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Poisson Kern2els and
Pluriharmonic H“-Functions
on Homogeneous Siegel Domains

Bartosz Trojan*

Communicated by J. Faraut

Abstract. In the paper we prove that a real function F' defined on a ho-
mogeneous not necessarily symmetric Siegel domain satisfying an H? condition
is pluriharmonic if and only if HF = 0, LF =0, LF = 0, where H, £, L
are second order differential operators. This generalizes the result of [3] where
symmetric domains were considered. Our approach to study non-symmetric case
is based on T -algebras introduced by Vinberg in [11].

1. Introduction

This paper treats pluriharmonic functions on homogeneous Siegel domains. These
are the functions locally characterized by the equations

0,0;,F =0 for jk=1,...,n

n being the dimension of the underlying complex space. There are other local
characterizations, one of them being Forelli’s theorem [5].

Here we are mostly interested in a global question i.e., we impose a growth
condition, and we look for a characterization of pluriharmonic functions among the
ones satisfying it. Similar problems have already been studied by various authors
(for recent results see e.g. [1], [3], [2], [7], [8]), all of them being interested in
symmetric domains while here we do not need symmetry at all.

Let © be an irreducible homogeneous cone, and let D be a corresponding
homogeneous Siegel domain. We identify D with a solvable Lie group S that
acts simply transitively on D as a group of biholomorphisms. We study S-
invariant real elliptic degenerate second order operators on D, which annihilate
holomorphic functions and, consequently, their real and imaginary part. Such
operators will be called admissible. The particular interest in restricting our
attention to second order degenerate elliptic operators is caused by the fact that
for such operators there is a very well understood potential theory. Theory of
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bounded functions harmonic with respect to an S—invariant operator L satisfying
Hormander condition was studied in [2], [4] and was based on an earlier work of
H. Furstenberg, Y. Guivarc’h and A. Raugi. The basic result of this theory we
use here is a description of bounded L-harmonic functions as Poisson integrals
on a nilpotent subgroup N(L) of S. For an admissible L on a Siegel domain
the boundary N (L) always contains a group N(®) which acts transitively on the
Shilov boundary. In our case L is an arbitrary elliptic admissible operator and
then we choose two other operators: H and £ in the way that N(L+H) = N(®).
Thus
F(s)= (sov)P(v)dv
N(®)

where P is the Poisson kernel corresponding to L = L + H, and v — sowv is
the action of S on the Bergman—Shilov boundary N(®). L is closely related
to the tangential holomorphic structure of the Siegel domain of type two and it
does not appear in the tube case. We show that three operators L, H and L are
sufficient to characterize pluriharmonic functions F with (H?) growth condition
(Theorem 5.1)

2€D

sup/ |F(w - 2)[Pdw < oo. (H?)
N(®)

For symmetric domains, this theorem was proved in [3]. Our strategy is to prove
that the support of the integrated representation U} is included in QU —Q. For
this we use the operator H which is basically the Laplace—Beltrami operator on
a product of upper-planes. The proof exploits both the algebra of the underlying
cone, and the Fourier analysis on N(®). The latter is pretty much the same as in
[3]. Our main contribution here is in the algebraic part. (Section 2.)

Let V = @,.;c;r Aij be the normal decomposition of the clan V', and
¢i,...,¢ the corresponding system of simple idempotents. The authors of [3]
used heavily the fact that for a symmetric cone Aj;’s do not vanish. In this paper
we have been able to overcome this difficulty by showing in fact that when (2 is
irreducible there are enough of non-vanishing &j;’s.

Let Sy be a triangular group acting simply transitively on 2. To push the
argument through we study carefully the action of the Sy on V. Modulo a set of
Lebesgue measure 0, V' is the sum of the open orbits O, of Sy where

,
n= ancj
j=1

for n € {—1,1}". The action of Sy on any of them is simply transitive and
identifies O, with Sy via the diffeomorphism (Theorem 2.9)

,
SH»s0 E n;C;-
j=1

The diagonalization of any non-degenerate element of V' (Proposition 2.7) not only
allows us to prove the main theorem, but also that the Fourier transform of P is
smooth on the open orbits O, (Theorem 4.5).
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2. Homogeneous cones

Let €2 be a homogeneous cone in a vector space V. We are going to describe an
algebraic structure of V. First, we state some definitions and facts.

Definition 2.1. A matrix algebra of rank r is an algebra U bigraded by
subspaces U;;, 1,5 = 1,...,r, such that U;;U;r; C Uy, and for j # 1, U;;Uy, = 0.

Definition 2.2.  An involution of a matrix algebra U is a linear mapping * of
U onto itself that satisfies the following conditions:

i o™ =ux;

* pk

ii. (zy)* = y*z*;
1ii. Z/{;; = Z/{ji;
forall z,y e U.

Let U be an algebra with involution *. We define the subspace of Hermitian
matrices in U

X ={zel|lz*=x}

T: @ L{ij,

1<i<j<r

and

the subalgebra of U consisting in upper triangular matrices.
Let U; = Re;. We denote by p the unique isomorphism of Uf; onto the
algebra of real numbers R. For a matrix z € U,

T
xr = E Ty + E Tijs
i=1 i#j

we define its trace tr as follows
T
tro = anp(x“), (1)
i=1

I,
=
We need the following notation

[zy] = zy — y=,
[zyz] = 2(yz) — (zy)2.
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Definition 2.3. A matrix algebra U/ with an involution * is called a T'—algebra
if the following conditions are satisfied:
i. fori=1,...,r, Uy; = Rey;
ii. for z;; € Uyj, cizij = Ti5¢5 = T45;
iii. trjzy| = 0;
iv. tr[zyz] = 0;
v. if x # 0, then trza* > 0;
vi. for all t,u,w € T, [tuw] = 0;
vii. for all t,u € T, [tuu*] =0.

For each matrix « € U, we put

1 T T
LRSI
=1

T =
i<j
A T
1
=5 E Ty + E Tij,
i=1 j<i

and define a bilinear operator A by the formula
TAy =Ty +yz. (3)

Let
S():{tET| ti > 0, izl,...,T}.

The product in Sy is associative by property vi. Thus Sy is open in 7 and it is a
connected Lie group. Its Lie algebra Sy can be identified with 7" with the bracket

[X,Y] = [XY].

Then we have Sy = Ny @ A where Ny = D, Ui and A = P;_, Ui;. Let
Ny = exp Ny, A = exp A. S

Definition 2.4.  An algebra £ with linear form s and multiplication A is
called a clan if the following conditions hold:

i. the operator L(x) defined by L(z)y = x/Ay has only real eigenvalues;
ii. [L(z), L(y)] = L(zAy — yAz);
iii. s(zAy) = s(yAx);
iv. if  # 0, then s(zAz) > 0;

for all z,y € L.
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For every clan £ with a unit element e there exists a normal decomposition
(see [11]). This means that £ has a direct sum decomposition

L= P &

1<igy<r

such that the subspaces L£;; are mutually orthogonal with respect to the scalar
product

(zly) = s(zAy) for =,y € L,

and the following properties hold:

i. for each 1 < i < r there exists an idempotent ¢; such that £;; = Re;;

ii. for 1 <i<j<k,
and
Lix ALk + Lig AL C Lij;

iii. for 1 <j, k<Il,if j #k and j # [, then

,CijA,Ckl = 0;

iv. for i < j and z;; € L;;,

The number 7 is invariant under isomorphism and is called the rank of the clan
L or the rank of the associated cone Q(L).

Let us define the subspaces Xj; for 1 <i < j <r by

Xig = X 0 (U + Uja)
Xii = Us;.

Then we can state the following

Theorem 2.5. ([11]) The subspace of Hermitian matrices X in a T —algebra U
with the multiplication given by the formula (8) and a linear form tr defined by
(1) is a clan with a unit element. Moreover, the decomposition X = D, ., <, Xij
18 a normal decomposition. Conversely, let L be a clan with a unit element. Then
there is a unique T —algebra U such that L is isomorphic to the clan X .
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Let Q(X) be the homogeneous cone associated with the clan X'. Then

QX) = {ss*| s € S}
and the mapping s — ss* is one-to-one. The group Sy acts simply transitively on
Q(X) by

to(ss*) = (ts)(st%). (4)
The transformation (4) corresponding to ¢ is the restriction to Q(X) of a linear
transformation 7(t) € GL(X). For ¢t = expy, y € T, the differential dm(y) of
7(t) is given by

dr(y)z =yz +zy* = Ly +y")z

for zx € X.

Let G be the identity component of the group G(2) of all transformations
in GL(X) which leave Q(X) invariant. Then S is a maximal triangular subgroup
of G.

Let ©'(X) denote the open dual homogeneous cone defined by

QX)) ={z' € X| (z|2') >0, Vo € Q(X) — {0}}.

It was proved in [11] that

0'(x) =@ (X)
and the group S§ acts simply transitively on '(X). Thus
Sy = S5

Here Q*(X) and S§ denote the images under the involution * of Q(X) and Sy,
respectively. We shall denote the open dual cone to 2 by Q*.
In the T'-algebra U we consider the subspaces

k
=XnN @Z/{Z]

ij=1
for k =1,...,r. With every element x € X,

Tr = Zx“—i—Zx” —I—Zx”,

1<j 1<j

we associate a sequence of matrices ¥ € X*, k=1,...,r, as follows

" =z, (5)

k—
Z xkk flcxllzg) (6)

We put
pr(x) = plagy) for k=1,....r
We define
J={z € X|pp(x) #0, k=1,... 1}

Since pj are non-zero polynomials, the set J¢ is closed in X and has measure 0
in X.

The following Lemma 2.6 and Proposition 2.7 are based on [11] Lemma 3
and Proposition 2.
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Lemma 2.6. Foray,...,a, €R, weput a=)"_, a;c;. Let

T
r=1 (Z aici) t*
i=1

= ( H ps(x)> Zapt,pt;p

s=k+1

fort € Sy. Then

foreo,j=1,... )k and k=1,...,r
Proof. Since forevery k=1,...,rand 1 <14,5 <k

(artirer) iy = tin(arcrtly),

we have [tat*] = 0.
The proof of the formula (7) is inductive. For k£ = r we simply get

k
ro__ . *
Ty = E LipQptp-
p=1

Let us assume that (7) holds for some k, 1 < k < r. Then

r k
oy = ( H ps($)> Zaptiptzp = ( H ps(T ) arp(tre)tic,
p=1

s=k+1 s=k+1
r k
xﬁj = ( H ps(m)) Zaptkpt;p = ( H ps ) agp tkk)tjka
s=k+1 p=1 s=k+1

and

plziy) = ( 11 ps(fv)) p (Z aptkptzp) = ( 11 ps(x)) p(trr) ax.

s=k+1 s=k+1

For +,5=1,...,k—1, we have

P(x kk)T kxﬁg
T T 2
(Hps )Zaptwt;,, ( 1T ps(x)> p(ter) aptixtly,
s=k+1

r k r k—1
— (H Ds (x)) (Z aptipts, — aktikt’;k> = (H Ds (x)) D aptipts,
s=k p=1 s=k p=1

which finishes the proof.

223
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Proposition 2.7. If x € X, then the element x belongs to J if and only if
there are t € Sy and n € {—1,1}" such that

x=t (Z nici> . (8)

Moreover, the operator t and the sequence n are unique.

Proof.  First, we show that every z of the form (8) belongs to J. Let

T
x=t (Z mc,-) t*
i=1

for t € Sy and n € {—1,1}". By Lemma 2.6,

(Hps ) ti)’n; #0 for i=1,...,r, (9)

s=i+1

and so x € J. Moreover, for 1 =1,...,r

N = sigans(ac), (10)

\/‘ Hs i+1 p5

Further, by Lemma 2.6, we have for 1 <: < j<r

( H ps )77;0 ]])t

s=j+1

(11)

By (9)—(11), we get

J
by= 20 g 1<i<j<r, (12)
‘ngjps(fv)‘
and
th:M for 7=1,...,r (13)
P (z)|

Thus ¢ and 7 are determined by z.
Conversely, if z € J, then we define ¢t € Sy and n € {—1,1}" by formulas

(10)-(13). Let
y=t (Z mci) t*.
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Then we have for 1 <:<j<r

antzpt]p = n;p(t;;)ti; + Z nptlpt;p

p=j+1
By (10)—(12) and (5), we may write
. r
ij
Yij :HT o p (CC) +nj+1t’i,j+1t;,j+1 + Z nptzpt;p
s=j+1 49 p=j+2
2 A ( J+1 *
j Lij+1 ,J+1
=7 + 7 + LipTpt
Hs—j+1ps(x) I1; s=j+1 ps(z p;}_Q ol
$g+1
==~ T tzpnp
Hs ]+2ps( ) p;ﬂ

This argument allows us to raise by one the upper index in the first term. We may
repeat the argument till we reach r and obtain the equation

—_ T — ..
Yij = xi]‘ = Tjj-

In the same way we can prove

r
§ : *

i — nptiptip = Ty;. | |
p=i

Let = be any element of J. Using Proposition 2.7, we can write

T
r=t (Z nici> t*.
i=1

Since the action by ¢ on X is a bounded linear operator, we have
toc, = tegt™.
Thus
o (tegt™) = (st)ex(st)™.

Now, by linearity and continuity, the action of the group Sy, on X restricted to
the set J can be written in the following form

sox = (st) (Zn,cz> (t*s)

for s € 5.

For a sequence n € {—1,1}", we denote by O, the orbit of Sy in V
passing through Y. , mic;. The following lemma is an immediate consequence
of Proposition 2.7.
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Lemma 2.8. The group Sy acts on O, simply transitively. Moreover,
i. Oy isopeninV;
iw. Forn#n', O,Nn0Oy =0;

717;7; J - Une{—l,l}’" On .
Theorem 2.9. The mapping © +— t(x) restricted to O, is a diffeomorphism.

Proof.  Clearly, the action of Sy on X is C*°. Let z € O,. By (10)-(13), the
mapping = — t(x) restricted to O, is C*. Moreover,

x— t(z) = t(z)o (Z nici> =z,

which finishes the proof. [ ]

A homogeneous cone 2 in a vector space V' is said to be irreducible if there
are no non-trivial subspaces V', V" and homogeneous cones Q' c V', Q" c V"
such that V' is the direct sum of V' and V", and Q = Q' + Q”. We state an
equivalent condition for irreducibility.

Proposition 2.10.  Let ) be a homogeneous cone of rank r > 1 in L with a
normal decomposition {L;j}1<i<j<r- Then § is irreducible if and only if for each
non-constant sequence n € {—1,1}" there are 1 < p < g < r such that dim £,;, > 0
and nyng = —1.

Proof.  Let Q beirreducible. Let n € {—1,1} be a non-constant sequence such
that for all p and ¢, 1 <p < ¢ <r, n,n, = —1 implies dim £,, = 0. We introduce
a partition of {1,...,r}:

P={iln=1},  Q={jln=-1}

and define

L= c; £'=ecL;

i,jEP ,JjEQ
i<j i<j

Then £ = L'@ L". By properties of 1, we get
L'AL" =0.

Moreover, £ and L£" are subalgebras of £ with unit elements ¢’ = Y., ¢; and

e = icoci- Let ', Q" be homogeneous cones in L', L", respectively. Then

the Lie group Sy has a decomposition
So =SSy,

which implies 2 = ' ¢ Q".
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Assume that for all n there exist p and ¢ such that 7,7, = —1 and
dim £,, > 0. Suppose (2 is not irreducible. Then there are non-empty subspaces
L" and L£" and homogeneous cones ' C L', Q" C L" such that

L=~L'el", Q=0a0"

Thus the Lie group Sy has a decomposition Sy = S{Sj. Hence, £ and L" are
subalgebras with unit elements e’ and e”, respectively. We define a partition of

{1,...,r}
P ={i| e = ¢}, Q={j| c;Ae" =¢;}.
Then L£,, = {0} for p € P and ¢ € Q. Taking

_ ) -1 for 1€P,
= 1 for 1€Q,

for 1 <14 <r, we get a contradiction. ]

Let € be an irreducible, open homogeneous cone of rank r > 1 in a matrix
T-algebra U. For y € Ny, £ €V and k=1,...,r, we define

Wi(&,y) = 2m(Ely o cx).
Let us denote by 7, 7* the projections
k-1
iU = @ Uij, Wk:L{HEBZ/{ik.
1<i<j<k i=1

We may write

Wk(fa y) = Wk (ﬂ-k(f)’ €+ 7Tk (y))1 (14)

since 7 (U) is a subalgebra of U and

yocg=(e+m"(y)ock, (Elyock) = (m(&)l(e+7"(y))ocx),

for y € Ny, £ € X.

Theorem 2.11.  Let Q be an irreducible, open homogeneous cone of rank r > 1
in a matriz T —algebra U. Then for every & € J* and & ¢ Q* U —Q* there erist
ie€{l,...,r} and y1,y2 € Ny such that

I/Vz(é-: yl) > 0) VVZ(fayQ) < 0

Proof. The proof is inductive over the rank of the cone. Direct calculation
shows that for cones of rank r = 2 the theorem is true. Now assume that the
theorem holds for cones of rank < r. Let €2 be a homogeneous cone of rank r+ 1.
7-(2) is a homogeneous cone in 7,.(U), not necessarily irreducible. Therefore,
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there are non-zero subalgebras {U‘}*_, of (i) and homogeneous irreducible
cones 2q,...,€ such that

k
Qcx, m@Q=@P =nu=pu.

i=1 i=1
For i € {1,... ,k}, we put I; = {j| ¢; € U;}. Let P;, Q; denote the projections

Pl = U, Qi @ujmw@u,m

JEI;

Since  is irreducible, dim Q;(7" "1 (U)) > 0 for every i =1,... , k.
We fix £ € J* and £ ¢ O U —Q*. Assume that there is 7 such that

Pi(€) ¢ Q7 U Q5.
By the induction hypothesis, there exist j € I; and ¢, ¢y € P;(Ny) such that
(PE)ltioe) >0, (P()ltzoc;) <0.
Taking y; = e + 7/ (t;) € Np for | = 1,2, we have t;0¢; =y, 0¢; € X;, and so
(Elyiocj) = (Bi(€)lti o ¢)).

Hence, the conclusion follows.
Assume now that for all i € {1,...,k}, Pi(€) € QF U —QF. Since £ € J*,

P(€) € 2 U Q.

Let (&|cy41) > 0. The case (€|c,41) < 0 is similar. For y € Ny, we can write

S Weia€) = (El(e+ 74 w) 0 crin) = (€ + ZQZ )ocrin)
= S (REORMAE) + YR + @) + Elerr)

since Qi(y)Qi(y)* € P;(U). Let us consider

FAy) = Z X (P (9)1Qi(y)Qi(y)*) + Z Ai(€1Qi(y) + Qi(y)") + (€lersa)

for y € Ny and \ € RF. Suppose that F' does not change the sign i.e.,
F(\y) > 0. (15)

Then, for all i =1,... k, P(§) € QF, since P;(§) € —QF implies

(Pi(8)|Qi(y)Q:i(y)*) < 0. Thus for every y € Ny and all i =1,... ,r

Wi(€,y) = 0. (16)
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Since & ¢ O* U —0*, there exists x € Q such that (£]x) < 0. Writing

r+1
e} E a;C;
i=1

forte Npand a; >0, t=1,... ,7+ 1, we get

(&z) = Zaz (&, 1)+ 2mar 1 (Eltoci1) <0

i.e., by (16),
1
%Wr—l—l(é—vt) = (S‘t © Cr—f—l) <.
But .
F((l, e ,1) ,t) = %Wr—kl(é‘;t) < 0
which contradicts (15). u

3. The Siegel domains of type II

Identification with a solvable Lie group. Let (2 be an open homogeneous
irreducible cone in a real vector space V. We may assume that V' is a clan with
a unit element. Let ¢ be the matrix T —algebra such that the homogeneous cone
Q(X) is isomorphic to 2 (see [11] Theorem 4) i.e., there is an isomorphism of clans
with a unit element o : V +— X such that o(Q) = Q(X). We identify V' with X.

Let V€ = V 4+ iV be the complexification of V. We extend the action of
SO to VC.

In addition to VC, suppose that we are given a complex vector space Z.
Let ® : Z x Z — VC be a Hermitian symmetric sesquilinear mapping. We assume
that ® is Q-positive i.e., ®((,¢) € Q for all ¢ € Z and ®(¢,¢) = 0 only if ¢ = 0.

The Siegel domain of type II associated with the cone €2 is defined as

D={((,2) € ZxV"|S2-9((,() € Q}.
There is a representation o : So — GL(Z) such that

92(¢,w) = @(a(9)¢, o(g)w).

Therefore, the transformation ((,z) — (0(g)¢,0(g)w) is a biholomorphic auto-
morphism of D. The elements ( € Z, x € V and g € Sy acts on D in the
following way

(- (w,2) = ((+w,z+2P(w,() +i®((, (),
z-(w,2) = (w, 2+ z),
g- (wa Z) = (U(g)wa go Z)
The first two actions generate a two-step nilpotent group N(®) (or Abelian
if Z = 0) of biholomorphic automorphisms of D. The multiplication in N(®) is

given by
(€, 2)(¢,2") = (C+ ¢ 2+ 2 +232(¢, ().
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All three actions generate a solvable Lie group S = N(®)Sy, N(®) being a normal
subgroup of S. For s € S, we use the notation s = ((,z)ya with ( € Z, z €V,
y€ Ny and a € A.

The action of o(A) is diagonalizable i.e.,

with o(H)( = @C for ¢ € Z; where Ay,..., A, is dual basis to ¢i,... ,¢, (see

e.g. [3]).
Given A € V* let

H/\(Ca w) = 4()“(I)(C1 w))

For A € Q*, the Hermitian form H), is not degenerate. If A = 22:1 a;c;, a; € R,
the form H), decomposes nicely as

r

H/\(Ca w) = Z ajHCj (Cja wj)

j=1
where (=370, (j, w= )7\ wj, (j,w; € Z;. For j # k, we have
H, (C,wy) = 4(Cj|tjj o ®(, wk)) = 4(c;| (o (t5)¢, wr)) + 4(c; | (¢, o (t5)wk))

—42 (MG ) atey e, M80) = La (w0,

and so H, (¢, wi) = 0.
For i =1,...,r, we define

di

The Lie algebra & of S has the following decomposition
s-@ze @ ve O Mo
1<i<5<r 1<i<j<r

where @, ;< ;<, Vi; is the normal decomposition of the clan V. For 1 <i < j <,
we choose an orthogonal basis {ef;} of the subspace Vj; such that

e%Aefj = 0a8Ci-

Then
(e‘?‘.|e’.3.) = tr(e‘?{Ae’(j-) = (5a5ni.

We identify ef = c;. Let {t;} be the corresponding basis for U;; i.e.,

a__a IR s
lij = € li = €
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For1§k§T,1§i<j§r,1gagdimV;]—dlm./\/w,wedeﬁnethe

left-invariant vector fields on S: X, € ka, H, € .Ak, X € Vi, Y"‘ € ./\f

identifying at the identity element with \/_ \;’i \/l \tﬁ, respectively.

In Z we choose coordinates compatible with the decomposition (17). Let
{€ja} be a basis of Z; such that H.,(ejq,€js) = dap. Then

cj Ca Z Cjaw]a

ds d;
where ¢ =3 7 (ja€jo and w =Y Wja€jq-
Let (o = Tjo + 1Yja and let Xjq, y]-a be the left-invariant vector fields on

Zjia

e \/_

S corresponding to
Then

X, X©

Zj’

HkaY Xjauyja (18)

’L]’

form a basis for S.

Admissible operators. Let T be the tangent bundle for the complex domain D
and let 7 be the complexified tangent bundle. We extend the complex structure
J and Bergman metric ¢ from 7 to T by complex linearity. The space of smooth
sections of 7', TC will be denoted by I'(T), I'(T'), respectively. We extend
the corresponding Riemannian connection V from T'(T) to T'(T®) by complex
linearity.

For Z,W € T'(T), we define

NZW)=ZW -V, W.

In T we introduce a Hermitian scalar product

(Z,W) = %g(Z, ).

Assume that we are given a system 2z, ... , 2z, of coordinates in D such that
9(0;,0;;) = d;; at the point (0,7e). Let Ei,...,E, be the unique S—invariant
orthonormal frame such that Fj;(0,ie) = 0,;. Since for every j,k € {1,... ,m}

Vazj &zk = vaik azk = 0’

a simple calculation proves that

A(E;, E ]k_z

p,q

= Z C;I;(Z)Ap,q

pq

and

for some smooth functions %(z), cik(z), and

A k(0,4e) = 0,,0z,. (19)
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This shows that a second order real operator annihilating holomorphic func-
tions can be written as L = } ., a;x(2)0,;05, or L = ., bjx(2)A;, with
ajr(z) = arj(z), bjr(z) = br;(z), respectively. Finally, A, are unique S-
invariant operators with the property (19). This implies that if on top of the
above assumptions we add S—invariance then L =) ik bjxjy for b € C with

the property bjx = b;. Such operators will be called admissible (see [4], [3]).
For our purpose it will be much more convenient to consider admissible
operators as operators on the group S. To do that we identify D with S by

6:S5+—0(s) =soieeD,

and we transport both the Bergman metric g and the complex structure 7 from
D to S. Although, we follows closely the calculations of [3], we keep most of them,
but not all because of normalizations specific to the non-symmetric situation.

In coordinates

(€, 2) = (Z(%’a + ija)eja, ) (@ + iy%)e%)

Jr i<j
«

the differential df of # becomes

W(X) = Ly dIXE) =
de(H]) = \/%fayjj’ da(Y;?) = \/éay”
WB(Xe) = Ay AIVja) = S0

This implies the following identities

J(X;) = Hj, I (Xi5) = Yij,
J(H;) = —Xj, J (Vi) = XZJ,
j(Xja) = ij j(yja) = Ja

We need some commutation relations. First, we notice that the adjoint
action of A preserves all the subspaces Vj;, N;;. More precisely, if H € A, then

N(H) + X\ (H)

[H, X] = 5 X for X eV, (20)
[H,Y] = A(H) ; MNHy o v e Nij, (21)
where Aq,..., )\, denote the dual basis to ¢y,...,¢c,. Next, for 7 < 7, we have
Vi, X5] = L x, (22)
\/”Ti
V5,5 = ——X5 (23)

v

since [V;§, X7] is identified in e with

1 N
m — (t5es + egts™) = gea Negs = i
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and [V, X;] with

= (t3c; + citsy*) = e
/TG T mym;

For every j =1,...,r with d; > 0, the subgroup Z; ® V}; is a Heisenberg
group in which multiplication is

d;

(Ca x)(w, y) = (C + w,T + Yy + % Zgjawja) .
a=1

Therefore, [V, Xjo] = ==X, and for o # 3

T
Yias Xjg] = [Xjar Xjg] = [Vja, Vig] = 0

Then

Lemma 3.1. The basis X;, H;, X, Y%

177 ]’
respect to the Riemannian structure g on S.

Xja, Vja 18 orthonormal with

Proof. The Riemannian structure on S derived from the Bergman metric on
D is given by the formula (see [6])

9(X,Y) = A(TX, V)

where for X € S
B(X) = Tr(adX —Jadx).

Using (20), (22) and (2), for every j € {1,...,r}, we get

and 3 =0 on @;:1 Z; @Kj Vij @ @ij Nij. Thus, the lengths of the vectors are

1

9(X;,X;) = g(Hj, H;) = %ﬁ([ﬂjan]) = QWﬁ(Xj) =1,
(X5, X5) = g(5,¥5) = 5B, X5) = 5 =X =1,
0o o) = 9 Vi) = 5B Xsl) = 57=B() = 1.

Orthogonality of the basis follows from the fact that if Sy, S, are root spaces
corresponding to roots A and 7, respectively, then [Sy,S,] C Sxiy- n

The Riemannian form g and the bracket in & determine the invariant
Riemannian connection V in S.
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Lemma 3.2. The Riemannian connection is given by the formulas

Vx;

J

1

1 1 1 1 1 1
Vya X2 = (——H, H). VyaVo= - (—H—— )
Xij ) 2 (\/ﬁ + Tn‘7 -7) Yzy ) 2 (\/,nTZ \/TITJ .7)
1 1
VXjana = 2\/77,—’,]H], Vyjayja = QWHJ.

Proof. Let X € §. Using the usual formulas for the Riemannian connection,
we obtain

for W € §. The proof follows directly by (20)—(22). n
By Lemma 3.2, we get

Theorem 3.3. Let

Nj=A(X;+iH;, X;+iH;), A% =NAXE 4V

YR Xz? + ZY;(;),
E? == A(Xja + iy]-a, Xja + iyja).

Then
Ny = X4 H -l A= (X2) 4+ (V) - ——h
j it j_\/—ﬁjj’ K (ij) (ij)_\/—m_z‘i’
) 1
L8 = (Xja)’ + (Yja)* — —H;.

,/mj J

The partial Fourier transform. We present some basic facts about Fourier
analysis on N(®). All what we need has been elaborated in [9].

Let (-,-) be the Hermitian scalar product in which the basis {e;o} is
orthonormal. For A € V', we define a Hermitian transformation M, : Z — Z
by

(M)\C: (,U) = H)\(Ca w) (24)
where (,w € Z, and consider the set
A ={) € V*| Det M) # 0} = {)\ € V*| Hy is not degenerate}.

The set A° is closed set of measure 0, since we have H,((,¢) > 0 for A € Q*, and
Det M, is a non-zero polynomial of A\. The set A carries the Plancherel measure
(see [9]) p(A)dA = | Det My|dA. For every A € A, we define a complex structure
Jx which corresponds to A and determines the representation space H,. Let |M,|
be the positive Hermitian transformation such that |[M,|?> = M3. Then

T = i| My~ M.

Let By, = SH). We define a realization of the unitary irreducible representation
U* (the Fock representation) associated with A\ € A. Let H, be the set of all
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C*(Z) functions F' which are holomorphic with respect to the complex structure
Jx and such that

[F(Q)P p(\)e ™A d¢ < oo,
Z

The appropriate scalar product in 4, and the representation U* are defined by

(Fy, Fy)y = /Z B (OB Qe ™0 p(\)d¢

and y =
U()&’I)F(w) — e—ZW(A\z)—%K\ +7erF(w _ C)

with wz = B)\(j)\wa C) + iB}\(wa C): K‘Q = CZ
We will define an orthonormal basis of H, for A € Q* U —Q*. First, we
notice that for A € * U —Q*, the complex structure 7, has the form

_ J¢  for AEQ*F
‘%‘C_{ —JC¢ for \e —Q*.

Hence, inside Q* U —2*, the action of s* € S§ does not change the complex
structure. By (24) we have M.,y = o(s)*M)o(s), and so

p(s* 0 A) = | Det My«op| = p(A) Deto(s).

For s € Sy and & € H), we put

Therefore,
(s-& 8 N)sior = / E(s- On(s - Qe ™BeralTsar60) p(s* 0 N)d(
z
- /zé(o@e—”wm Det o(s™)p(s*A)dC = (€,m)x (26)

i.e., the action (25) is an isometry. Moreover,
Uieays + €w) = Ulg(s)g,som&(s - w)-
Hence,
(U(sg*,;?s - 57 S - ’rl)s*o)\ = (U(}J'(S)C,Sow)é-’ 7']))\ (27)
For a multi-index v; = (vj1,--- ,7jq;), we define

[

™2 Yia
salle:

where |v;| =vj1 + -+ Vjq;, ;! = vl - 7ja;!- Then the polynomials

§7j (C) =

&0 =]1&©

form an orthonormal basis of H.. Let A € O* U —Q*. By Proposition 2.7, there
is s(\) € Ny such that A\ = s*(\) on with » = —e or 5 = e. Then putting
£3(¢) = s(A) - £(¢), we get an orthonormal basis of #y.
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4. Poisson kernels and regularity of their Fourier transform

Poisson kernels. Let L be a second order real elliptic S—invariant differential
operator which annihilates holomorphic functions. We write

L= Z oD Zp, Zy)

where {c,,} is a Hermitian positive-definite matrix, and

Z, € {X +iYy

ij 7;X¥ + ilg;vék}a + i)%ﬂm}-

Let m4 denote the canonical homomorphism 74 : S +— S/N(®)Ny. Let Y be the
first order part of m4(L). Then

Y = Z biH;
i=1

with b; < 0 (see [4]).
We define two subalgebras of N'(®) & N,

ML) =N@)eo P Ny ML= P N
(Ai=2j)(¥)<0 (Ai=2j)(¥)>0
i<j i<j

and two subgroups N;(L) = expNi(L), No(L) = expNy(L). Then N(P)N, =
Ni1(L)No(L) in the sense that
Ni(L) X No(L) > (z,y) = xy € N(2)No

is a diffeomorphism (see e.g. [2]). Let m : S +— Ni(L) be given by m(zya) = z
for x € Ni(L), y € No(L), and a € A. The space H of bounded L—harmonic
functions on S is characterized in the following way.

Theorem 4.1. (see e.g. [2]) There is a unique positive bounded smooth function
v on Ny(L) with le(L) v(z)dz =1 such that the bounded L-harmonic functions

F on S are in one-to-one correspondence with functions f in L*®(Ny(L)) via the
Poisson integral

F(s) = /N . f(m(sz))v(z)dz.

Ni(L) is the mazimal boundary for L.

As a straightforward generalization of Lemma 2.1 from [3], we get the
following

Lemma 4.2. ([3]) There exist positive numbers vy,... ,%v1 such that, if Y is
the A component of the first order part of

L=L+ Xr:%ﬂz’,
=1

then (A —X;)(Y) >0 foralli<j.
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We fix such an operator L. Let F' be a function on D annihilated by L
which satisfies

sup [ |F(¢.)9) g < o o)
s€So J N(®)
By Lemma 4.2, N;(L) = N(®), and so there exists f € L?(N(®)) such that
F(s) = f(mi(su))v(u)du = Det 57! Fw)v(s™ - u)du
N(®) N(®)

where s € S and Det s is the determinant of the adjoint action ({,z) — s(¢,z)s™!
on N(®). Let

Pya(C,7) = P((¢, z)ya) = Det(ya) "o ((ya) ™" - (,)) (28)

where 7(¢,z) = v(((,z)™!). Then
LP((¢, z)ya) = 0. (29)

For a function F' on S and a fixed s € S, we define the function F; on N(®)
by putting Fy(¢,z) = F(((,x)s). Then Fy((,z) = f x P,(¢,z). For F satisfying
(#?), the operator Up, given by

(UAE, ) = /N o GOVt s

is defined for almost every A, and it is a Hilbert-Schmidt operator on H,.
Let D be a left-invariant differential operator on S. By Harnack’s inequal-

ity,
|DP((¢, z)ya)| < cP((¢, z)ya) (30)
with a constant ¢ = ¢(D) independent of ({,x)ya € S. Hence,
DF((¢,z)ya) = f x DP((C, z)ya), (31)

and so DF satisfies (#?). Thus
Moreover, applying the differential operator D to the variable s, we get

D(U});'sga 77))\ = (U(/\DF)sga 77))\ (33)

In particular, by (29), LU}, n)» = 0. Hence, by (29), s — (Up&,n) is real
analytic for almost every A € A and all £, € H,.

Admissible operators on the Fourier transform side. Let )?ja, ija, X,

)?j be a basis of the Lie algebra of N(®) corresponding to the vectors Xjo, Vja,
X5, Xj in S parallel to N(®). For a function F on S and any X € N(®), we
have

(XF)((¢; z)ya) = Adya(X) Fya(C, ) (34)
with (¢,z) € N(®) and ya € Sg. Then
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Proposition 4.3. The Fourier transform UI’ES satisfies

~ 1
(U(/\Ajp)yaf’ 77))‘ = <_47T2(/\‘ Adya XJ)2 + HZZ N \/—WHJ) (UI):\’yaé-a 77))\’ (35)
j
~Oé (6% 2 1
(Uing P& mx = (-47?2()\| Adye X3)* + (Vi)™ — \/—HHZ) Up,.&mx  (36)
for all £,m € H*, ya € Sy, and almost every \ € A.

Proof. Since

A R ean’t(MAdya(fg)) I
exp(—t Adyq Xj) ’

so, by (30) and (34), we have

d _
l@ﬂa=—/ Pou((C. ) exp(t Adya (X)) U2, dCd
ity dt N(®)

= 2mi(\| Adya(X;))UB, -

t=0

Using again (30) and (33) for H} — \/mejHj, we get (35). The proof of (36) is
similar. n

For A € " U —Q*, we define

DX 5(C,2) = (Um0, ED.

Let j € {1,...,7} be such that d; > 0. We consider the left invariant operator
L; on S given by
d;

L= (Xa)’+ (Via)®,

a=1

and the corresponding operator on N(®)

We state the following

Lemma 4.4. Let A € Q*U —Q* and y(\) € Ny be such that X = y*(\) o \°
with X° =" Ne;, M) A2 e R. Then

j=1"J

2|oy| + d;

A XAy 0 A X A
(U(ﬁjp)y(x),la aafﬁ)A = _27mj|/\j| ; (UPym,la aafﬁ)Aa (37)
(U()\)(]?P)y(A)—la 2, 62)/\ = —471'2()\2)20,?((]1)5”}\)_1& ;‘, é-é\),\ (38)



TROJAN 239

Proof. By (27) and (34), we have

Usr ., ENENS / £ Pyy-1a(C,2) 005 (y - €,y 0 2)dCdz

Jy(n-1a

= a; (‘Cij()\)_laa Y- ®Ng)
where N N B
L; = (Adypy-1 Xja)? + (Adyry1 Vsa)

07

Given a function g on N(®) let

y(A) o g(¢,x) = g(a(y(A)) - ¢, y(A) o).

For any left-invariant vector field X on S, we have
Adyoy 10 X (3(0) - @) = y(3) - X,

Hence,

2l .
L; (y(/\) . (I)Z\:ﬁ) =y(A)-L; <I>3ﬁ = —27mj|)\?‘m

0
] y()‘) ’ (I)g,ﬁa
j
since, by [10] Section 2.1,
2| | + d;
L(baﬂ_ —9 |)\0| |Of‘7‘+ J(I))\O
J
where the factor mi] follows from our normalization (18). Moreover, ®)” a,p and all
its left-invariant derivatives are bounded functions (see [3]). Thus we have

(£ Pyiny-1a y(N) - ‘1’3(,)5) = (Pyoy-1a, £i(y(N) - ‘1)3(,),3))

2| + d;
2051445 p () - )

)

= —271'@]")\2‘

which proves (37). The proof of (38) is similar. m

Fourier transform of the Poisson kernel.
Theorem 4.5.  For a fired s € Sy the partial Fourier transform

J* 3 A= Py())
s smooth and bounded on J*.
Proof. By (35) and (36),
0=LP()\s) = LP,()\)

where L is an elliptic operator with analytic coefficients applied to the variable s.
Hence, for a fixed A € V' the function

s Py(\) (39)

is real analytic.
Let A € J*. There exist t*(\) € Sj and € € {—1,1}" such that A = t*(\)on
with n = >""_, €;c;. Since

Py(t1(A) o m) = Det t(A) Pns (),
we have P,(\) = Py(5)s(1). The conclusion follows now by Theorem 2.9. u
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5. Pluriharmonic #H? functions

Now we are ready to prove our main theorem.

Theorem 5.1.  Let D be a homogeneous Siegel domain, and let F' be a real
function on D such that

sup/ |F((¢, 7)s)?d¢dr < oo.
N(®)

SESo

Assume that F is annihilated by an elliptic admissible operator L. Let

=1
L= Z ’Yi[’;'lv (41)

1<i<r
o

be such that the mazimal boundary for L = L + H s the Shilov boundary. If
HF =0 and LF =0, then F is the real part of a holomorphic H? function.

For a tube domain, the condition LF =0 is void.

Proof.  First, we show that U} = 0 for every A € Q*U—Q* and every s € S.
Let P be the Poisson kernel for L defined by (28). There exists f €
L*(N(®)) such that
Fy(C,x) = f * Ps(C, x).

Thus for almost all A € A U} = UrUp, and, by (39), the mapping

s = (Up,&ma (42)

is real analytic. By Proposition 2.10 and the formula (31),

{2

(Uary, . & mr = Z%’ (—47T2(/\\ Ady, X;)? + H? - —Hi> (U & M-
=1

Thus

> v (—47r2(A| Ady, X;)? + H? — Up,.&ma=0.
=1

=)'

Writing H; in coordinates, we get

a;
—9,.. 4
= Ba, (43)

Hence (U}),:yaﬁ ,n)x satisfies the following differential equation

HZ((C: x)ya) =

e 2 (< Wi(hy)? + 82) (U, E.m)r = O.

Therefore (see e.g. [3]),

(U}/}‘yagﬁ )= c(A\y)e” Y1 6l Wi(hy)l
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with ¢(\,y) = limaﬁo(U}yag, n)x for j =1,...,r. Since P, is an approximate
identity for a — 0, we get ¢(),y) = (U7, m)x, and so

(UR,.&m) = (Upg m)ae™ Zim i), (44)

Let A € J*, A ¢ O* U —Q* be such that (U}‘{,n)A # 0. Then, by Theorem
2.11, there is 1 < 4 < r such that W;(\,y) changes sign. Therefore, (U}yaf,n)A
cannot be smooth as a function of ya at the points y for which W;(\,y) = 0. This
contradicts (42).

Thus for A ¢ Q* U —Q* (U, m)x = 0.

We fix A € Q* U —Q*. By (40) and (41),

Z %(U(LO‘F WS =0, Z% (A )0 Mx =0,

1<i<r
o

for every £,m € Hy. Let y(\) € Ny and A\}... ;A2 € R be such that
A=y*(A) o\

with A\ = >""_ A%;. Then, by Lemma 4.4,

JIJ

2| | + d; d;
z : () i i i )
’71< 2ma Z|)\ ms \/TWZHZ) (U y(\)~la 6,3)

7

1
Z%< 4m?(\0)? +Hf—mHi> (U 3y o1,6ar €800 =

Writing H; in coordinates (43), we get

2] i
Z% ( 2ma; |\ W —diaiaai> (Up

(]

752)/\ =0, (45)

vy~ la

Z%‘ (=47 |X)%al + 02.) (Up 2 &), =0. (46)

Fyn-1a

Solving (46) (see e.g. [3]), we get

(UF s, s §)1 = (A, e 2tz s

Fyn-ta

Then plugging it into the first equation, we obtain (Up _— 2 €3)a = 0 for all

B and « # 0. Again, since P, is an approximate 1dent1ty for a — 0, we get
(U]’c\ a>€3)x = 0. To finish the proof of Theorem 5.1, we use the following

Lemma 5.2. (see e.g. [3])

= { e 7Ovwag, iy e QF  2mvacag; i) e —Q*, (47)

Pya
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By (47) and the Fourier inversion formula (see [9]),

F(Gaa) = [ T U, oM

Q*U—-Q*

= / (U;‘*Pyafoa U(/\g,x)fo))\p()\)d)\.
Q*uU—Q*

We define a function G on S by the formula

G((¢ 2)ya) = / e~ (URE, Ul y€o)rp(N)d.

*

Then G is a holomorphic H? function (see e.g. [3]). Moreover,

G((¢,z)ya) = / e W) (U, Ut zy&o)ap(A)dA.

—_Q*

Hence, by Lemma 5.2,

F((¢,2)ya) = G((¢, 2)ya) + G((¢, z)ya),

and the conclusion follows. ]
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