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ABSTRACT. Anelementary proof of the preservation of Lipschitz constants by the Meyer-Kdnig
and Zeller operators is presented.
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Given the real numberd > 0 and0 < a < 1, we denote by Liga the set of all functions
f:0,1] — R, satisfying

|f((I)2) — f(Il)| < A|I2 — l'1|a for all X1, To € [O, 1}

The main purpose of this note is to present an elementary proof of the following result:
Given the continuous functiofi: [0,1] — R, it holds that

(1) f € Lip 4
if and only if
(2) M, f € Lip 4« forall n>1,

where(M,,),>1 is the sequence of Meyer-Konig and Zeller operators.

It should be mentioned that similar proofs for other operators are to be found in [2]land [3].
On the other hand, the equivalentce €)(2) is a special case of a much more general reisult [1,
Theorem 1]. However, the proof presentedlin [1] is completely different and does not have an
elementary character.
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Proof. Let f : [0,1] — R be a continuous function and letbe a positive integer. Recall that
thenth Meyer-Konig and Zeller power series associated iv defined by (see [4])

M, f(1) = f(1),
= f (nik) mu(z),  xel01],

k
M1 (7) = ("Z )xk(l—x)n+1, k=0,1,2,....

That (2) implies|(lL) follows from the fact that the sequefqtg, f),.~1 converges uniformly tg
on [0, 1]. Thus it remains to prove that|(1) implig¢g (2). To this endylée an arbitrary positive
integer and let < x; < x5 < 1 (sinceM,, f is continuous at, it suffices to consider only the
caser, < 1). Then we have

My f(22) = if (nij> <njj)x]2(1 )"
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where the change of index— k& = ¢ was used for the last equality. We have also
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In particular, the above equalities show that

N I aF(my — 2q)0(1 — 2p)7 TR+
©) So (b0 et =o)L m)
Pyt nlk!l! (1 — zq)*t
4) i Ett (et k+ Ol af(es @) (1—ag)™h
Jd—0 n+k+/¢ nlk!l! (1 _ l‘l)kJrg = 9,
(5) i b (n+k+0! a¥(xy — 21) (1 — 2p)"tE L .
ont k nlk!f (1 — 2y )FH =1x.

Sincef € Lip 4, we have
| M f(22) — My f(21)]
< Z (n+k+0)! x'f(xz — 21)%(1 — @o)"TRHL

k+7 k
f(n+k+£) _f<n+k>‘

nlk!l! (1 — aq ) tt
<A Z (n+k+20)! x’f(@—xl)g(l—xg)”*k*l k+0 B\
n!k!e! (1 — zq)kte n+k+0 n+k)

Taking into accoun(]3) and the fact that the functian [0, co[ — t* € [0, oo is concave, we
deduce that

‘Mnf(l?) - Mnf(x1)|

[e%

< A i (n—i—k—i—ﬁ)' ) IT(IQ—ZCl)£<1—SL’2>n+k+1 l{i—l-g _ k
B s (1 — aq)ktt n+k+¢ n+k

Using now (4) and (5) we get
| My, f(2) = My f(z1)] < Az — 21),
i.e., M, f € Lip 4. This completes the proof. O
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