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Abstract

I review evolutionary aspects of general relativity, in particular those
related to the hyperbolic character of the field equations and to the ap-
plications or consequences that this property entails. I look at several
approaches to obtaining symmetric hyperbolic systems of equations out of
Einstein’s equations by either removing some gauge freedoms from them,
or by considering certain linear combinations of a subset of them.

c©1998 Max-Planck-Gesellschaft and the authors. Further information on
copyright is given at http://www.livingreviews.org/Info/Copyright/. For
permission to reproduce the article please contact livrev@aei-potsdam.mpg.de.

http://www.livingreviews.org/Info/Copyright/.


Article Amendments

On author request a Living Reviews article can be amended to include errata
and small additions to ensure that the most accurate and up-to-date infor-
mation possible is provided. For detailed documentation of amendments,
please go to the article’s online version at

http://www.livingreviews.org/Articles/Volume1/1998-3reula/.

Owing to the fact that a Living Reviews article can evolve over time, we
recommend to cite the article as follows:

Reula, O.A.,
“Hyperbolic Methods for Einstein’s Equations”,

Living Rev. Relativity, 1, (1998), 3. [Online Article]: cited on <date>,
http://www.livingreviews.org/Articles/Volume1/1998-3reula/.

The date in ’cited on <date>’ then uniquely identifies the version of the
article you are referring to.

http://www.livingreviews.org/Articles/Volume1/1998-3reula/.


3 Hyperbolic Methods for Einstein’s Equations

Contents

1 Introduction 4
1.1 Background and History . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Main Subject and Plan of the Review . . . . . . . . . . . . . . . 7

2 The Theory of Linear Constant Coefficients Evolution Equa-
tions and Generalizations to Quasi–linear Systems 9
2.1 Existence and Uniqueness of Smooth Solutions . . . . . . . . . . 9
2.2 First Order Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Generalization to Variable Coefficient and Non-linear Systems . . 13
2.4 Hyperbolicity and Numerical Simulations . . . . . . . . . . . . . 15

3 The Problem of Hyperbolicity in General Relativity 18
3.1 The Standard Approach, or the 4-D Covariant Approach . . . . . 19
3.2 The Modification of the Field Equations Outside the Constraint

Sub-manifold, or the 3+1 Decomposition Point of View . . . . . 21

4 Recent Approaches to the Problem 22
4.1 The ADM representation . . . . . . . . . . . . . . . . . . . . . . 22
4.2 The Frame Representation . . . . . . . . . . . . . . . . . . . . . . 26
4.3 Ashtekar’s Representation . . . . . . . . . . . . . . . . . . . . . . 27

5 Beyond the Prescribed Gauge 29
5.1 Trial and Error Method . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Hyperbolic Extensions . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Elliptic Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The Role of the Constraints 33
6.1 The Constraints in the Harmonic Gauge . . . . . . . . . . . . . . 33
6.2 The Constraints in the New Systems: Theoretical Considerations 33
6.3 The Constraints in the New Systems: Numerical Considerations 34
6.4 The Constraints in the Initial–Boundary Value Problem . . . . . 34

References 35

Living Reviews in Relativity (1998-3)
http://www.livingreviews.org

http://www.livingreviews.org


O. Reula 4

1 Introduction

General Relativity (GR) is a peculiar physical theory. GR is about geometries,
and not fields, in a given space–time. That is, the theory’s solutions are not
metric tensors –or possible other matter tensors– but rather the equivalence
class of these tensors under arbitrary smooth relabeling of points in space–
time. This peculiarity makes the task of analyzing the dynamics of the theory
difficult. One is used to evolving tensor fields, in fact tensor components, in a
given coordinate system; while here the extra freedom of the theory makes these
components non–unique. The values of some of these components can be given
arbitrarily. Only certain relations between them are invariant –and so have
a physical meaning. In particular, some components can be made arbitrarily
large and rough, while the geometry is, for instance, flat. Thus, it is often hard
to see, from just comparing tensor components, whether two solutions, that
is two geometries, are close to each other during evolution. To overcome this
problem, several proposals have been made to fix the evolution in a unique way
and at the same time obtain well behaved solutions. In general, these proposals
provide for equation systems equivalent, in a sense to be discussed at length
later, to Einstein’s equations which are hyperbolic, that is, whose evolution
is continuous as a function of the initial data. This property is vital for many
applications, ranging from Newtonian approximations to numerical simulations.
The aim of this work is to review these proposals, paying special attention to
the applications where they have proven fruitful.

1.1 Background and History

Hyperbolicity is a, basically algebraic, condition on the coefficients of a sys-
tem of partial differential equations which grants that the Cauchy problem for
the systems satisfying them is well posed; that is, if appropriate data for that
system, in an appropriate hypersurface, are given, then a unique solution can
be found in a neighborhood of that hypersurface, and that solution depends
continuously, with respect to an appropriate norm, on the values of initial data
given. Hyperbolicity naturally captures what one would expects to hold for
most fundamental physical systems, since, besides the unique and continuous
dependence on the initial data, it implies finite propagation velocities. In § 2
a rather complete description of some hyperbolicity conditions, for there are
several variants of them, is given, along with references to modern literature on
the topic. Here, and basically in order to provide a more definite idea of the sort
of conditions involved, we introduce one of these notions of hyperbolicity, that
of a symmetric hyperbolic system. This is the case which most often appears in
physical problems:

Definition 1 Let be a first order system of evolution equations,

ut = Aa(u)Dau+B(u)u,

where u = u(x, t) indicates a “vector” function of dimension s in <n+1, ut
its time derivative, Aa(u), a s × s matrix valued vector, and B(u) a s × s
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5 Hyperbolic Methods for Einstein’s Equations

matrix valued vector, whose components depend smoothly on u, and Da a partial
derivative operator on <n. The system is called symmetric hyperbolic at a
solution u0 if there exists a neighborhood of u0 and a smooth, positive definite,
symmetric matrix H(u) on it such that:

H(u)Aa(u)−Aa?(u)H(u) = 0.

This condition ensures that the Cauchy problem is well posed, namely that
there exists a time interval [0, T ) and a constant C(T ) such that if initial data
for u is given at t = 0, u(x, 0) = f(x), with f(x) close enough to u0(x, 0) in a
certain norm, then for the same norm we have:

||u(·, t)|| ≤ C||f(·)||

A simple example of a symmetric hyperbolic system is the wave equation,
see Example I 2.2

Well posedness of the Cauchy problem for Einstein equations was established
in the early fifties by Choquet-Bruhat, [13], when the theory of evolutionary par-
tial differential equations matured and general proofs for quasi-linear hyperbolic
systems became available. With further refinement of the general theory, it was
possible in the early seventies to improve on the result by lowering the minimal
differentiability required in the proof, thus allowing more general initial data
sets, [42], see also [18] and [16, 27, 28]. These works used the harmonic gauge
introduced by Lanczos in the twenties. For a discussion on the harmonic gauge
see § 3.1

In the seventies, with a new tool (the Weighted Sobolev Spaces) it became
possible to enlarge the development region to contain asymptotically boosted
slices relative to the initial slice, if the initial data were in a specific Weighted
Sobolev space, [24, 17]. This result had two interesting by-products:

• a) It established that the evolution equations preserved the asymptotic
decay of the initial data. That is, if they initially were in some weighted
space (for some specific weight factor) then, in any other time slice given
in the development asserted by the theorem –including boosted ones–, the
induced data on it was also in the same weighted space.

• b) It established a relation between the size of the initial data in any
bounded region and a lower bound for the time of existence of the solution,
see [37] for a simple description.

Even more, it was possible to use as the function spaces for the initial data
the same weighed spaces in which the constraint equations were solved, thus,
for the first time obtaining a global (in space) control on Einstein’s equations.

All the power of the techniques used in the above mentioned body of work
was not enough to get a result which most people suspected would hold: the ex-
istence of complete, asymptotically flat space-times for generic, although small,
initial data. An idea which made a breakthrough on this problem was to reg-
ularize Einstein’s equations in terms of a conformally rescaled metric on the
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corresponding conformally compactified space-time. Future and Null infinity
are then at a finite distance, so standard, local in time, existence theorems can
be used. Pursuing these ideas, Friedrich, [30, 29], was able to craft the full, and
therefore non-linear, Einstein equations for the conformal fields into a regular
symmetric hyperbolic system, and so to create a formidable tool to study these
problems. Earlier results using regularized equations for the conformal metric
included the local linear stability of null infinity1, [38].

The variables used range from frames to Weyl tensor frame components. The
regularization of the full equations is complicated and requires appending to the
original Einstein equations the Bianchi identities as a new and independent set
of variables. For the first time, the harmonic gauge was not used. This was
also the first time a symmetric system was obtained which was not the mere
and standard translation of quasi–linear second order wave equations into a
first order system. This tool made it possible to show that, given any smooth
and small enough initial data on a hypersurface reaching future null infinity at
some cross section, a future development existed along which null infinity, to
the future of such a hypersurface and up to future infinity, was included. A
limitation of this technique is that initial data are not regular enough at space-
like infinity to make the estimates work there, and so a complete, asymptotically
flat space-time cannot be obtained, nor even a piece of null infinity starting from
generic, although small, initial data on a space-like hypersurface; nevertheless
see [25].

A different path was followed by Christodoulou and Klainerman, [23]. They
also made use of the detailed structure of Einstein equations, but in physical
space-time, to show global existence. The special structure of Einstein equa-
tions allows the use of other energy estimates beyond the traditional one. The
estimates are boosted energies, [48, 49, 47], and are crucial to establishing this
global result. Christodoulou and Klainerman did not use a conformal com-
pactification of space-time. They were able to obtain complete asymptotically
flat space-times, i.e. asymptotically including space-like regions, out of rather
generic initial data in a Cauchy surface reaching that infinity. Christodoulou
and Klainerman found that at null infinity the differential structure does not
seems to be C∞. That is, they claimed there are smooth initial data sets whose
development is not smooth at null infinity and that only finite differentiability
remains. Christodoulou and Klainerman also did not use a harmonic gauge con-
dition. Rather, their strategy was to use the equations for tensorial quantities
built out of higher order derivatives of the metric. After obtaining estimates for
these tensorial quantities, estimates for the metric and its first derivatives were
obtained from elliptic theory, and the maximal slicing condition.

As expected, both methods used detailed properties of the Einstein equa-
tions to assert global existence of small data solutions. It is believed that both

1In this work, the linearized Einstein equations in terms of the conformal metric in a
neighborhood of J were regularized and made hyperbolic. Thus local existence results applied
to these equations showed that perturbations with smooth initial data at a hypersurface
reaching J stayed bounded during evolution, and so the asymptotic structure was preserved
to the future of that hypersurface.
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7 Hyperbolic Methods for Einstein’s Equations

methods use the same properties, but with different techniques. That is, the
property that allows the conformal Einstein equations to be regular should be
the same property that allows boosted energies to be estimated. In fact both
make estimates in terms of the Bel-Robinson tensor. However, to my knowledge,
this has not yet been fully explored.

1.2 Main Subject and Plan of the Review

In the nineties, researchers have realized that other or more general forms of
gauge conditions are needed to address some pressing problems, in particular,
the numerical studies of regions of high curvature –like black hole formation.
One should also mention the study of slow solutions, that is, solutions which
weakly depend on the value of the velocity of light –in particular those which
have a well behaved Newtonian limit. For the first problem, the issue has been
whether the coordinate system chosen, that is, whether the gauge condition,
stays well behaved during evolution and does not cause unphysical singularities,
singularities which, for the numerical problem, are as bad as real ones. For the
second problem, the issue has been whether the gauge is well behaved and does
not prevent uniform continuity of slow solutions as the speed of light goes to
infinity.

In both cases it is clear that one can choose bad gauges which would make
the problem intractable and which nevertheless are genuine smooth coordinate
conditions in the whole region of interest.

The rest of this review describes the efforts triggered by the need to deal
with the above mentioned problems. An attempt to compare these efforts in
all respects appears to be a hopeless task. The variables they use are different.
Thus we shall concentrate on revealing the points these theories hold in common
and discuss the key properties of each. These properties can vary a lot from
one system to another. The properties can be seen as virtues or defects of the
system according to the uses to which people put them. For instance, a gauge
condition can be incorporated into the systems as:

• i) a solution to a hyperbolic equation, and so be incorporated as a part of
the hyperbolic system;

• ii) a solution to an elliptic equation, given a mixed hyperbolic-elliptic
system;

• iii) a solution to a parabolic equation, given a mixed hyperbolic-parabolic
system;

• iv) or it can be given as a fixed function in space-time, chosen by a rule
of thumb by looking at the initial data.

Each one of these possibilities can be implemented in a mathematically rig-
orous manner in most of the general schema proposed. And probably each of
them would be of relevance in some specific implementation. The point, in other
words, is that it is very difficult to go beyond a superficial or general description

Living Reviews in Relativity (1998-3)
http://www.livingreviews.org

http://www.livingreviews.org


O. Reula 8

of the methods before some particular, extended, and fruitful use legitimizes the
job.

In § 2 I give a short summary of hyperbolic theory, describing the case which
is completely understood, namely the constant coefficient case, and mention
what of it can be extended to the case of interest here, namely quasi-linear
systems. For physicists, this discussion should be a complement to Geroch’s
lecture notes on symmetric hyperbolic systems [36]. This discussion follows
very closely chapter II of [50], see also chapter IV of [39].

In § 3 I first describe the general problem of adapting the theory of hyperbolic
systems to general relativity and the gauge issue. A companion to this section is,
besides Geroch’s lectures, the paper of Friedrich in Hyperbolic Reductions [32].
In particular we discuss the standard approach, that is, the harmonic gauge.

In § 4 I present the more recent approaches, and divide them into four classes,
according to the type of variables used.

In § 5 I compare the different implementations that have been made of the
approaches introduced in the previous sections, and discuss the impact these
approaches have had on the problems where they have been applied.

In § 6 I consider the role the constraint equations play in these new systems.
In the harmonic gauge, constraint equations become evolution equations. The
consistency of the gauge is all that is needed to ensure equivalence between
Einstein’s equations and the harmonic system. In the new systems, one is not
incorporating the constraints, and so one should make sure that, if the constraint
equations are satisfied initially, they are satisfied during evolution. I claim that,
in the initial value formulation, this follows from uniqueness of solutions to the
equations and from the fact that the modified evolution vector fields proposed
are tangent to the constraint sub-manifold. I also mention the difficulties that
appear when considering an initial-boundary value problem.
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9 Hyperbolic Methods for Einstein’s Equations

2 The Theory of Linear Constant Coefficients
Evolution Equations and Generalizations to
Quasi–linear Systems

In this section, I summarize the main results of the theory of first order evolu-
tionary partial differential equation systems. I do this by first developing the
theory of linear constant coefficients evolution equation systems in <n, that is,
equations of the type:

ut = P (D)u,

where u = u(x, t) indicates a “vector” valued function of dimension s in <n+1, ut
its time derivative, P (D), a s×s matrix whose components smoothly depend on:
Dν := ∂|ν|

∂x
ν1
1 ...xνnn

. For most of the results, no particular form for the dependence
of P on D is needed, as long as it is continuous. But for simplicity one can
think of P as given by:

P (D) :=
∑
|ν|≤m

AνDν .

We shall focus on the Cauchy (or initial value) Problem for the above system,
namely under what conditions it is true that given the value of u at t = 0, f(x),
say, there exists a unique solution, u(t, x), to the above system with u(0, x) :=
f(x). Later we shall mention a related problem which is important on most
numerical schemes used in relativity, namely the initial-boundary value problem,
where one also prescribes some data on time-like boundaries.

What follows is a short account of chapter II of [50], see also chapter IV
of [39]. After this, I indicate what aspects of the theory generalize to quasi–
linear systems, and under which further assumptions this is so. I also give some
indications of the relation of this theory to the stability issues of numerical simu-
lations. This section can be skipped by those not interested in the mathematical
theory itself or those who already know it.

2.1 Existence and Uniqueness of Smooth Solutions

Let M0 be the space of functions of the form:

f(x) :=
1

(2π)n/2

∫ ∞
−∞

eiω·xφ(ω)dω, φ(ω) ∈ C∞0 (<n).

Since the integral exists at each point, it can be differentiated inside the
integral sign where it gives another compactly supported integrand, thus these
functions are smooth (C∞(<n)). What’s more, since the Paley–Wiener theorem
holds, they are analytic.

To this space also belongs the function,

u(x, t) :=
1

(2π)n/2

∫ ∞
−∞

eiω·xeP (iω)tφ(ω)dω, φ(ω)
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This function is smooth not only along space directions, but also along time
directions. In fact, it is straightforward to check that the function satisfies the
evolution equation above for the initial condition f(x). Thus we see that initial
data in M0 always produces solutions which at each constant time slice are in
M0. In fact, defining a M0 solutions as:

Definition 2 A function u(x, t) is a M0 solution if:

i) u(·, t) ∈M0 for all t ≥ 0;

ii) its Fourier transform, û(ω, t), is continuous, and vanishes for |ω| > k
where k is some constant independent of t;

iii) u is a classical solution; that is ut exists and u satisfies the equation at
each point (x, t).

a direct application of the uniqueness of the Fourier representation for smooth
functions shows:

Lemma 1 Given a constant coefficients linear evolution equation, for each ini-
tial data in M0 there exists a unique M0 solution and it is given by the above
formula.

Thus we see that there are plenty of smooth solutions, whatever the sys-
tem is. But it was realized by Hadamard, [40], that there were not enough
solutions, since the space M0 is not closed. Furthermore, in general there are
no topologies on the space of initial data, and of solutions for which solutions
depend continuously on initial data. Lack of continuity of solutions with re-
spect to their initial data would not only imply lack of predictability from the
physical standpoint, for all data are subject to measurement errors, but also
lack of realistic possibilities of numerically computing solutions, due to trunca-
tion errors. Thus it is important to characterize the set of equations for which
continuity holds. There are several possibilities for the choice of the topologies
for the spaces of initial data and of solutions. Here we restrict consideration to
those which have been more prolific with respect to results and generalizations
to non–linear, non–constant coefficient equations systems.

Definition 3 A system of partial differential equations is called well posed if
there exists a norm (usually a Sobolev norm) and two constants, k, α, such that
for all initial data in M0 and all positive times,

||u(t, ·)|| ≤ keαt||f(·)||.

Remarks:

• It is possible to define weaker conditions for well posedness in which the
norm for the initial data is different (weaker) than the norm for the so-
lution. This is unsatisfactory for equations in which there is no preferred
time direction. Besides, in general it produces results which are not robust
under lower order term (in differentiation) perturbations of the equations,
and so do not generalize to variable coefficients or non–linear equations.
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11 Hyperbolic Methods for Einstein’s Equations

• Defining continuity through norms is a limitation and rules out certain
more general types of hyperbolicity conditions, in particular those due to
Leray and Ohya, [54, 55], see more below.

• Well posedness and linearity imply that we can extend by continuity the
set of solutions to all those which are generated by initial data on the
completion generated by M0 on the given norm.

Theorem 1 A system is L2 well posed if and only if there exists constants k
and α such that for all positive times,

|eP (iω)t| ≤ keαt ∀ω ∈ <n,

where the above norm is the usual operator norm on matrices.
If a system is well posed for the L2 norm, [recall that the L2 norm of a

function is the square root of the integral of its square], then it is well posed
for any other Sobolev norm, (as follows from the above theorem), since the
constants are independent of ω. The above theorem reduces the problem of well
posedness to an algebraic one which we further refine in the following theorem:

Theorem 2 [Kreiss [51]] The following conditions are equivalent:

i) The system is L2 well posed.

ii) There exist constants k, and α, and a positive definite Hermitian form
H(ω) such that:

k−1I ≤ H(ω) ≤ kI and H(ω)P (iω)+P ?(iω)H(ω) ≤ 2αH(ω) ∀ω ∈ <n.

This result is central to the theory. The proof that ii) implies i) is simple
and follows directly from the inequality:

d

dt
(û, H(ω)û) = (û, H(ω)P (iω) + P ?(iω)H(ω)û) ≤ 2α(û, H(ω)û),

that is, from the construction of an energy norm. We see that for any well
posed problems this special energy norm can be constructed, so one can always
attempt to approach the problem by trying to find, usually with the help of the
physics behind the problem, the correct energy norm. Condition ii) is usually
referred to as the semiboundedness of the operator P (D) with respect to the
norm H (induced on functions in <n by Fourier Transform).

2.2 First Order Systems

We shall now restrict consideration to systems which have at most one space
derivative, i.e. systems of the form,

ut = AaDau+Bu (1)
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Using the above theorem, it is easy to see that if a system P (D) is well
posed, then so is the system P (D) + B, where B is any constant matrix. For
the particular case at hand, this means that we can further restrict attention,
without loss of generality, to the the principal part of the operator, namely

P1(D) := AaDau,

where Aa is a s × s matrix valued vector in <n. In this case we can improve
on the above condition by showing that well posedness implies no growth of the
solution, that is that we can choose α = 0 above.

Theorem 3 A first order system is well posed if and only if there exist, a
constant k, and a positive definite Hermitian form H(ω) such that:

k−1I ≤ H(ω) ≤ kI and H(ω)Aaωa −Aa?ωaH(ω) = 0 ∀ωa with |ωa| = 1.

If Aa satisfies the above condition for some H(ω), then we say that P (D)
is strongly hyperbolic, which, as we see, is equivalent for first order equation
systems to well posedness. If the operator H does not depend on ωa, a case
that appears in most physical problems, then we say the system is symmetric
hyperbolic. Indeed, if H does not depend on ωa, then there is a base in which
it just becomes the identity matrix. (One can diagonalize it and re–scale the
base.) Then the above condition in the new base just means that Aaωa –with
the upper matrix index lowered– is symmetric for any ωa, and so each compo-
nent of Aa is symmetric. Even in the general (strongly hyperbolic) case, one
can find a base (ωa dependent) in which P (iω) can be diagonalized, basically
because it is symmetric with respect to the (ωa dependent) scalar product in-
duced by H(ω). In this diagonal version, it is easy to see that the well posedness
requires all eigenvalues of iAaωa to be purely imaginary. Thus we see that an
equivalent characterization for well posedness of first order systems is that their
principal part (i.e. iAaωa) has purely imaginary eigenvalues, and that it can
be diagonalized by an invertible, ωa-dependent, transformation. The classical
example of a symmetric hyperbolic system is the wave equation.

For simplicity we consider the wave equation in 1 + 1 dimensions. Choosing
Cartesian coordinates we have,

φtt − φxx = 0,

and so defining the “vector” u := (φ, φt, φx) we have the following first order
system:

ut =

 0 0 0
0 0 1
0 1 0

ux +

 0 1 0
0 0 0
0 0 0

u
There are several other notions of hyperbolicity that appear in the literature:

• A first order system is called weakly hyperbolic if the eigenvalues of the
principal part are purely imaginary. This condition, clearly weaker than
strong hyperbolicity, is not enough to assert well posedness in the sense I
have defined here, and so I do not discuss it further.
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13 Hyperbolic Methods for Einstein’s Equations

• A first order system is called strictly hyperbolic if all eigenvalues of the
principal part are purely imaginary and distinct. If the eigenvalues are
distinct, then the eigenspaces invariant under the action of P1(iω) are one
dimensional and the system can be diagonalized. Thus this class is con-
tained in the strongly hyperbolic one. Due to the degeneracies of systems
induced by symmetries in more than one dimension, physical problems are
seldom strictly hyperbolic. Sometimes this definition is used to mean that
the eigenvectors belonging to the different invariant spaces generated by
the symmetries, which must be also invariant under iAaωa, have distinct
eigenvalues. With suitable conditions on the symmetries, this implies the
full diagonalization of the principal part, and so equivalence with strong
hyperbolicity.

• There is a slightly different notion of hyperbolicity due to Leray see [54]
and [55]. There a system is called strictly hyperbolic, or just hyperbolic, if
it satisfies certain conditions which amount to having the Cauchy problem
well posed in the sense we have used. A system is called non–strictly
hyperbolic if it satisfies conditions implying well posedness of the Cauchy
Problem, but where the continuity notion is not given by a norm, but
rather through Gevrey classes of functions. In particular these spaces are
subspaces of smooth, C∞ functions, and so the data must be also smooth.
I doubt very much can be done with them in terms of studying the stability
of numerical methods, so we shall not concentrate on them.

2.3 Generalization to Variable Coefficient and Non-linear
Systems

We shall consider in what follows a first order system of the form:

ut = Aa(x, t, u)∇au+B(x, t, u)u,

where the vector valued matrix Aa, and the matrix B, are assumed to be
smooth2 functions of all its arguments.

Systems of this type are called quasi-linear because the derivative appears
linearly. This property allows one to use most of the machinery for constant
coefficient equations to prove well posedness, thus the local existence is well
understood, via linearization techniques. There are few global results, and in
general they depend on more refined knowledge of the equation systems for
which they apply.

The behavior of solutions to quasi–linear equations is not yet fully under-
stood. Most of the solutions develop singularities in a finite time for most initial
data, even if they are in M0. This is the case for convective systems, or more
generally for genuinely non-linear systems, see [46, 57], for the definition and
main results, a class which includes systems like perfect fluids and relativistic

2Actually, for the machinery of proving well posedness, finite differentiability to some higher
order is needed.
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dissipative fluids –for they contain as part of the system the perfect fluid equa-
tions. This is also the case for general relativity, where singularity theorems (see
[41, 60]) tell us about the development of singularities, although of a different
type. Thus the concept of well posedness has to be modified to account for
the fact that solutions only last for a finite time and this time depends on the
initial data. Basically, the most we can pretend to show in the above general-
ity is the same type of well posedness one requires from an ordinary system of
equations. Which is quite a lot! The non-linear aspect of the equations implies
also that it is not possible to generalize their solutions to be distributions. The
minimum differentiability needed to make sense of an equation depends on the
particular equation. Furthermore, there are cases (e.g. convection) in which,
for some function spaces of low differentiability, the equation makes sense and
some solutions exist, but they are not unique3.

Definition 4 Let u0(t, x), t ∈ [0, T0), T0 < +∞ be a smooth solution of a
quasi–linear evolution system. We shall say the system is well posed at the
solution u0 with respect to a norm || || if given any δ > 0 there exists ε > 0
such that for any smooth initial data f(x) such that ||f −f0|| < ε, with f0(x) :=
u0(0, x) there exists a smooth solution u(t, x) defined in a strip 0 ≤ t < T , with
|u(t, ·)− u0(t, ·)| < δ, |T − T0| < δ.

In order not to worry about the possibility that the smoothness of the solu-
tions be too stringent a requirement, one can smooth out the equation using a
one parameter family of mollifiers, and require that the relation δ(ε) be inde-
pendent of that parameter family.

To obtain results about well posedness, we just have to slightly modify the
concepts of hyperbolicity already discussed in the constant coefficient case. Since
in the constant coefficient case the matrices did not depend on the points of
space-time, nor on the solution itself, we had only two cases. In one case,
the norm H did not depend on ωa, and so in some base the matrix Aa was
symmetric. In the other case, the norm H did depend on ωa, and we had a
general strongly hyperbolic system. In the latter case, it can be seen that H(ω)
is piece–wise continuous and so integrable, which is, in that case, all that is
needed to proceed with the proof. In the general case with which we are now
dealing, H would in general depend not only on ωa, but also on the point of
space-time and on the solution, H = H(ωa, t, x, u).

This difference has caused terminology to be not uniform in the literature,
so I have taken advantage of this and establish terms in the way I consider best
suited for the topic.

Certain authors call some systems symmetric hyperbolic and others sym-
metrizable. They call symmetric hyperbolic only those systems where the sym-
metrizer does not depend on the unknown variables nor on the space-time vari-
ables (or at most depends only on the base space variables H := H(t, x)); they
call the other systems symmetrizable. This is a rather arbitrary distinction,

3Extra conditions have to be imposed, like entropy growth across shocks, to obtain unique-
ness.
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since the methods of proof used are valid for both with no essential difference.
Thus, if H does not depend on ωa but depends smoothly on all other variables,
H := H(t, x, u), then we shall still say the system is symmetric hyperbolic.
In this case the non-singular transformation which symmetrizes Aa(t, x, u) is
smooth in all its variables.

The existence and smoothness proof is based, as in the constant coefficient
case, on energy norm estimates, but now supplemented by Sobolev inequalities.
Since the norm is built out of H and it does not depend on ωa, no passage to
Fourier space is needed.

IfH does also depend on ωa, and is smooth on all variables, H := H(t, x, u, ωa),
we shall say the system is strongly hyperbolic. The existence and smoothness
proof now requires the construction of a pseudo-differential norm out of H, and
so pseudo-differential calculus is needed, which implies that H has to be smooth
in all its entries, in particular in ωa.

We shall not discuss weak hyperbolic systems, for they are generically un-
stable under perturbations, nor shall we discuss strictly hyperbolic systems, i.e.
systems with strictly different eigenvalues of Aaωa, for they seldom appear in
physical processes in more than one dimension.

With this concept of well posedness we have the following theorem [See for
instance [58] pg. 123]:

Theorem 4 Let r > n
2 + 1, then a strongly hyperbolic system is well posed with

respect to the Sobolev norm || ||r. The solution is in C([0, T ),Hr), the time of
existence depends only on ||f ||r.

Remarks:

• In the generic case the value of r cannot be reduced from the above value,
but of course it can for certain special types of systems. In general rela-
tivity, a slight improvement, (r > n

2 ), is obtained from the fact that the
matrix Aa only depends on a subset of variables (the metric).

• The time of existence is the same for all r. That is, when a solution loses
differentiability, it loses all of it at the same time. This is reflected in the
following result: [58]. If a solution exists until T0 and there ||u(t, ·)||C1

?
is

bounded, (where C1
? is a Zygmund space, see Appendix A in [58]), then

the solution can be extended further. Again in general relativity a slight
improvement can be obtained, see [42], and [18].

2.4 Hyperbolicity and Numerical Simulations

Knowing that the field equations for GR can be cast in a symmetric hyperbolic
form, we can now ask how this fact can be of help for numerical calculations,
(besides the extremely important fact that the problem would be well posed
and so tractable!). There are at least two reasons why one should use vari-
ables in which the system is hyperbolic when performing numerical simulations.
The first reason is that having a strongly hyperbolic system allows for standard
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constructions of numerical codes which are stable. If the system is symmet-
ric, hyperbolic codes with better properties can be constructed. In particular,
schema for symmetric hyperbolic systems can be constructed with numerical
dissipation of lower order than what is needed for generic strongly hyperbolic
ones (see chapter VI of [39]). In variables where the system becomes diagonal,
one can also use methods which take advantage of that structure.

The second reason for using a hyperbolic formulation for numerical analysis
is that well posedness of the system gives bounds on the growth of the solution
and its derivatives, as long as the solution is smooth4. This property, when used
in conjuction with stable algorithms, implies that one can bound the errors made
on the simulation. That is, one knows not only that the error goes to zero as
some power of the step size, but also the proportionality factor of that power
law. In simulating phenomena whose observation would require hundreds of
millions of dollars, a tight control of the accuracy reached should be required.
Nevertheless it should be noted that raw hyperbolicity estimates alone usually
give exponential bounds with very large growth coefficients, and that they are
not of much value for numerical work.

Many of the systems we shall analyze can be cast as flux conservative equa-
tions with sources. This is a direct consequence of the facts that the principal
part of the equations depends only on the metric variable, and that the equation
for the time derivative of it does not contain derivatives of any of the dynamical
variables. This property is important when using codes with variable grid spac-
ing, even more if one considers that there are many standard codes for fluids
–which are truly flux conserving– with adaptive grid schema.

It has to be said that flux conservation is important when dealing with
systems that develop shock waves, that is in convective or more precisely in
genuinely non–linear systems (for a definition of this term and many of the
results, see [46, 57]). One should be cautious about any expectation of improve-
ment by using flux conservative properties in general relativity, since here the
shocks would probably not develop –in particular the systems are not genuinely
non-linear. Rather, when singularities appear, they would be much worse than
mere discontinuities of some of the dynamical fields.5 Due to bad gauge choices,
discontinuities resembling shocks have been observed in numerical simulations,
see [5]. Perhaps, instead of trying to devise an algorithm which allows one to go
through these discontinuities, one should concentrate on finding better gauges,
where it could even happen that the system cannot be put in flux conserving
form. Thus, it is not clear whether flux conservative forms are relevant for
vacuum general relativity.6

4That is, sufficiently smooth for the Sobolev energy, with minimum differentiability possible
to close the bounds, to exist.

5One could of course put a discontinuity on the derivatives of the metric on initial data.
The discontinuity would propagate along the characteristics. In general this is not considered
a shock, for it is not generated by the dynamics and does not propagate along a different char-
acteristic than the neighboring continuous regions. These are called contact discontinuities.

6If matter sources are included, like fluids, then one might need to consider flux conservative
schema for the whole system of equations. But probably it would be much better to use
relativistic dissipative fluids –whose global existence for small data has been proven recently
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Going Further
For the reader wishing to delve further into this precious theory of hyper-

bolic systems, while keeping a physicist’s approach, I recommend [36]. For those
wishing to see more of the machinery at work, I recommend the book of Kreiss
and Lorentz [50]. Finally, for those who really want to get the latest on the
technical aspects and the modern approach to the problem, I recommend Tay-
lor’s book, [58]. Considerations about numerical analysis and algorithms can
be found in [39]. In particular, that book contains general stable algorithms
for strongly and symmetric hyperbolic systems and numerical error bounds in
terms of analytic bounds of the exact solutions applicable to non–linear systems.

[52]–to dispense of shocks altogether when considering weak data.
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3 The Problem of Hyperbolicity in General Rel-
ativity

What follows are descriptions of the problem of hyperbolicity in general rela-
tivity and of the main approaches that have been proposed to deal with the
problem.

In studying Einstein’s field equations we are faced with a problem (see [23,
36, 32]): While the theory of partial differential equations has developed as a
theory for tensor components in a given coordinate system, or at best for tensor
fields in a given metric space, Einstein’s equations acquire their full meaning
–and the characteristics which distinguish them from all other physical theories–
when they are viewed as equations for geometries, that is, for equivalent classes
of metric tensors. The object of the theory is not a metric tensor, but the
whole equivalence class to which it belongs –all other metrics related to the first
one by a smooth diffeomorphism. This fact is contained in the equations, for
they are invariant under those diffeomorphisms. To clarify the concept, and
see the problem, let us assume we have a solution to Einstein equations in a
given region of a manifold. Take a space–like hypersurface across it, Σ0, and a
small “lens shaped” region which can be foliated by smooth space-like surfaces
Σt starting at Σ0. If Einstein’s equations were hyperbolic for the metric tensor,
then uniqueness of the solution (the metric tensor) in the lens shaped region
would follow from the standard theory once proper initial data at Σ0 is given.
But we know that if we apply a diffeomorphism to the original metric tensor
solution, which is different from the identity only in a region inside the lens
shaped one but which does not intersect the initial Σ0 slice, the resulting metric
would also satisfy Einstein’s equations, thus contradicting uniqueness, and so
the possibility that the system be hyperbolic.

Since, as shown in § 2, hyperbolicity is equivalent to the existence of norms
which are bounded under evolution, we see that for Einstein’s equations there
cannot be such norms on the space of metric tensors. Norms are not only
important for well posedness, but also for other related issues which often ap-
pear in general relativity, in particular when one tries to see whether some
approximation schema is indeed an approximation. Examples of this appear in
very unrelated cases, for instance, in numerical algorithms and post-Newtonian
approximations. Thus, a method is needed to find relevant norms on metric ten-
sors, that is, to break the diffeomorphism invariance. The norms thus obtained
are not natural, and so by themselves do not imply any physical closeness of
metrics in numerical values. They have to be considered in their topologically
equivalent class. Physically relevant notions of closeness can still be obtained by
building, out of the metric tensor and its derivatives, diffeomorphism invariant
quantities and making the comparisons with then.

Can we avoid this detour into tensors and make a theory of diffeomorphism
invariant objects? It is not clear whether this can be done. Some attempts in
this direction have been made by trying to build norms which have some partial
diffeomorphism invariance. Here the norms are made out of scalars built out
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of curvature tensor components of the metric, in particular see [23, 32]. But
I think a fully geometrical theory needs other types of mathematics than the
theory of partial differential equations, a theory which might be emerging from
parallel questions in quantum gravity.

3.1 The Standard Approach, or the 4-D Covariant Ap-
proach

The standard approach to overcome this problem has been to “fix the gauge”,
that is, by imposing some extra condition on the metric coordinate components
which would select one and only one representative from each equivalent class
of Einstein’s geometries. With a clever choice of gauge fixing, commonly the
so-called harmonic gauge, Einstein’s equations can be “reduced” to a hyperbolic
system by removing from them the parts which the gauge condition would make
vanish. This reduced system is equivalent to the full Einstein equations if one
can prove that, possibly after imposing further initial data set constraints, the
solutions of the reduced system satisfy the gauge conditions previously imposed
to the system. Alternatively, one can think of this method as fixing some com-
ponents of the tensor obtained by taking the difference between two connections,
the one associated with the metric tensor at which we are looking and the one
associated with some other arbitrary background metric [26, 41].

A convenient way to describe this scheme is by introducing a background
metric, g̃ab, thus the gauge is not a coordinate condition, but rather a condition
which links the physical metric with the background one. In this approach,
see [41], the basic variable is a densitized symmetric tensor, Φab := gδgab,
where g is the metric determinant with respect to the background one, 7 and
δgab := gab − g̃ab.

In these variables Einstein’s equations become,

1
2
gcd∇̃c∇̃dΦab − gc(a∇̃cΨb) +

1
2
gab∇̃cΨc (2)

+(terms in ∇̃cδgde and δgde ) (3)
= 8πgT ab − gG̃ab, (4)

where ∇̃c is the covariant derivative associated with g̃ab, G̃ab its Einstein tensor,
and Ψa := ∇̃bΦab = ∇̃b

√
g
ĝ g
ab.

In that gauge, Einstein’s equations are “reduced” to a hyperbolic system by
removing from them all terms containing Ψa, for this quantity is assumed to
vanish in this gauge. By doing this one gets a set of coupled wave equations, one
for each metric component. Thus by prescribing at an initial (space-like) hyper-
surface values for Φab and of its normal derivatives one gets unique solutions to
the reduced system. When are such solutions solutions to Einstein’s equations?

7If εabcd is the Levi-Civita tensor corresponding to the physical metric, gab and ε̃abcd the
one corresponding to background metric, g̃ab, then εabcd =

√
gε̃abcd.
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That is, under what conditions does Ψa vanish everywhere? It turns out that
the Bianchi identity grants that when Φab satisfies the reduced equations, then
Ψa satisfies a linear homogeneous second order hyperbolic equation. Standard
uniqueness results for such systems implies that if initially Φab is chosen so
that Ψa and its normal derivative vanish at the initial surface, then they vanish
everywhere on the domain of dependence of that surface. Thus the question
is now posed on the initial data, that is, on whether it is possible to choose
appropriate initial data for the reduced system, (Φab, Φ̇ab), in such a way that
(Ψa, Ψ̇a) vanish initially. It turns out, using that the reduced equations are
satisfied at the initial surface, that one can indeed express Ψa and its normal
derivative at the initial surface, in terms of Φab and its derivatives (both normal
and tangential to the initial surface). Thus one finds there are plenty of initial
data sets for which solutions to the reduced system coincide with solutions to
the full Einstein system. Are they all possible solutions to Einstein’s equations,
or are we loosing some of them by imposing this scheme? The answer to the first
part of the question is affirmative (subject so some asymptotic and smoothness
conditions), for one can prove that given “any” solution to the Einstein equa-
tions, there exists a diffeomorphism which makes it satisfy the above harmonic
gauge condition.

It is important to realize that it is not necessary to set Ψa to zero to render
the Einstein equations hyperbolic; it just suffices to set it equal to some given
vector field on the manifold, or any given vector function of the space-time
points and on the metric, but not its derivatives. So there are actually many
ways to hyperbolize Einsteins’s equations via the above scheme. We shall call all
of them harmonic gauge conditions, and reserve the name full harmonic
condition to the one where Ψa ≡ 0.

An important advantage of this method is that some gauge conditions, like
the full harmonic gauge, are four-dimensional covariant –although a background
metric is fixed– a condition which can be very useful for some considerations.

One drawback of this method, at least in the simplest version of the harmonic
gauge, i.e. the full harmonic gauge, was recognized early, [14]. The drawback is
the fact that this gauge condition can be imposed only locally, and generically
breaks down in a finite evolution time. A related problem has been discussed
recently in [5] in the context of the hyperbolizations of the ADM variables with
the harmonic gauge along the temporal direction. The above disadvantage can
be considered just a manifestation of another: the lack of ductility of the method,
that is the fact that one has been able do very little besides imposing the full
harmonic gauge condition, and that for each new harmonic gauge condition
one would like to use, a whole study of the properties of the reduced equations
would have to be undertaken. Although there are many other gauge conditions
besides the harmonic one, the issue of the possibility of their global validity,
or the search for other properties of potential use, do not seem to have been
considered. For a detailed discussion of this topic, see [31, 32], and also [41].

One can summarize the situation by noticing that in this setting one needs
to prescribe a four vector as a harmonic gauge condition. Since the theory keeps
its four dimensional covariance, then it is hard to choose any other vector but
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zero, that is the full harmonic gauge. Since recently there have been no advances
in this area, I do not elaborate on it.

3.2 The Modification of the Field Equations Outside the
Constraint Sub-manifold, or the 3+1 Decomposition
Point of View

Another approach to deal with the diffeomorphism freedom of Einstein’s equa-
tions is by first removing the diffeomorphism invariance. This is done by pre-
scribing the time foliation along evolution, that is, by prescribing a lapse-shift
pair along evolution. This removes the diffeomorphism invariance up to three-
dimensional diffeomorphisms at the initial surface. Sometimes four dimensional
covariance is also broken by splitting Einstein’s equations, and possibly other
supplementary equations, with respect to that foliation, and then recombining
the split pieces in a suitable way. The resulting equations are equivalent to
the original ones –for it is just a linear combination of them– so they have the
same solutions. Notice that here we are doing more than just a 3+1 decomposi-
tion, since in general one is recombining space-space components of the Einstein
tensor with time-time, and time-space components in a non-covariant way, and
taking as equations this combination, or even transforming the equations to first
order in derivatives of the variables by defining new variables and equations and
modifying them.

After this procedure is done, one obtains a system which is symmetric hy-
perbolic for most choices of given lapse-shift functions, once they are suitably
re-scaled. Subsequent arguments go very much on adding equations for the
lapse-shift vector in order to make the whole system well posed, and presum-
ably useful for some application. It is instructive to think of these modifications
of the evolution equations from the point of view of the initial value formula-
tion. There one starts by solving the constraint equations, the time-time and
time-space components of the Einstein tensor, at the initial surface. With the
initial data thus obtained, one finds the solution to the evolution equations
which are taken to be the space-space components of the Einstein tensor. Since
that evolution preserves the constraints, (The vector field generating the flow in
phase–space is tangent to the constraint sub-manifold.), one can forget about
the constraint equations and think of the evolution equations as providing an
evolution for the whole phase–space. In this sense, the modification one is mak-
ing affects the evolution vector outside the constraint sub-manifold, leaving the
vector intact at it. Uniqueness of solutions, which follows from the well posed-
ness of the system, then implies that the solutions stay on the sub-manifold.
Nevertheless, and we shall return to this point, as shown in [33], there is no
guarantee that the sub-manifold of constraint solutions is stable with respect
to the evolution vector field as extended on the whole phase–space. This is an
important point for numerical simulations.
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4 Recent Approaches to the Problem

4.1 The ADM representation

In the ADM formulation of Einstein’s equations, the fields involved are detached
from the under-laying space-time and brought into an abstract three dimensional
manifold product a segment of the real line. To obtain the relation between these
abstract fields and the metric tensor defining a solution of Einstein’s equations,
we start by pretending we have such a solution, that is a space-time (M, gab).
In this space-time we look at a Cauchy surface, Σ0, that is, an everywhere
space-like hypersurface such that any in-extendible time-like piece-wise smooth
curve pierces it once and only once, and a time flow, that is, a smooth time-like
vector field, ta. From the definition of the Cauchy surface, ta is never tangent
to it and every point of M falls in an integral curve of ta. Thus, in assuming
the existence of Σ0 we are restricting attention to manifolds of the type S ×<.
To make this structure more apparent we define a function t by setting to zero
the parameter defining the integral curves of ta at Σ0, that is, the value of t at
p ∈ M is defined as the value of the parameter the integral curve of ta takes
at p if defined in such a way that at Σ0 is takes the value 0. We shall call
the surfaces of constant t by Σt. Thus ta∇at = 1, notice that nevertheless, in
general, they are not space-like. When they are space-like, we shall call t a time
function. In this case we also say we have a space-like foliation of space-time
(M, gab). We shall assume that this is the case, but one must take into account
that when we are solving for a space-time we do not know for how long this
would continue to hold. Using this structure we can split tensor into “space”
and “time” parts with respect to the surfaces Σt. If na is the normal to them,
that is, na := −gab ∇bt√

gcd∇ct∇dt
then hab := gab − nanb is the induced metric on

each Σt. We also define the lapse shift pair, (N,Na), as the “time-like” and
“space-like” parts of ta with respect to Σt, that is, ta := Nna +Na.

Given the foliation, and the triad (hab, N,Na) we can reconstruct the metric
as gab = hab − N−2(ta − Na)(tb − N b). Given another foliation, (Σ0, t

′a), but
the same triad, we get another metric tensor, the relation between both is a
diffeomorphism which leaves invariant Σ0 and is generated by the integral curves
of ta − t′a. Alternatively we can choose another pair (N,Na) and so construct
another metric tensor, the relation between both metric thus obtained is also a
diffeomorphism. Since one is interested in geometries, that is in metric tensors
up to diffeomorphisms, both metric obtained are equivalent, but one needs to
pick up an specific one in order to write down, (and solve), Einstein’s equations.

Using the above splitting vacuum Einstein’s equations become two evolu-
tion equations:

ḣab = 2Nh−1/2(Pab −
1
2
habP ) + 2D(aNb),

Ṗ ab = − Nh1/2(Rab(h)− 1
2
R(h)hab)h1/2(DaDbN − habDcDcN)
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+
1
2
Nh−1/2hab(PcdP cd −

1
2
P 2)− 2Nh−1/2(P acP bc −

1
2
PP ab)

+ Dc(N cP ab)− 2P c(aDcN
b),

where the dot means a Lie derivative with respect to ta, P ab :=
√
h(Kab−Khab)

and Kab is the extrinsic curvature of Σt with respect to the four-geometry,
that is, Kab := hac∇cnb. Da is the covariant derivative associated with hab on
each Σt, and Rab its Ricci tensor.

And two constraint equations:

hR(h)− P abPab +
1
2
P 2 = 0,

DaP
ab = 0.

Note that there are two “dynamical” variables, hab, and P ab, while the lapse–
shift pair (N,Na), although necessary to determine the evolution, is undeter-
mined by the equations. Note also that they do not enter into the constraint
equations, for as said above a change on the lapse–shift pair leave the fields at
initial surface unchanged.

It is important step back now and see that these equations can be thought
as “living” in a structure completely detached from space–time. To see this,
identify all points laying in the same integral curve of ta, thus the equivalence
class is a three dimensional manifold S, homeomorphic to any Σt. On it, for
each t we can induce space-contravariant tensors, such as hab(t), Pab(t), Na(t),
and scalars, as N(t). As long as the surfaces are space–like, the induced met-
ric is negative definite and we can invert it, thus we can perform all kinds of
contractions and write the above equations as dynamical equations on the pa-
rameter t on fields on the same manifold, S. This is of course the setting in
which one sets most of the schemes to solve the equations, and it is hard to keep
control, even awareness, that the surfaces defining the foliation can become null
or nearly so. Einstein’s equations “feel” that effect since they are causal, and
this is abruptly fed back via the development of singularities on the solutions
. They do not have any thing to do with real singularities of space–time, but
rather with foliations becoming null.

The first application of this idea to Einstein’s equations appears to have
been [19]. There a hyperbolic system consisting of wave equations for the time
derivative of the variable hhab is obtained when the shift is taken to vanish and
the lapse is chosen so as to impose the time component of the harmonic gauge.
The shift is set to zero, but, as stated in the paper, this is an unnecessary
condition. Thus, it is clear that one gains in flexibility compared with the
standard method above. This seems to correspond with the fact that in one of
the equations forming the system, the time derivative of the evolution equation
for the momentum, the momentum constraint has been suitably added, thus
modifying the evolution flow outside the constraint sub-manifold. As stated
in the paper, they could not use the other constraint, the Hamiltonian one, to
modify that equation.
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The condition for that system to be (symmetric) hyperbolic is that the term
below should not have second derivatives of P ab.

(hab∆−DaDb)(
Ṅ

N
− N

2
P ),

where hab is the induced three metric on a hypersurface, Da is the covariant
derivative at that hypersurface compatible with hab, ∆ := habDaDb, N is the
lapse function, and P := habP

ab, with P ab the momentum field conjugated to
hab.

The simplest condition to guarantee this is:

Ṅ =
N2

2
P,

which in view of the definition of P ab, which implies ḣ = hNP , has as a solution,

N = (
h

e
)1/2,

where h
e is the determinant of the metric hab with respect to a constant in time

background metric eab. This is precisely the harmonic condition for the time
component of Ψb in notation introduced in the paper’s introduction. That is,
Ψbnb ≡ 0, where nb it the normal to the foliation. If the determinant of eab is
not taken to be constant in time, then one gets,

Ṅ

N
− N

2
P =

ė

e
,

and so the system remains hyperbolic. Thus, we see that, up to the deter-
minant of the metric, the lapse can be prescribed freely. This freedom is very
important because it gives ductility to the approach, since this function can be
specified according to the needs of applications. We shall call this a generalized
harmonic time gauge.

Although in the introduction of [19] there is a remark dedicated to numerical
relativists about the possible importance of having a stable system, the paper
did not spark interest until recently, when applications required these results
to proceed. In recent years, a number of papers have appeared which further
elaborate on this system, [2, 4, 1]. In particular I would like to mention [4],
where the authors look at the system in detail, writing it as a first order system,
and introduce all variables which are needed for that. In these recent papers,
the generalized harmonic time gauge has been included, as well as arbitrarily
prescribed shift vectors. If one attempts attempts to write down the system as
a first order one, that is, to give new names to the derivatives of the basic fields
until bringing the system to the form of equation 1, the resulting system is
rather big, it has fifty four variables, without counting the lapse-shift pair. We
shall see that there are first order hyperbolic systems with half that number of
variables.
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Two similar results are of interest: In [9] a system is introduced with basi-
cally the same properties, but of lower order, that is, only first derivatives of
the basic variables are taken as new independent variables in making the sys-
tem first order. In this paper, it is realized that the same trick of modifying the
evolution equations using the constraints can be done by modifying, instead of
the second time derivative of the momentum, the extra equation which appears
when making the ADM equations a first order system, that is the equation
which fixes the time evolution of the space derivatives of the metric, or alter-
natively the time evolution of the Christoffel symbols. When this equation is
suitably modified by adding a term proportional to the momentum constraint,
and when the harmonic gauge in the generalized sense used above is imposed,
a symmetric hyperbolic system results. In [11] the generalized harmonic time
gauge is included, as well as arbitrarily prescribed shift vectors. For the latest
on this approach see, [10]. I shall comment more on this in next section, § 4.

In [34] a similar system is presented. In this case, the focus is on establish-
ing some rigorous results in the Newtonian limit. So a conformal rescaling of
the metric is employed using the lapse function as conformal factor. The im-
mediate consequence of this transformation is to eliminate from the evolution
equation for P ab the term with second space derivatives of the lapse function,
precisely the term giving rise to one of the terms in equation 4.1. The end
consequence is that the conformal metric is flatter to higher order. With this
re–scaling, and using the same type of modification of the evolution equation
for the space derivatives of the metric that the above two approaches use, a
symmetric hyperbolic system is found, for arbitrary shift and lapse. 8 This
freedom of the lapse and shift was used to cancel several divergent terms of the
energy integrals in the Newtonian limit by imposing an elliptic gauge condition
on the shift, which also determined uniquely the lapse. This resulted in a mixed
symmetric hyperbolic–elliptic system of equations. In [35] an attempt is made
to explore what other possibilities there are of making symmetric hyperbolic
systems for general relativity with arbitrarily prescribed lapse–shift pairs. A set
of parametrized changes of field variables and of linear combinations of equa-
tions are made, and it is shown that there exists at least a one parameter family
of symmetric hyperbolic systems. In these systems generalized harmonic time
gauge is replaced by:

N := (
h

e
)δ δ > 0.

So, the dependence of the lapse on the determinant of the metric can be modi-
fied, but never suppressed. Since the changes in the parameter imply changes in
the dynamical variables, while the factor proportional to the momentum added
to the evolution equation for the connection is unique, and so fixed, it is not
clear whether this can be of help for improving numerical algorithms. We shall
see this type of dependence arise in one of the developments of one of the above
mentioned approaches.

8Note that the lapse used in this work already had the generalized harmonic time gauge
built into it.
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In [32] a similar system, in the sense of using variables from the 3 + 1 de-
composition, is obtained by imposing also the same generalized harmonic time
gauge. This system, as is the original system of [19], is of higher order because
it includes the electric and magnetic parts of the Weyl tensor in the 3 + 1 de-
composition. As such, it contains more variables (fifty) than the two discussed
above (thirty).

4.2 The Frame Representation

Another way of dealing with Einstein equations is through the frame represen-
tation. There, instead of using the metric tensor as the basic building block
of the theory, a set of frame fields is used. At first this representation seems
to be even less economical than the metric tensor representation of geometries,
since, on top of the diffeomorphism freedom, one has the freedom to choose
the frame vector fields. In short, one has sixteen variables instead of ten. But
the antisymmetry of the connection coefficients compared with the symmetry of
the Christoffel symbols levels considerably the difference, ending, after adding
the second fundamental form and others, with twenty-eight variables, instead
of the thirty of the conventional system. But this count is not entirely correct.
As mentioned above, in order to close the system of equations one has to add
the evolution equations for the electric and magnetic part of the Weyl tensor,
thus ending with a total of thirty four variables. Actually one can close the
system with the twenty four variables at the expense of making the equations
into second order wave equations, (See for instance [59].), so effectively adding
more variables when re–expressing it as a first order system.

The more important application of the frame representation has been the
conformal system obtained by Friedrich, [30, 29], (see § 1), where in a fixed
gauge he got a symmetric hyperbolic system which allowed him to study global
solutions. Later, using similar techniques and spinors, he found a symmetric
hyperbolic system with the remarkable property that lapse and shift appear
in an undifferentiated form, allowing for greater freedom in relating them to
the geometry without hampering hyperbolicity [31]. In [32] he introduces new
symmetric systems for frame components where one can arbitrarily prescribe
the gauge functions, which in this case does not only include the equivalent to
the lapse–shift pair, but also a three by three matrix fixing the rotation of the
frame. In this case, these gauge functions enter up to first derivatives. This
compares very favorably with the ADM representation schema where the lapse-
shift entered up to second order derivatives. Friedrich also finds a symmetric
hyperbolic system with the generalized harmonic time condition. Contrary to
the systems in the ADM formalism, where the issue is rather trivial, these
systems do not seem to allow for a writing in flux conservative form. We do not
consider that a serious drawback. The structure of Einstein’s equations is very
different than those of fluids, where the unavoidable presence of shocks makes it
important to write them that way. Indeed the reason fluids have shocks can be
attributed to their genuinely non-linear character, [46], a property not shared
by Einstein’s theory. (More about this in the next section, § 4.)
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27 Hyperbolic Methods for Einstein’s Equations

4.3 Ashtekar’s Representation

The example of the one dimensional wave equation 2.2 can be slightly im-
proved by the following construction: We define a two dimensional vector
u := (u1, u2) := (φ, φt − αφx). We then have u1

t = αu1
x + u2, while, u2

t =
−αu2

x + (1− α2)φxx. Thus we have a diagonal –and so symmetric hyperbolic–
system if α = ±1, namely,

ut =
[
α 0
0 −α

]
ux +

[
0 1
0 0

]
u,

The two possible values α can take correspond to the two characteristic
directions the wave equation defines. This trick can not be extended two more
dimensions, basically because the space derivative of φ is a vector, and so can
not be properly mixed with its time derivative. But in other dimensions one can
implement similar schema if the fields are not scalars but appropriate tensors.

Einstein’s equations in Ashtekar’s’ variables [7, 8] is one beautiful example
of this, since they have the remarkable property of naturally constituting a first
order evolution system. Because of this reason it is also a compact system
with twenty-seven unknowns, even before imposing the reality condition on the
connection variable. Recently it has been proven [45] that such a system is
symmetric hyperbolic if suitable combinations of the constraint equations are
added to their evolution equations, thus effectively changing the flow outside
the constraint sub-manifold of phase–space.

In Ashtekar’s representation the basic variables are a densitized SU(2) sol-
dering form, σ̃aAB and a SU(2) connection AaAB which are tangent to a space-
like foliation of space time determined by given “lapse”–shift pair Ñ = N/detσ,
Na.

The symmetric hyperbolic evolution equation system is:

Ltσ̃b =
−i√

2
Da(Ñ [σ̃a, σ̃b]) +

i√
2
Ñ [C̃, σ̃b] + 2Da(N [aσ̃b]) +N bC̃ + [AaNa, σ̃b]

LtAb = Db(AaNa) +NaFab +
i√
2
Ñ [σ̃a, Fba] +

i

σ2
√

2
Ñ σ̃bC +

i

σ4
Ñεb

dcσ̃cCd,

where (D) is the SU(2) derivative whose difference with respect to a flat con-
nection is AaAB . C, Ca, and C̃ are the constraint equations,

C(σ̃, A) := tr(σ̃aσ̃bFab) (5)
Ca(σ̃, A) := tr(σ̃bFab) (6)
C̃(σ̃, A) := Daσ̃a, (7)

Note that here there is an extra vectorial constraint, a SU(2) valued scalar,
which corresponds to the fact that the system has extra degrees of freedom, the
SU(2) rotations. The extra constraint is just a strange way of asserting the
symmetry of the second fundamental form, and is of the type of substitutions
we made above to improve on the wave equation system. The constraints on
themselves satisfy a symmetric hyperbolic system of equations.
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Note that the principal part of the system is block diagonal and the eigenvectors–
eigenvalues are very simple combinations of σ̃ with the elements of an orthogonal
basis {ωa,ma, m̄a}, where ωa is the wave vector.

In this new system, the “lapse”-shift pair can be chosen arbitrarily. But
in fact the “lapse” that appears here is a scalar density which has already
incorporated the square root of h on it. So the freedom is actually the same as
in the ADM representation. As in the frame representation, the lapse–shift pair
appears only with derivatives up to first order. In this case it is relatively easy
to see the freedom in making up evolution equations for the lapse–shift pair. As
said above, the system is symmetric for Ashtekar’s variables, since the lapse–
shift pair enters as terms with up to first derivatives, one can take those terms
from the non–principal part of the system and promote them into the principal
part of a bigger system which incorporates the lapse–shift as extra variables.
Thus, these terms constitute an off–diagonal block of the bigger principal part
matrix. Imposing symmetry to the bigger matrix fixes the opposite off–diagonal
part of the matrix. The only freedom left is on the lapse–shift block–diagonal
part, which can be chosen to be any symmetric matrix we like. The non–
principal part of the equation system on the lapse–shift sector can also be chosen
arbitrarily. Of course, in contrast with the ADM representation results, one can
also choose a gauge condition via elliptic equations on the lapse–shift pair. In
this case, the elliptic system can be of first order in the lapse–shift or related
variables. For instance, one could use Witten’s equation to evolve them.

As we have seen, the generalized harmonic time gauge seems to appear nat-
urally in most attempts to get well posed evolution systems. Thus it seems to
be really a key ingredient, perhaps with some physical content. One could ar-
gue in that direction from the circumstances in which it appears in [34], namely
effectively improving the estimates of the behavior of solutions admitting a New-
tonian limit that is in a way related to the longitudinal modes of the theory. This
longitudinal modes are part of the evolution, although they are not expected to
behave in a hyperbolic manner. See also the comments around equation (9) in
[10].
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5 Beyond the Prescribed Gauge

In this section we will look at several attempts to, once a hyperbolic system
has been obtained for the evolution variables, extend it into a bigger well posed
system where the lapse–shift pair, or more generally the gauge variables of a
particular system, can be determined by some prescription which in general
depends on the dynamical variables. The bigger system does not need to be
hyperbolic, it only needs to be well posed, and so for instance it can be mixed
elliptic–hyperbolic.

5.1 Trial and Error Method

One alternative would be to start with some arbitrary prescription for the gauge
variables, evolve the solution for a while, stop, look for troublesome regions, and
modify the gauge prescription there. One would do that only a finite number of
times and choose smooth prescriptions and smooth transitions between them,
so no problem of well posedness or numerical stability would be created by that
procedure. With some experience, and luck, this procedure could work.

Perhaps the mayor drawback of this approach is the fact that the strict har-
monic gauge, the most conspicuous choice, does not behave well under evolution.
This has been known for a long time [14], and more recently new indications
have been found in [5]. These findings are of course not valid for the gener-
alized harmonic time gauge because one can trivially take any solution, draw
a well behaved foliation on it, and identify the generalized gauge that works
for that solution. Some attempts have been made in order to get loose from
the generalized harmonic time condition, presumably with the intention of later
imposing equations on the free variables, otherwise independent fields. In [3] a
non-strictly hyperbolic system is found by taking yet another time derivative
of the evolution equation for the momentum variable. In that way, they are
able to prescribe in a completely free way the lapse–shift pair. In doing this,
they obtain a non-strictly hyperbolic system, in the sense of Leray-Ohya, [55],
which I presume in the language of first order systems means that it is a weakly
hyperbolic, but with certain other properties which imply that the system is
well posed in Gevrey classes of functions 9. The resulting system, once brought
to first order, has a rather big number of variables. It is not clear that one can
stablish numerical stability and convergence for these types of systems, for at
least in the continuum estimates an infinite number of derivatives are involved.

In [32], as said in the previous section, a system in the frame representation
is made where the corresponding gauge variables can also be given arbitrarily.
The importance of this freedom is that in this case one can prescribe directly the
lapse. This is in contrast to the case of the generalized harmonic time condition,
in which one prescribes the lapse up to the square root of the metric and so finds
out what the lapse really was only after solving the problem.

9 Basically one is able to bound norms on the solution by different norms on the initial
data, with the last one involving more derivatives, but with smaller and smaller derivatives
as the order of the derivatives in the norms increases.
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5.2 Hyperbolic Extensions

One would also like to have recipes which could be used automatically during
evolution, that is, algebraic or differential equations, which would not only fix
uniquely the evolution of the gauge variables, but which would also result in a
well posed evolutionary problem.

One approach has been taken in [11, 12], and [10] where the equation 4.1
has been modified to (in the notation of [19]):

Ṅ =
N2

2
f(N)P,

With this new evolution equation for the lapse function, they analyze the princi-
pal part of the equations and see that if f > 0 then it has imaginary eigenvalues
and a complete set of eigenvectors. Thus, up to the smoothness requirement on
the eigenvalues with respect to the wave vector, the system seems to be at least
strongly hyperbolic and so well posed. This prescription enlarges the system a
bit; as one also has to correctly include in it the corresponding equations for
the first space derivatives of the lapse function, which become now a dynamical
variable.

Although the system is well posed in the sense of the theory of partial differ-
ential equations, it has some instabilities from the point of view of the ordinary
differential equations. A quick look at the toy model in [5] shows that if we take
constant initial data for (in that paper’s notation) α = α0, g = g0, and K0,
and null data for A, and D, then the resulting system is just a coupled set of
ordinary equations. One can see that g = g0(K/K0)2, and so

α̇

K
= (

α

K
)2K

2
0

g0
(1− f).

If f = 1, the harmonic time gauge in this notation, nothing happens at first
sight. See nevertheless [5]. If f > 1 and α0

K0
> 0 then we have a singularity in

a finite time. The same happens if f < 1 and initial data is taken so that α0
K0

is negative. Thus we see that this gauge prescription can generate singularities
which do not have much to do with the propagation modes, and so with the
physics of the problem. In [5] and [6] numerical simulations have been carried
out to study this problem. Needless to say, these instabilities would initially
manifest themselves in numerical calculations via the forming of large gradients
on the various fields coupled to the above fields, and the time at which they
appear depends on the size of the trace of the momentum variable. In [6] a
proposal to deal with this problem is made which consists of smoothing out the
lapse via a parabolic term. In view of the fact that this problem already arises
for constant data, it is doubtful that such a prescription can cure it.

Note that the above prescription for the evolution of the lapse for f =
f0 > 0 is identical to the one considered in [35], namely equation 8. It is
most probably the case then that the same sort of instability would be present
there, although the equations considered there are different, due to the inclusion
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of terms proportional to the scalar constraint in order to render the system
symmetric hyperbolic.

In [5] there is also a study of another type of singularity which is not ruled
out with the choice of the harmonic gauge, f = 1. This singularity seems to be
of a different nature, and is probably related to the instability of the harmonic
gauge already mentioned. It clearly has to do with the non–linearities of the
theory.

It should be mentioned that there are a wide variety of possibilities for mak-
ing bigger hyperbolic systems out of those which are hyperbolic for a prescribed
lapse-shift pair, or for the generalized harmonic gauge variant. In that respect,
perhaps the systems which are more amenable to a methodological and direct
study are the ones in the frame or in Ashtekar’s representations, for there,
as discussed in the previous section for the Ashtekar’s representation systems,
§ 4.3, the possibilities to enlarge the system and keep it symmetric hyperbolic
are quite clear and limited.

5.3 Elliptic Extensions

These are other types of approaches which take more into account the longi-
tudinal modes of the theory, namely those which are related to the energy or
matter content of the space time, and those which do not propagate as waves.
The nature of these modes implies that these approaches seem to need a global
knowledge of the solution, which in practice appears by imposing either elliptic
or parabolic equations, the latter as a way to drive the solution close to satisfy-
ing an elliptic equation for larger times. Systems of that sort have already been
used in applications: In [23], a hyperbolic system with lapse given by an ellip-
tic equation is used in the proof of global existence of small data. The elliptic
equation is used to impose the maximal slice condition during evolution, that is
P ≡ 0. In that work, the first order system is for the electric and magnetic parts
of the Weyl tensor, while the metric, connection, and extrinsic curvature tensor
are obtained by solving elliptic equations on each slice. For their aims, obtain-
ing a priori estimates, this suffices. For numerical simulations of evolution, it is
better to solve, as much as possible, evolution equations, and not elliptic ones.
Thus for this aim, equations –hopefully hyperbolic or at least parabolic– should
be added to evolve the above mentioned (lower order in derivatives) variables.
This has improved recently in [22], and [3] with a slight generalization to [23]
in admitting arbitrarily prescribed P ’s. In particular, in [22] a complete proof
of well posedness of mixed symmetric hyperbolic–elliptic systems is given. Such
a proof must be implicit somewhere in [23], and a general argument has been
given in [34]. Surprisingly, such a result, which has a rather simple argument
based on the standard elliptic and hyperbolic estimates, has not before had the
clean proof it deserves. This gauge has been used to show existence of near
Newtonian solutions by [56].

In [34] a different elliptic condition is imposed in order to study near New-
tonian solutions. An elliptic system is considered for both lapse and shift. It
is similar, but not equal, to the above gauge, for in this work a much stronger
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condition is required on the order of approach of relativistic solutions to the
Newtonian limit. This implies globally controlling not only the lapse, but also
the shift.

The last two works mentioned hint at some interplay between the problems
of finding well behaving gauges for near Newtonian solutions and for long term
evolution. The argument has been that, since in this gauge the principal part
of the equations is well behaved near the –singular– Newtonian limit, and since
the rest of the terms of the hyperbolic system go to zero on that limit, one
expects for the time the solution exists to go to infinity as one approaches the
Newtonian limit. Thus the gauge should be well behaved until then. I cite [43]
for recent work on this and [44] for a well behaved system in asymptotically null
slices amenable to study slow solutions near null infinity.

In the frame and in Ashtekar’s representations one could even consider first
order elliptic (spinorial) equations to fix the gauge variables. In the frame
representation one can even fix gauge variables via an algebraic condition.
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6 The Role of the Constraints

In this section, I analyze the role the constraint equations play in these new
formulations. I will start by analyzing how the equations were handled in the
original proof of well posedness. Then I discuss what has been said recently
and what has to be done in the future, both for theoretical considerations and
for numerical work. In particular, I discuss the role of the constraints in the
initial–boundary value problem, a problem which has still to be fully solved,
but which nevertheless is applied in most of the numerical simulations.

6.1 The Constraints in the Harmonic Gauge

In the harmonic gauge, the role of the constraint equations as such is hidden.
This is because the constraint equations become evolution equations due to the
gauge choice. Indeed, in the full harmonic gauge all components of the Einstein
tensor become a big second order hyperbolic equation for the metric compo-
nents. The need for the constraints to be satisfied at the initial surface enters
the picture because it implies that the first time derivative of the gauge condition
must vanish there in order to guarantee that the constraints vanish everywhere.
Thus the question about the preservation of the constraint equations does not
appear here. At most one can say it has been traded for the question of the
gauge consistency.

6.2 The Constraints in the New Systems: Theoretical
Considerations

In the new hyperbolic systems, where covariance is lost, one solves only for the
evolution equations. Thus, the question of whether the constraint equations
hold during evolution if they hold at the initial surface arises again. If the prob-
lem is about the evolution of the whole space–time, or about evolution on the
domain of dependence of some space–like surface, then there is a good argument
showing that the constraint equations would be satisfied as a consequence of the
uniqueness of the system under consideration:

Assume initial data is given at some space–like hypersurface which satisfies
the constraints there. We use the new evolution system and get a solution in
the domain of dependence of the system, (which, if gauges propagate at speeds
greater than light, might be smaller than the domain given by the metric). But
using the harmonic gauge I know that there is a solution to the Einstein equation
on a maximally extended domain of dependence. If one can diffeomorphically
transform metric corresponding to that solution into one satisfying the gauge
used for the evolution with the new system, then, since it satisfies all the equa-
tions, including the constraints, it follows that it will also satisfy the equations
of the new system. Uniqueness of solutions of the new system implies it must
be the one found initially and so it also satisfies the constraints. Thus we see
that no particular consideration for the constraint equations is needed.
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6.3 The Constraints in the New Systems: Numerical Con-
siderations

For numerical simulations, the role of the constraint equations is delicate: Since
there are always numerical errors, although the vector field defined by Einstein’s
equations in any of the above approaches is tangent to the constraint sub-
manifold, we can only expect to be in the neighborhood of that sub-manifold.
So, since one is effectively modifying the evolution equations outside the sub-
manifold, that the vector field is tangent to it is not enough. For if that sub-
manifold were unstable, it could very well be that a spurious numerical solutions
could start growing during evolution and takes us completely away from it. This
problem has been noticed by several people and has been considered in detail
in [33]. There it is shown that, while in some evolution systems, the constraints
themselves obey hyperbolic evolution equations, in others that is not the case
so are presumably unstable.

It is not clear to me that the condition that the constraint system be well
posed is the one needed for considering a system free of this problem. First
because well posedness as such is not enough to guarantee the possibility of a
numerical scheme: The system could be well posed but still depart exponentially
from the constraint sub-manifold, thus making impossible any reliable calcula-
tion. So the non–principal part of the system must also be considered, and
probably suitably modified in the neighborhood of the constraint sub-manifold.
Second, since one is never solving, or simulating, the constraint evolution equa-
tions, that is, they play no role in the scheme, why should one consider them
at all? I think the emphasis should be put on guaranteeing a numerical scheme
without spurious solutions; because, as argued above, uniqueness should imply
that the constraints are satisfied. Thus, what seems to be needed is a connection
between well posedness, or rather no exponential departure from the constraint
sub-manifold, and lack of spurious solutions on the numerical schema.

6.4 The Constraints in the Initial–Boundary Value Prob-
lem

A completely different situation arises if one is considering an initial–boundary
value problem for Einstein’s equations. Although this problem has not been
solved in its full generality for Einstein’s equations, it is clear that in order for the
constraints to be satisfied during evolution, some of the boundary values have to
be chosen in a special way. It is here that the type of equations the constraints
satisfy is most important. In particular, if they also form a hyperbolic system,
then a study of its principal part at the boundary would tell which conditions
are needed to guarantee uniqueness of the solutions, in particular the trivial
solution, and so which are the boundary conditions we must force upon the
evolution system for the dynamical fields. Since most numerical simulations are
in fact initial–boundary value problems, the problem of well posedness and the
problem of the propagation of the constraints are central.
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