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An Explicit Construction of
the Metaplectic Representation over a Finite Field

Markus Neuhauser

Communicated by D. Poguntke

Abstract.  This paper deals with the metaplectic representation of Sp (n, K),
where K is a finite field. We give an explicit, elementary and largely self-
contained construction of the metaplectic representation over finite fields of
characteristic # 2. The important steps of the construction will be given for
a system of generating elements of Sp (n, K).

1. Introduction

For a finite field the metaplectic representation is a representation with multiplier
1. This will be shown in an elementary manner. At first the dual of the Heisenberg
group over a finite field is considered and it is shown that in analogy to the
Stone-von Neumann theorem the representation is completely determined by the
restriction to the center. In section 3. a system of generating elements for the
symplectic group will be obtained. The idea for the proof explicitly uses the
finiteness of the field. This system of generating elements will be important in
the following, as the representation is given in terms of these elements. In [6] the
representation was constructed in an abstract manner, from which the concrete
matrix representation could not easily be deduced. In section 4. the representation
is determined for the generating elements and it will be decomposed into irreducible
representations with a new elementary proof. Also in this section the factors for
all but one of the generating elements will be computed to obtain an ordinary
representation, which is not found explicitly in the literature. As a by-product the
absolute value of the character for the generating elements can be computed very
easily in comparison with the calculations done in [8]. In section 5. the factor for the
last generating element will be computed, which is the determinant of the inverse
Fourier transform for finite fields. The computation of the determinant is reduced
to the computation of the trace, which is a generalized Gaul sum. This result
is an easy exercise for prime fields of odd characteristic, see for example [2]. For
general finite fields it is new. In section 7. the dependence of the representation
on a constant is considered, which yields all equivalence classes of metaplectic
representations. This result appears also in [7].
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The results obtained here are in connection with classical quantum kine-
matics, whose underlying configuration spaces are vector spaces over finite fields.
This subject is treated for example in [15] and [16]. In the case of the real numbers
this was done for example in [5].

I would like to thank G. Schlichting and M. Mayer who introduced me to
this topic, H. Fiihr for his comments and suggestions, A. Strasburger for the two
references [15] and [16] and the referee for the references [7], [12], [13] and [14].

2. Preliminaries

In this section we recall the representation theory of the Heisenberg group H, =
H, (K), K a finite field.

Let K be a finite field of characteristic # 2. Let (z,y) = Y ,_, Txyx be
a non-degenerate symmetric bilinear form on the finite dimensional vector space
K™.

The trace of the finite field K on its prime field P will be denoted by Tr. For
« € K this trace is the ordinary trace for finite dimensional linear transformations
of the mapping § — af of the vector space K over P = Z/ |P|Z (cf. for example
[11, page 214]). Moreover, let £ denote a fixed primitive | P|-th root of unity in C,
for example ¢ = 7 . With X:K—=C, x(t)=¢™
representation of the additive group of K.

It is well-known, that K" = K. An explicit isomorphism of K" and Kn
yields the mapping x : K" — K", x, (y) = 7@

Let the Heisenberg group H, be the set K?"*! equipped with the group
action

! we obtain a one dimensional

(v,8) (w,u) = (v+w,t+u+27" [v,w])

for v,w € K?*, t,u € K, where

[va] = <p’ 8) - <Q7 T)

for v = (p,q) € K*, w = (r,5) € K™, p,q,7,s € K" is a symplectic bilinear
form on the space K.

Let f € CK", where CK" is the set of all functions f : K™ — C, and
n® a.t) f(x) = xt+{(g,z)+2"(p,q)) f (x+p), where x : K — C is a non-
trivial character of K, i. e. x (t) = e T for an o € K \ {0} as was shown
before.

An easy computation shows, that the mapping 1 = 7, is a representation of
H, on CK". It also can be shown easily, that the center of the Heisenberg group
is {(0,t) :t € K}.

As clearly the center is a normal subgroup of H,, we obtain further repre-
sentations of H, by

py (w,t) =9 (w)
for w € K?*, t € K and 1 a character of K?".

Lemma 2.1. The support of the character of n is the center.
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Proof. The identity

n(p,q¢:t) f(x) =x({t+{g,2) +27" (p,q)) f (z +p)

yields trn (p,q,t) = 0, if p # 0, since  +p # z. If p = 0, the orthogonality
relations for characters show

trn (0,q,t) = |[K|" x (t) 04,0,

as x is a nontrivial character. So

trn (p,q,t) =0

for p#0 or ¢ # 0 and |trn (0,0,t)| = |K"| # 0. u

It can now be deduced, that the representation 7 is irreducible, as

H ™Y (g ) = [K YK

(p,g;t)EHR teK

— K2n+1 *1K Kn2:1
Lsasmiviig

For an element of the center it was shown in the proof of Lemma 2.1 that
trn (0,0,t) = |K|" x (t). So again the orthogonality relations for characters yield,
that two representations 7, with different x are not equivalent. This shows that
the representations are uniquely determined by the values of the center. This is
the Stone-von Neumann theorem, see also [12, page 28] for arbitrary fields of char-
acteristic > 3. In the dual of H, are the |K|— 1 equivalence classes of the repre-
sentations 7, with nontrivial characters x of K and the |K?"| equivalence classes
of the representations p, with characters ¢ of K?*. These are all irreducible
representations of H,, because |H,| = |K|**"" = |K[*" + (K| - 1) (| K[*)*.

3. The symplectic group

The group of isometries of the symplectic bilinear form [-, -] will be referred to as
the symplectic group and denoted by Sp (n, K). The main result of this section
will be the determination of a set of matrices, which generate Sp (n, K). It holds,

that [v, w] = v*Jw with J = ( 0 1

7 0 ) , where * denotes transposition. For the

following see also [5, page 171].

b

Theorem 3.1. For g = < CCL d

) € GL (2n, K) with a,b,c,d € M (n,K) the
following are equivalent:

1. g€ Sp(n,K)

2. a*c=c'a, b*d=d*b and a*d—c*b=1

3. ab* =ba*, cd* = dc* and ad* —bc* =1
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The proof is straightforward and will be omitted.

Let u(b) = (é ?) with b* = b, s(a) = (g a*01> with a €

GL (n,K). For Sp(1,K) = SL (2, K) the following theorem is proven for arbi-
trary fields in [10]. In this case there is also a description in terms of generators
and relations, see for example [4, page 300]. For the proof of the following theorem
we need a lemma about the cardinality of the symplectic group for finite fields.

Lemma 3.2.  The cardinality of Sp (n, K) is |K|n2 o e (\K\Qk — 1) .
A proof is given in [1, page 147].

The proof of the following theorem is apparently new.

Theorem 3.3. The symplectic group Sp (n, K) for a finite field K is generated
by the matrices u (b), s(a) and J, with b="0* and a € GL (n, K).

Proof. Let G C Sp(n,K) denote the group generated by these matrices.
Clearly, the sets

N={ub):beM(n,K),b=0b"},D={s(a):a € GL(n,K)}

are subgroups of G C Sp (n, K). The set

T:{(i 2) ESp(n,K):deta;«éO}

is contained in G, more precisely T = NDJNJ'. We are going to show
|G| > 3 [Sp (n, K)|, which implies the theorem.

The index of G in Sp (n, K) is
[Sp (n, K|

Sp (n,K) : 6] < PP,

. . . n? n 2k
as T'C G. By lemma 3.2 the cardinality of Sp (n, K) is |K|" -[[;_, (|K| - 1)

)
and that of T is |N||D||N|. Now |N| = and |D| = |GL(n,K)| =
" (|K|” - |K|k> , as is shown in [1, page 169], so

n—1

1 = K" T (1K - 1K)

k=0

The index is

[Ti- (IK|'c + 1) (\K\ - 1) )
K TTS K (- 1) k]i[1 (14 1K)
3-1

exp (Z\K\’j gexp(1 3 1) <2

k=1

[Sp (n, K) : G]

IN

and we are done. ]
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4. The metaplectic representation

The metaplectic representation is now constructed from the projective representa-
tion obtained from the representations of the Heisenberg group. The main result of
this section will be the determination of the projective metaplectic representation
and showing how it can be made an ordinary representation. The explicit construc-
tion also yields the absolute value of the trace of the metaplectic representation of
the generating elements almost at once.

The symplectic group acts on the Heisenberg group by

(w,t) — (gw,t)

for g € Sp (n, K). This action is clearly an automorphism of H,,, as g is an isom-
etry of the symplectic bilinear form. With this action we obtain a representation
ny defined by 7, (w,t) = n(gw,t). The center of the Heisenberg group is kept
pointwise fixed, so the Stone-von Neumann theorem yields, that 7, is unitarily
equivalent to 7, see the remark after lemma 2.1. By Schur’s lemma there is a ma-
trix 4 (g), uniquely determined up to a scalar multiple, with n, = p (g) nu (g)_l.
This yields a projective representation p of the symplectic group. By the unique-
ness we get

p(gh) = c(g,h) pu(g) pu (R)

for all g,h € Sp(n,K), where c(g,h) is a scalar factor. The function ¢ is a
multiplier of the representation, which means that the equation ¢ (g, hk) c (h, k) =
c(gh,k)c(g,h) for g,h,k € Sp(n, K) holds. The projective representation y is
an obstruction of an ordinary representation w, if and only if there is a scalar
function x such that c(g,h) = %, and then w = ku.

Now p is described on the generating set.

Theorem 4.1.  For u we have the equations

pu®) f(@) = x(=27"(z,b2)) f (),
p(s@)f(@) = fla'z),
1

p(J) f(z) = N > XUz f ).

Here x : K — C is the character associated with the representation n = n, . The
transformation u(J) acts as the inverse Fourier transform on K™.

Proof. Let f € CK" b=1b* and p(u(d)) f () = x (=27 (z,bz)) f (z), then

p®) " f @) =x 2" b)) f (@)

and

p(u®)n(pg,t) p(u®) ™ f(z)
= x (=27 (z,bx) +t+ (g, z) + 27 (p,¢) +
+ 27" (z,bz) + (p,bx) + 27" (p,bp)) f (z + p)
= n(p,bp+aq,t)f(z).
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So p(u (1) n(p,q,t) 1 (u (b)) =1ue) (P, 4, 1)-
Now let a € GL (n,K) and p(s(a)) f () = f (a"'z), then

p(s(a)™" f(z) = f (az)
and

p(s@)npe.t)u(s@)™ fl@) = x({t+{ga'z)+2"(p,q) f (z + ap)
n (ap,a*~'q,t) f (z).

So 1 (s(a))n(p,g,t) (s ()™ = ns(a) (P> a0, 1).
Now for J € Sp(n,K). By u(J)f(z) = \/ﬁ(—n|2yemx(<w,y))f(y) it

can be deduced, that p(J)" f(z) = ﬁ > yern X (—(z,9)) f(y), as

JI%"I S x (@) ) f )

= > (Z x<<m,y>>1x(<y,z>>) f6)=f @

zEK™ yeK™

because of the orthogonality relations for characters. So the above equation holds
for 1 (J)™", as pu(J)™" is a finite dimensional linear transformation. Hence

p()n(pa,t) (1) f(z)
1

= > x(t+27{p,q) — (p,2)) " (Z x ((z+4q, y>)x(<y,Z>)1) :

- f(2)
= x{t+27"pa)— p,x+q) f(z+q) =n(g,—pt) f (2).

So u(J)n(p,g,t) 1 (J) " =ns (p,q,1)- =

So we now have a projective representation of Sp (n, K). To obtain an
ordinary representation, the invariant subspaces of the projective representation
are considered. The elementary proof of the irreducibility in the following theorem
appears to be new. The theorem appears also in [7, page 17].

Theorem 4.2. The subspaces of the even and odd functions of CK" are invari-
ant, i. e.

Vt = {feCX :f(-z)=f(z)Vz € K"},
Ve = {feC"":f(-z)=—f(z)Vz € K"}

are invariant subspaces. The vector spaces V' and V— are irreducible and the
representations of V' and V= are not equivalent.
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Proof. As —I is in the center of Sp (n, K) and

it holds, that

p(g) f(—=z)=p(=I)pu(g) f(z) =p(g)p(=1) f(z).

So u(g) f(—z) = ou(g) f(x) for every g € Sp(n, K), if u(—I) f = of, where
o = £1. Let in the following p* (9) = p(9)ly+, 1 (9) = w(9),- for g €
Sp (n, K).

Now for irreducibility: By 6, : K™ — C, 6, (y) = dzy, x € K™ we have a
basis of CK" . Let T: V — V be a linear transformation defined by T4, (y) = t, .
for z,y € V., 50 T0, =3,y ty00,. We obtain

Th(u (b)) 6, (y) = x (—27 (2, b2)) 8,

and
p(u®)To: (y) = x (=27 {y, by) ty
for x,y € V. If Tp(u (b)) = p(u (b)) T for all b with b = b*, then

21 (z bx)) z=X (—271 {y, by)) ty

x (-
If x (=27 {z,bz)) = x (—27" {y, by)) for all b with b = b*, it holds, that

—Tr27" (z,bz) = — Tr 27" (y, by)

for all b with b = b* because of x (—27'8) = e~ ™22 for an a € K \ {0}. As
the trace function is not degenerate, (x,bz) = (y,by) for all b with b = b*. By
taking bgr = 1 and 0 for the remaining coefficients of b, we have z2 = y? for all
k. If £ =0, then y =0, and, if x # 0, there is a k, such that x; # 0. So yx # 0,
too, and, by taking bx; = bjr, = 27! and 0 for the remaining coefficients, we obtain
zpx; = ypy; for 3 # k. So y; = yk’lxkxj for all j and y = yk’lxkx. Because
of z7 = y7, we have y = +z; and so y = +x. Hence t,, = 0 for y # +z.
So we have T'f (y) = > (s, tyof (z) for all f €V and this shows, that VE is
invariant under 7" and T acts diagonal on V*. Let in the following T = T,
and T~ =T|,_.

Let S be a subset of K™\ {0}, which contains from each pair {z,—=z},
z € K™ \ {0} exactly one element. Hence we obtain a basis of V* by & = 4y
and 6 =0, +0_,, = € S. Further

Tt ()65 (0) =ty

1

t
VK

for y € S, where t} = t,,+1t, , for y € S. By TTu*t(J) = p* (J)T* we
have t;y =1pp forall y € S. So T = tyol. Now Schur’s lemma yields, that the
representation u* is irreducible.

and

pt (J) T (y) =
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In a similar way it is shown, that p~ is irreducible. As basis of V'~ we
choose 0, =6, — 0, with z € S. Again we have T~ f (y) =t_,f (y) for f €V~
and so

T~ u™ (s(a) 6 (y) = t,0; (™)
and
po(s(@) T8, (y) =ty-1, 41,0 (a'Y)

for z,y € S, where t,, = t,, —t, . By T7p~(s(a)) = p~ (s(a))T~ and
r = a”'y we have t, = ty-tyq-1y for all a € GL(n,K). So t;, =t for
all z,y € S, because every vector x # 0 can be mapped to every other vector

y# 0 byan a € GL(n,K). So T~ =tI for a t € C. By Schur’s lemma V'~ is
irreducible, too.

So we obtain irreducible representations u* of Sp (n, K) on V' and p~ on
V. Because of dim V™ # dim V'~ these representations on V* and V=~ are not
equivalent. [ ]

With the help of the determinant of the finite dimensional linear transfor-
mations y (g) we obtain the following.

Theorem 4.3. There is a function k : Sp (n, K) — C, such that an ordinary
representation w : Sp (n, K) — CK" is obtained from the projective representa-
tion p by w = kp. The function k is defined by r(g) = det u(g)det u* (9) 2,
where pt is the representation p restricted to the invariant subspace V' =

{feCX" : f(-z)=f(z)Vz € K"}.
Proof. As p is a projective representation,

p(gh) = c(g,h) 11 (g) pu (h)

with |c(g,h)| = 1. Restriction to V't yields also

u* (gh) = c(g,h) u* (g) u* (R).

Taking determinants we obtain

det 12 (gh) = c(g,h) " det 1 (g) det s (h)
and )
det yi* (gh) = ¢ (g,h)?" "V det u* (g) det ™ (h),

as dimV* = (/K" +1). Let x(g) = detpu/(g)detp® (9)"?, then ¢(g,h) =

K(g)K(h)
k(gh)

and w = kp is an ordinary representation. [ |

Clearly det p(g9) = det u* (g) det = (g), where p~ is the representation g
restricted to the space V. So we have

k(g) = det ™ (g) det u* (9) " = det ™ (9)* det pu (g) " -

Now we calculate the values of the function x for the generating elements,
which we shall do here for u (b) and s (a). The case of J is more difficult and will
be done in Section 5..
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If g =u(b), we have k (u (b)) = 1. With theset S C K™\{0} asin the proof
of theorem 4.2, which contains exactly one of the two elements z,—z € K™\ {0},
we have

k(u(b) = detp (u(b)detp* (u(d))

:HX (=27 (z, b)) HX xbx))lzl.

z€S ze€SU{0}

For g = s(a) it holds, that (s (a)) = det (s (a)). The matrix p* (s(a))
is like p(s(a)) a permutation matrix. So we have detut (s(a)) = £1 and
hence we obtain « (s (a)) = det (s (a)). By det 4o s we have a homomorphism
GL (n, K) — {£1} and the commutator subgroup of GL (n, K) is in the kernel
of this homomorphism. This commutator equals SL (n, K), see for example [1,
page 163]. As H = SL(n, K) is in the kernel of the above homomorphism, we
obtain by aH + det (1 (s (a))) a homomorphism GL (n,K)/H — {+1}. With
the determinant mapping on GL (n, K) the group of invertible elements of K and
GL (n,K) /H is isomorphic. So we obtain a homomorphism K \ {0} — {£1}

o (5 ) o (3 )73 -

-1
f ay o ) with z € K, y € K®!. As the elements y € K" ! are kept fixed,
we can take n = 1 without loss of generality. Let o be a generating element
of the group of invertible elements of K \ {0}. Choosing as basis of CK the
elements &g, 01, 0a, 02, - - - , 04 xi—2 the determinant of the matrix u (s («)) equals
the signature of the cyclic permutation (0,1,2,...,|K| — 2). This permutation is

even, as |K| is odd and so the permutation has signature —1. Hence « (s (a)) =
|K|—1

det (a) 2
It holds, that u(J)* = p(=I). So p* (J)* = I and det (ut (J)) % = 1.
Now we have k(J) = detu(J) and we only need to determine the value of
det pu (J). This will be done in the next section.
We will now compute an example.

Example 4.4.  The metaplectic representation for K = Z/5Z and n = 1. It
holds, that Sp (1, K) = SL(2, K). Let € denote a primitive fifth root of unity in
C and as basis dy, 01, 02, d3, 04 is chosen. With respect to this basis

1 0 0 0 O
0¢® 0 0 0
wu®)=10 0 & 0 0
0 0 0 &% 0
0 0 0 0 g%

The set of invertible elements of K is cyclic and 2 is a generating element. So it
is enough to give the representation of s(2), which is

100 00
00100
w(s(2)=—-1000 01
01 00O
00010
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As
1 1 1 1 1
1 1 ¢ &2 & &
pu(l)=—=| 1 & & ¢ & |,
Vil 3 o 2
1 et & & ¢
we find k (J) = —1 and the representation w = ku is obtained.

5. The determinant of the inverse Fourier transform

This section is devoted to the computation of « (J). At first it is shown how

to obtain k (J) from the trace of u(J) and then the trace is computed. The

eigenvalues of 11 (J) are fourth roots of unity e?* occurring with multiplicities

ay,. For the basis of the 6, with z € V holds p (J) 6, = \/ﬁ > cern X ((2,2)) 62,

as

J) gz ( Z,2) )
p D8 0) = e 3 (@)

ZEK™

0 ,/|1Kn\ D wekn gTree) = Zk:O O‘ke%k’ 22:0 o = |K"| and

3
det,u (J) = He%kak — (_1)a2 jou—as

By
1
trp (1)) = K ) x(zx) - ()
€K™ yeKn
1
= T D) x(z-2y,2) =1,
2EKn yeKn
we have

1= ‘Cko — 0[2‘2 + ‘&1 - O[3|2 .

We can decompose V = VT @ V- and detpu(J) = detput (J)det u (J) by
Theorem 4.2. Because of p* (J)> = I and p~ (J)* = —I, the matrix u* (J)

has only the eigenvalues +1 and p= (J) only +i. So ap + ay = % and
o + a3 = % If |[K"| = 1mod4, it holds, that a; + a3 = O0mod2 and

hence a; — a3 = 0mod2. As |ag —a3| < 1, we have oy = a3. So in this case
det u (J) = (-1)* = £1. If |[K™| = 3mod4, it holds, that a; + a3 = 1mod 2 and
hence oy — a3 = 1mod2. So oy — a3 = £1 and we have det pu (J) = +i. Now
we obtain the following lemma, which will be used in the sequel to determine the
value of the determinant. It reveals the connection of the trace of u(J) to the
determinant.

Lemma 5.1. It holds, that det pu (J) = i*, where

KM +1

g KM =0, (J) € Z.
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Proof. If |K"| = 1mod4, we have det u(J) = (=1)* = 4?2 in the above
notation, where 2ay = agy + as — (ap — ) = % —tru (J). It holds, that
|K™ — 1= 0mod4, so w = Omod4.

If |[K"| = 3mod4, we have dety(J) = 202t@—as and 2q, = EHL

o —az = —itrp(J). As |[K"| —1 = +2mod8, it holds, that W = 1mod 4.
]

So if we knew the value of tru (J), we could determine det i (J). By [3,
page 333] holds the following.

Lemma 5.2. For [K:P]=2m+1

ZETMZ =(=1) m(|P|-1)/2 ;(|P|-1)%/4 /|K|.

zeK

The first part of the theorem in [3, page 333] states, that Y _. gTre? =
(=1)™IFIED2 /K] for [K : P] = 2m. But — (=1)™F"D72  /IK] is the correct
value. This will be shown in the following theorem.

By [3, page 325] holds the following.

Lemma 5.3. If [K: P]=2m,

S = ()T /K]
TEK
Now we obtain the following, which would also be the correct form of the

theorem in [3, page 333]. This appears also in [13, page 486] without proof.

Theorem 5.4. Let 7 = Trz®  then

1
VK ZzeK €

7 = (= 1)KL KPIIPL-1?/4.

Proof. We have

S = —(—1) Pl 1)/2\/@ (K :P]=2m
(-1)™ m(|P|=1)/2 ;(|P|-1)® m [K:P]=2m+1'

zeK

The equation for [K : P] = 2m+1 can be deduced from lemma 5.2. By lemma 5.3

holds 3™ = ~ (-1 )PP K] for [K 2 P] = 2m. Now it =
P . |PF = = and so (—1)1F"HI2 = — (—1)™IPEDZ for all
m and \P\

Let [K:P] = 2m, then ¥l = (—=1)™. Because of 2> = zmod?2,

2
(—1)(‘P|_1) /= (—1)(‘P|_1)/2 can be deduced and hence the equation for [K : P] =
2m. For [K : P] =2m + 1 holds JIEPI(IPI=1)?/4 _ (— 1)m(|P| /2 j(Pl-1)*/4 -

Further we obtain the following corollary, which determines the trace of
().
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Corollary 5.5. It holds, that

1 | |
tr,LL (J) = Z 6TI‘<I,I> — (_1)n([KP]+1) /L-n[K.P](|P‘_1)2/4'

V ‘Kn| rzeK™

n
Proof. From \/ﬁ . cTr{z,z) — (\/;7' > wek gT‘r;CZ) and the previous
theorem this can be deduced at once. [ |

This yields the value of « (J).

Theorem 5.6.  The value of  (J) is (—1)"ELTD (yynl&LIIPI=/2

Proof. By lemma 5.1 we have detpu(J) = (—i)%, where a = —% +
HKM=D4 414y (7). So o = —KIEL 4 (L pymKPR) ((Km1-1) agnlIPY P14y

corollary 5.5. As (—1)* = 2a + 1 mod4 we have

(_1)n([K:P]+1) i(|K"|—1)2/4+n[K:P](|P|—1)2/4

K" —1)° P|—1)
%-ﬁ-n[K:P]%—I—lmodéL

So a=2n ([K : P]+1) + KJ=LK=3 4 (i - P UPLEY mod 4. Now

= 2n([K:P]+1)+

K" - 1]K"| -3 K"* -1 n
= —— —(K"[=-1)
2 2 4
n[K:P]—1 [K:P]-1
PP —1 |Pl-1
R =L SR
k=0 k=0
PP -1
= 1 n|K:P]—(|P|—1)n[K : Plmod4.
This yields
K" —1|K"[ -3 o (1P 1)
Pl—1
= | ‘2 (|IP| —2)n[K : Plmod4.
Pl—-1 P -1 |Pl-1 Pl—-1
Pt g = P P gy gy = P L g
and « (J) = det u (J), the theorem is proven. n

6. The character of the metaplectic representation

In [8, page 290] it was shown, that |trw (g)| = \K\édimker([_g). With the explicit
formula above for the projective representation p we can derive this result easily
for the set of generating elements. We even obtain the concrete value and not only
the absolute value. For all elements of Sp (n, K) the character of the metaplectic
representation has been determined in [14].

To state the following theorem, we need the following. For b = b* exists a
¢ € GL (n, K), such that c*bc is a diagonal, see for example [9, page 358].
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Theorem 6.1. The values of the character of the metaplectic representation
for the generating elements of Sp (n, K) are

K| :
trow (s (a)) = det(a) = |K|mkeU-a)

)
. ) b ot++o—
trw(u (b)) = (=1)°" ((_1)[K-P}+1 Z-[K.P]<|P\—1)2/4> O gm0/

trw(J) = (—1)"ELUPE(PD/E

)

where o, denote the number of squares, o_ the number of non-squares, o, the
number of 0 on the diagonal of —2 'c*bc and c is as above.

Proof. It holds, that trw(g) = k(g)tru(g) for ¢ € Sp(n,K). We have
p(s(a)) f(z) = f(a'x). For the basis &, of CX" holds p (s (a))d, = d..- Hence

tr (s (a)) = [ker (I — a)|

and
-1

| .
trw (S (a)) = det, (a)KT |K|d1mker(1_a) ’

so the statement holds for s (a).

We obtain
trp(u®) = Y x(=27"(z,bx)) = > x (=27 (cy, bey))
= > x(=27'(y,cbey))
= (ZX(Z?) (ZX(C@) |7

or+to—

e (G I e M SR

I

where « is a non-square. So we have
. ot++o—
trw (u (b)) = (—=1)7- ((—1)[1""P]Jrl Z'[K=P](|P\—1)2/4> - K |(mo0)/2

For J
trp (J) = (_1)n([K=P]+1) ECPI(1PI=1)%/4

So

trw (J) k(J)trp(J)

(_1)n([K=P]+1) (_Z')n[KJ’](\P\—l)/2 (_1)n([K=P]+1) in[K=P](\P|—1)2/4

in[K=P]((|P|*1)2/4*(|P\*1)/2) — (_1)n[K=P](\P|—3)(|P\—1)/8‘ -

In [14] the character of the metaplectic representation has been determined
for every g € Sp (n, K). In can be shown, that the values of the character for the
generating elements coincide with the ones obtained here.
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7. Equivalence classes of metaplectic representations

The representation of the Heisenberg group is completely determined by the center,
so the only possibility to obtain “different” metaplectic representations is to change
the value of n on the center. In this section it will be shown this way yields just
one more representation, which is not equivalent to the original one. So we have
exactly two equivalence classes of metaplectic representations. This result was also
obtained in [7], but the proof here is different.

For every h € K \ {0} we obtain a representation 7, defined by

Th (p7 q, t) =1 (hp7 q, ht) 3

and so we have a representation wy of the symplectic group by the condition

wh (9) M (w, t)wn (9)" = s (g, 1)

The representation 7, for h # 1 is not equivalent to 7, because the values on the
center are different. In the following there are some lemmata, which are needed
to prove the main theorem of this section, that the representation wj is up to
equivalence only depending on the condition whether h is a square or not. This
result was also obtained in [7, page 13].

Lemma 7.1. Let n# 1 or K 2 Z/3Z, then Sp (n, K) equals its commutator
subgroup Sp (n, K)', i. e.

Sp(n,K) =Sp (n, K)".

Proof. It holds, that
I 0 0O IN(T o\ (o0 I\' (I I
I 1)\ -10)\ 11 -1 0) ~\1I 2
I 0 IN/T I\'"( 0 I\ (2 I
o17)\-ro)\or —1o0) “\rI 1

are in the commutator group of Sp (n, K). Because both elements are distinct
and, as

I 1 of I\ (1 I\ ‘(2 I\ ' [5I —6I L7
I 21 I I I 21 I I S\ 6I —7I ’
none of these elements is in the center and in particular the commutator group of

Sp (n, K) is no subgroup of the center. So by [1, page 173] the commutator group
equals Sp (n, K), except for the case Sp (1,Z/3Z). [

and

Lemma 7.2. Let n # 1 or K 2 Z/3Z and p a representation of Sp (n, K)
on CK" | which fulfills the condition p(g)n(w,t)p(g9)”" = n(gw,t) for all g €
Sp (n, K) and (w,t) € H,, then p = w.
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Proof. Let p be such a representation, then, because of the uniqueness of the
intertwining operators for all g € Sp (n, K), there is a scalar ¢(g) € C, |c(g)| =1
with p(g9) = c(9)w(g). Now ¢ : Sp(n, K) — T is a homomorphism of Sp (n, K)
into the torus group, and hence trivial, by Lemma 7.1. Thus Lemma 7.2 is proven.

[ |

Let (K \ {0},-) be the multiplicative group of the field K, then K\ {0} is
cyclic. As the group K\ {0} is abelian the set of all squares of K\ {0} is a normal
subgroup of K \ {0}. So the factor group K \ {0} modulo the normal subgroup
of squares is also cyclic. On the other hand all elements of this factor group have
order 2. So we have that this factor group is isomorphic to {£1}.

The following theorem can also be found in [7, page 13].

Theorem 7.3. The representations wy, and wy, are equivalent, if and only if
hk s a square.

Proof. In case n = 1 and K = Z/3Z the statement about the equivalence
is clear, as 1 is the only square and 2 the only non-square in Z/37Z. Let in the
following n # 1 or K 27Z/3Z. As k~'h = /? is a square,

m (0, q,t) =n (kk™"hp, ¢, kk™"ht) = () 0 6¢ 0 by) (p, ¢, t)

with 6 (p,q,2) = (¢p, g, £2t) and by (p, g,1) = (£p, g, t), because of

Mk (8¢ (be (P, 4,1))) = e (€p, g, £t) = mu (p, 4, ¢) -

It holds, that b, € Sp (n, K), as by = s (¢I), and &, commutes with all elements in
Sp (n, K). So for g € Sp (n, K)

M (9 (p,4,1))
= (mk 0 beg) (0e (p, g, 1))
= wy (beg) w (be) " Mk (be o 8¢ (D, g, 1)) wh, (be) wi (beg)

= wy (be) wi (9) wi (be) 1 (0 0, 1) (wr (be) wi () wi (be) Y

With the uniqueness of wy from the above lemma wy, (¢) = wy (be) wi (g) wi (be) "

for all g € Sp (n, K), so wy and wy, are equivalent, if n #1 or K 2 7Z/3Z.

Let wy and wy be equivalent, then trw; = trwy,. But this is only possible,
if hk is a square. Otherwise a consideration of tr (wg (u (b)) and tr (wp (u (b))
shows, that they cannot be equal for all b = b*. [ ]
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