid scintillator) to
take advantage of the recoil range difference between electrons and nuclei [126].

5.4.3 Hybrid Detectors Using Both Scintillation and Ionisation

All the previous techniques make use of only one diagnostic signal channel, i.e.
pulse shape discrimination, annual modulation, pulse height ratio, or directional
dependence. A technique that makes use of two distinct signal channels using
a two-phase (liquid/gas) xenon detector has been demonstrated and is under
development by the UKDMC group. Xenon is particularly attractive as a dark
matter detector target for several reasons. It has a nuclear mass that is well
matched to the preferred neutralino mass range. It scintillates in both the
liquid and gas phases. It has a useful electron drift lifetime in both liquid and
gas phases and can be used in a proportional ionisation mode. Two separable
isotopes exist, one with spin and one without. However, it does have some
disadvantages, such as: one needs a high level of purity, liquid xenon is more
difficult to handle than a crystal scintillator, its scintillation signals are well in
the UV (∼ 1750 Å), and its scintillation signals are very fast (< 50 ns).

Figure 11 shows one proposed type of configuration for a two-phase system in
which photomultipliers are used to record two scintillation signals for each event,
S1 and S2 [35]. S1 is the primary scintillation signal from the liquid volume,
which occurs as a direct result of the WIMP/γ-ray scattering interaction. In
addition to scintillation, the interaction will also produce localised ionisation in
the liquid. An applied electric field is then used to drift the ionisation electrons
towards and into the gaseous xenon. In the gas there is a region in which
the applied electric field is strong enough to produce secondary scintillation, or
electroluminescence, which produces signal S2. S1 and S2 are thus separated in
time. At low electric field the S1 signal itself will be amenable to pulse shape
analysis as described above for NaI. The S2 signal amplitude will depend on
how many ionisation charges are drifted into the gas volume. This will depend
on how many are produced in the initial interaction and on what fraction of
those immediately recombine. The level of recombination is expected to be
higher for events with a higher linear energy density deposit dE/dx, and so
nuclear recoil type events are expected to show a much lower fraction of surviving
drifting electrons. Hence, the ratio of S2 to S1 should be much lower for nuclear
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Figure 11: The two-phase xenon test chamber used by Wang [35].
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recoils compared to say γ-ray deposits of the same amount. This effect has
been demonstrated in low field operation [35, 69], and the left-hand panel of
figure 12 shows some results from the chamber of figure 11. A 30 kg detector is
being constructed [35] in which nuclear recoil events are identified by the lack
of a secondary signal. An alternative scheme uses high-field operation in which
ionisation from nuclear recoils can also be seen, and in which discrimination
relies on the finite ratio of S2 to S1 [7]. This should give much higher background
rejection and a 8 kg instrument is underway [135].
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Figure 12: Relative signal amplitudes for γ-rays and neutrons for two hybrid type
experiments. On the left is shown the primary to secondary scintillation signal
amplitudes for a two-phase xenon instrument [35]. Neutrons have large S1/S2
ratios. The right hand panel shows the ionisation versus phonon performance of
the CDMS germanium bolometer [3]. γ-rays populate the plot above the solid line
with nuclear recoils below it. The circled points are experimental data thought
to originate from neutron recoils.

The potential discrimination power available using the various techniques
can be described by a figure of merit [117] as shown in figure 13. The top curves
show the situation using pulse shape discrimination in NaI, and the two lower
curves then show what improvement might be expected from using pulse height
ratios from cooled NaI (UVIS) and a two-phase xenon system. In this figure,
the performance improves as the figure of merit decreases and the potential
advantage of liquid xenon over NaI is significant.

A variant on the above scheme is to try to ‘image’ the ionisation charge
distribution using TEA (or TMA) added to the liquid xenon, which will convert
scintillation photons into electrons [142, 101]. The idea here is that for nuclear
recoil events there will be relatively few direct ionisation electrons left, due
to the high dE/dx, and most drifting electrons will have been produced by
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photon absorption in the TEA/TMA. This should give an exponential spatial
distribution (scale length around 2 cm) of electrons drifting into the gas region.
Whereas, for background γ-rays, there will be a significant core of electrons
left over from the primary interaction in addition to those created by photon
absorption, giving a more centrally peaked image.

Figure 13: Relative figures of merit for the discrimination potential in NaI,
cooled NaI and two-phase liquid xenon [117]. In this plot a lower figure of merit
implies proportionately better performance.

5.4.4 Phonon Detectors – Bolometers

Most of the energy imparted to a recoiling nucleus during a WIMP scatter-
ing will ultimately end up as phonons. These can be detected as a tempera-
ture rise. For crystalline target materials the specific heat at low temperatures
varies as T 3, so the lower the temperature the greater the temperature rise as
∆T ∝ 1/T 3. In principle this should yield very good energy resolution lim-
ited by the statistical fluctuations in the numbers of phonons produced. At a
temperature of 20 mK, a 1 kg detector could achieve 100 eV resolution, with
a correspondingly low threshold. However, in practise, the resolution is lim-
ited partly by the efficiency of the phonon ‘cooling’ process, whereby the initial
non-thermal phonons with energies of 10−3 to 10−2 eV become degraded into
thermal phonons of around 10−5 eV. Once thermalised, the phonons then need
to be coupled into the temperature sensors, which tend to be separate compo-
nents bonded onto the target materials. For a 1 kg detector the temperature
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rise would be ∼ 10−7 K/keV, dependent on the Debye temperature of the ma-
terial, and temperature sensors with this level of sensitivity at such very low
temperatures are difficult to achieve. The earliest sensors used were doped
semiconductors, such as NTD germanium. There are now more sensitive sen-
sors available. These rely on superconducting transitions and two types are in
use. One is the superconducting phase transition (SPT) thermometer [39], the
other is the superconducting transition edge sensor (TES) [34]. In both cases
the temperature rise is measured by monitoring movement along the transition
from superconductor to normal metal. For the TES this provides a sensitivity to
the higher energy phonons. As these have not suffered the extensive scattering
needed to thermalise them, some positional information can be recovered.

5.4.5 Hybrid Detectors Using Phonons and Scintillation/Ionisation

The use of a separate temperature sensor bonded onto a target allows a range
of different material choices for the target.

If semiconductor target materials are used, it is possible also to extract ioni-
sation signals from bolometer experiments [121, 33]. Nuclear recoils produce less
ionisation compared to thermal energy than x-ray and γ-ray background events.
For events initiated well away from surfaces, this allows for good discrimination
power. Surface events, from external electrons for example, can be problematic
as the ionisation can be inefficiently collected compared to the thermal energy,
which mimics nuclear recoil signals. The ionisation signals are collected using
charge-sensitive preamplifiers in the usual way for semiconductor diodes.

If scintillator target materials are used it is possible also to extract scintil-
lation signals [39]. The situation is analogous to the simultaneous ionisation
measurement in that nuclear recoil events are much less efficient at produc-
ing ionisation and excitation than typical background events. In this case it
is even possible to use SPTs deposited on light absorbers (e.g. silicon) as the
scintillation signal channel [39].

5.4.6 Other Techniques

Three other techniques are worthy of mention here. Two are techniques cur-
rently being developed while the third has been in use for some time. The first
is the use of a gas target within a time projection chamber. The aim here is to
image tracks of interactions within the time projection chamber and measure
the range of the ionisation track and the energy deposition [24]. Nuclear recoil
events have already been successfully recorded in a prototype device, and these
have much shorter track lengths than an electron recoil of the same energy. This
technique offers the prospect of realising a fully direction-sensitive detector that
would not only enable use of all the directional WIMP signatures in attempting
to extract signals, but would also allow the local WIMP velocity distribution
to be measured. The second technique in this section is the use of superheated
droplet detectors in which events leaving a high dE/dx deposit are capable of
vapourising the droplets [37, 65]. Such detectors operate close to room temper-
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ature, exhibit low thresholds, and are insensitive to γ-rays that do not leave a
sufficiently high density track. Readout can be either optical or acoustic. Fi-
nally, the ancient mica technique has already been used to derive upper limits
to interaction cross-sections [10]. Ancient mica contains an historical record of
nuclear recoil interactions over exposure times of Gyrs. The defects left in the
crystal can be etched and examined using an atomic force microscope. Defects
left from natural radioactive processes will tend to leave much more pronounced
etch pits than expected for a WIMP, so the technique involves looking at the
size distribution of the etch pits.
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6 Neutralino Project Overview and Limits

The range and breadth of experimental work now underway world-wide makes
it very difficult to maintain an up-to-date and complete catalogue of activities.
Table 3 presents an overview of experiments currently going on, but is far from
exhaustive.

Figure 14, adapted from [23], shows the published upper limits on the
nucleon-WIMP scattering cross-section for coherent and axial coupling respec-
tively, as they were in 1996. In both cases, the best limits came from the
large mass DAMA NaI experiments with the UKDMC NaI experiment close
behind. For the coherent interactions the germanium results are comparable to
the UKDMC NaI. Finally, it is intriguing that both the DAMA and UK NaI
experiments have low-level signal effects that do not appear to be consistent
with γ-ray backgrounds. The UKDMC experiment, using pulse-shape analy-
sis, revealed a family of short-time-constant events [120], which are even faster
than their neutron induced recoil events. The derived ‘recoil spectrum’ for these
events falls with energy as expected for WIMPs (but the implied WIMP mass
is rather high), and there is even some hint of an annual modulation. How-
ever, the effect has now been shown to be a spurious surface effect [125]. The
DAMA experiment has an annual modulation signal, which has persisted in
a consistent way through a complete rebuild of the experiment [20] and with
data accumulated over a four year period [16]. From their data it is possible to
delineate an allowed region in coherent cross-section parameter space that con-
tains cosmologically interesting combinations of MSSM parameters, as shown
in figure 15.

Finally, figure 16 shows the two most recent limits plots. The left hand
plot comes from the CDMS collaboration [3], which runs a hybrid bolome-
ter/ionisation experiment. The limit they have produced almost excludes com-
pletely the DAMA coherent cross-section result (shown as the solid grey region).
However, CDMS operates in a shallow site and experiences an ambient neutron
background. Their limit relies on the assumption that the circled events shown
in figure 12 are indeed due to ambient neutrons. The numbers are consistent
with this and there is a cross-check using multi-site multiple neutron scatter-
ing events. However, with such small numbers the result cannot be decisive.
Recently, the EDELWEISS experiment has produced an upper limit that is
comparable to CDMS for high WIMP masses [14]. The technique is similar to
CDMS, but has the advantage of no detectable neutron background as it is in a
deeper site. Unfortunately, it has a higher energy threshold at present and work
is ongoing to improve this. So we are left with a tantalising claim of a WIMP
annual modulation signal from DAMA, which they have defended despite much
concern over possibilities of spurious annual modulation effects, and an almost
exclusive limit from CDMS, which is statistically arguable. The right-hand plot
in figure 16 shows a plot from the SIMPLE [38] experiment using superheated
droplets. The target has non-zero spin; they present results in terms of limits to
a pure spin-dependent cross-section. The plot shows a compilation of limits from
all the other experiments that have reported to date. In the bottom left-hand
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Experiment Type Target Quenching Mass kg · days
factor [kg]

Heidelberg/Moscow I Ge 2.88 > 165
HDMS I Ge 0.25 0.20 –

GENIUS I Ge 1000 –
TANDAR/USC/ I Ge – 1.033 831
PNL/Zaragoza S NaI 32

USC PNL Zaragoza I Ge
COSME/TWIN

Neuchatel Caltech I Ge
PSI

S NaI(Tl) Na(0.3) 6 > 1500
UKDMC S Xe I(0.08) 6 –

S/I Xe Xe(0.2) 20 –
S NaI(Tl) Ca(0.08) 115 30000

DAMA S CaF2 F(0.12) 0.37 10
S Xe Xe(0.65) 6.5 823

ELEGANT-V S NaI(Tl) 662 241630
ELEGANT-VI S CaF2 8

Saclay S NaI
Amherst UCB O Mica – – 1 Gyr

SIMPLE O Freon 1 0.190
(CERN Lisbon Paris)
Montreal Chalk River O F, Cl 1
Tokyo Dark Matter P LiF 1 0.168

Search
Milano P TeO2 7

ROSEBUD P Sapphire 0.100
CRREST P Sapphire 0.262
CMDS P/I Ge 0.262

EDELWEISS P/I Ge 0.900
Orpheus O Sn 0.032
Salopard O Sn 0.100

Table 3: Experiment Overview.
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corner of this plot can be seen the “tip of the iceberg” of MSSM predictions for
spin-dependent cross-sections.

The need for more sensitive and more powerful experiments is clear as we
start to impinge more and more on the allowed neutralino parameter space and
as experiments begin to reveal features at levels never before investigated. The
need for multiple experiments to confirm the results of others is also clear.
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Figure 14: Latest published upper limits on (a – upper panel) coherent and (b –
lower panel) axial coupled WIMP-nucleon cross-sections adapted from [23].
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Figure 15: The upper panel shows the region of coherent cross-section parameter
space consistent with the DAMA NaI annual modulation results [16]. The four
curves show the results from each individual year of the four year period shown
in figure 8. The lower panel shows a scatter plot of possible MSSM models which
populate the region defined by the first two years of data from [22]. Open circles
are cosmologically interesting.
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Figure 16: The upper panel shows the current results on the allowed coherent
cross-section parameter space. The plot is from [14] and shows the CDMS 3σ
upper limit [3] (dotted purple curve), the DAMA annual modulation positive
detection region (blue solid curve), the DAMA upper limit from pulse shape
discrimination (blue dot-dash curve), the EDELWEISS limits [14] (red curves)
and the current limits from all combined germanium ionisation detectors [70]
(dashed green curve). The lower panel shows an equivalent plot for the axial
spin-dependent coupling cross-section. This is a composite plot produced by the
SIMPLE collaboration in announcing their latest result [38].
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7 Future Promises and Prospects

Given the level of current activity it is inevitable that over the next several
years there will be substantial advances in “the dark matter problem.” The
main issues will be:

• Refinement/Revision of the Standard Cosmological Model using:

– New observational data on CMB anisotropies, particularly the second
peak. Definitive data should come from the ESA PLANCK mission
due for launch in 2007. Balloon-borne instruments may also be useful.

– New observational data on large-scale structure from galaxy redshift
surveys.

– Improved statistics on high-redshift Type Ia supernova. This is
needed to provide proper confirmation of their properties and their
use as standard candles and also to define the distribution more
clearly.

– Further work on non-standard BBN models, such as those invoking
degenerate neutrino species.

– Continued theoretical modelling of the CMB anisotropies using cos-
mological models. Although this appears to have been developed to
a fine art, there must be avenues for new development.

– Investigation of alternative types of dark matter, such as “warm dark
matter.” Further experimental data on the neutrino masses would
be relevant here as well, although the recent evidence for neutrino
mixing from SNO suggests that the neutrino masses are unlikely to
be cosmologically significant [5].

• Refinement of Galaxy Formation and Structure Models using:

– Continued high-resolution N-body simulations including more re-
fined feedback on baryonic condensation, star formation, and massive
black-hole formation.

– High-resolution rotation curve measurements. These will help to es-
tablish the central density distributions and will also look for modu-
lations at larger radii to assess dark matter infall models.

– High-resolution N-body simulations to establish CDM dynamics and
structure within galaxy halos.

– Continued observational searches for cold baryonic dark matter, using
microlensing or infra-red, sub-millimeter observations of small clouds.

• Experimental Searches for Neutralinos, including:

– Improved versions of CDMS, CCREST, and UKDMC experiments in
the next two years, which will extend significantly below the DAMA
region and resolve whether neutralinos have already been observed
or not.
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– Several other experiments, such as GENIUS [76], that may also come
online in the next several years. In fact, within about 6 years it is
just possible that the whole of the parameter space in figure 6 will
have been explored.

– A number of indirect search experiments may produce useful comple-
mentary data, such as neutrino telescopes, γ-ray missions (GLAST
[89]), or particle experiments (AMS).

– Detectors with directional response will have been developed at the
prototype level, ready to become neutralino “telescopes” should the
need arise.

• Supersymmetry and Supergravity will have independent input from:

– The Large Hadron Collider, which will begin operation in 5–6 years
time. Within a few years of data taking it should start to constrain
much of the MSSM and SUGRA parameter space.

– Continued exploration of MSSM and SUGRA models to refine cal-
culations of scattering cross-sections.

Of course, the most satisfying scientific output would be the discovery of
the neutralino as the dominant dark matter component of the Milky Way. The
prospects for this are very good. Figure 17 shows two panels taken from [49]
in which the likely search areas to be completed by 2006 are delineated. The
parameter space chosen for these plots has the universal scalar mass m0 and
the gaugino mass M1/2 as the coordinates. The two plots correspond to two
illustrative values of tanβ. The solid dark green regions are already excluded.
In the light green/yellow shaded area 0.025 ≤ Ωm ≤ 1, while in the blue shaded
area 0.1 ≤ Ωm ≤ 0.3. The curves then show which regions of parameter space
are likely to be addressed over the coming years. For each curve the forth-
coming experiments will search the region between the curve and the dark green
area. The red curve corresponds to the direct search techniques such as the
next generation of CDMS, CCREST and UKDMC Xenon experiments. This
curve should be reached in 2–3 years time. Following that, there are already
larger, better experiments being planned that could push further still [133]. The
other curves shown correspond to various indirect search techniques, including
γ-rays, neutrinos, and positrons. Feng et al. [49] describe the situation in great
detail. The complementarity of the various techniques is apparent and multiple
detections would provide a powerful diagnostic of SUSY parameters.

The scientific impact of a positive neutralino detection would extend not
only to cosmology and astrophysics in almost every aspect, but would also be
of the utmost importance to supersymmetry and fundamental physics. If, in
addition to the neutralino, the axion is also implicated, then we will have a
double bonanza, which also will verify the adopted solution to CP violation.
Seldom has there been a problem that impinges on so many fundamentally
important issues and this justifies the current level of activity on all fronts. The
next several years promise to be very interesting.
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Figure 17: Expected progress in covering MSSM parameter space from both in-
direct and direct search techniques over the next several years [49].
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